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Abstract. These lectures describe weakly nonlinear wave packets. The primary
model equation is the nonlinear Schrédinger (NLS) equation. Its derivation is pre-
sented for two systems : the Korteweg—de Vries equation and the water-wave prob-
lem. Analytical as well as numerical results on the NLS equation are reviewed.
Several applications are considered, including the study of wave stability. The bi-
furcation of waves when the phase and the group velocities are nearly equal as well
as the effects of forcing on the NLS equation are discussed. Finally, recent results
on the effects of dissipation on the NLS equation are also given.
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1 Introduction

The nonlinear Schrédinger (NLS) equation provides a canonical description for the en-
velope dynamics of a quasi-monochromatic plane wave (the carrier) propagating in a
weakly nonlinear dispersive medium when dissipative processes are negligible. The NLS
equation assumes weak nonlinearities but a finite dispersion at the scale of the carrier.
Cumulative nonlinear interactions result in a modulation of the wave amplitude on large
spatial and temporal scales.

2 Physical description

The NLS equation arises in various physical contexts in the description of nonlinear waves
such as water waves at the free surface of an ideal fluid or plasma waves. It provides a
canonical description of the envelope dynamics of a dispersive wave train

n=-ceAexplik - x —wt)] + c.c., (2.1)

with a small (¢ < 1) but finite amplitude, slowly modulated in space and time, prop-
agating in a conservative system. A good physical description is given by Whitham
(1974).

Let us consider a nonlinear wave equation written symbolically as

L0, VIu+ N(u)u =0, (2.2)

where £ is a linear operator with constant coefficients and A a nonlinear function of u
and of its derivatives. For a solution of infinitely small amplitude, the nonlinear effects
can be neglected, and the equation admits monochromatic wave solutions of the form

u=ceAexpli(k -x —wt)] + c.c., (2.3)

with a constant amplitude eA. Here c.c. stands for the complex conjugate. The frequency
w and the wave vector k are linked through the dispersion relation

£(~iw, ik) = 0. (2.4)

Consider a branch of solution w = w(k) of (2.4). If we consider a regular perturbation
expansion of the solution (2.3), nonlinear effects will accumulate over long times and
large propagation distances. Mathematically speaking, resonant terms will be generated
in the hierarchy of equations arising at the successive orders, leading to secular terms.
One way to deal with these secular terms is the method of multiple scales. The amplitude
of the carrier is allowed to vary over slow time and space variables, and its evolution is
given by solvability conditions that eliminate the resonances and eventually lead to the
NLS equation.

A simple heuristic argument can be given to explain the canonical character of the
NLS equation (see for example the monograph by Sulem and Sulem (1999)).

Note that the name “NLS equation” originates from a formal analogy with the
Schrédinger equation of quantum mechanics. In this context a nonlinear potential arises
in the mean field description of interacting particles.



3 Derivation of the NLS equation

The first derivation of the NLS equation for weakly nonlinear wave packets was apparently
given by Benney and Newell (1967). It was re-derived independently by Zakharov (1968).
Comprehensive reviews of NLS equations in the context of water waves are given by
Peregrine (1983) and by Hammack and Henderson (1993). Craig, Sulem and Sulem
(1992) gave a rigorous estimate of the validity of NLS for water waves. But they left open
the question of actual convergence of solutions of the water-wave problem to solutions
in the form of the modulational ansatz. Some progress was recently made by Schneider
(1998), who considered the rigorous derivation of the NLS equation from the Korteweg-de
Vries (KdV) equation. A formal derivation of the NLS equation from the KdV equation
based on the introduction of multiple scales is presented first. Then two derivations of
the NLS equation from the full water-wave equations are given. The first one is based
on multiple scale analysis, while the second one is based on Zakharov’s integral equation
representation of the water-wave problem.

3.1 The method of multiple scales

In order to illustrate the method of multiple scales, we consider the KdV equation,
which is the model equation considered in Chapter 1 :

Ut + Uggy +6uuy, =0, (z€R, t>0,u(z,t) €R). (3.1)
Its linearization admits monochromatic wave solutions of the form
u = 1pexpli(kr —wt)] + cc., with w=—k>. (3.2)

The common ansatz is that the solution has a uniformly valid asymptotic expansion
in terms of a small parameter e (the magnitude of the wave amplitude) and that fast
and slow variables are introduced. A regular perturbation expansion would lead to the
onset of resonant terms resulting from the cumulative effects of weak nonlinearities on
long time or large distances.

We look for a solution in the form

U= G(UO(mataXaTa"') +GU1(.'L',t,X,T,“')+€2U2 +)5

where the slow scales X = ex,T = et have been introduced in addition to the fast scales
z and t. The new scaled variables are considered as independent. Therefore the linear
operator arising in the KdV equation (3.1) can be rewritten as

L=L9 4+eL® 2P 4. (3.3)
where the first three contributions are given by
0 o°
0 - =4 = 4
L B + 923’ (3.4)
0 o°
o - 2 Y
£ ar T 3arax (3.5)
0 o3
@ = = : :
£ or + 383:6X2 (36)



Note the presence of the additional time scale 7 = €2t. At order (¢), we have
L(O)uo =0,
and we recover the solution (3.2)
wo(z,t) = Yo(X,T) expli(kz — wt)] + c.c.

of the linear problem (monochromatic wave propagating along the z-axis). The frequency
w is given by the dispersion relation

w=—k. (3.7

At this point, we define the phase velocity

w
cC= E
Here ¢ = —k2. It depends on k and there is dispersion. We also define the phase
0 = kx — wt and the group velocity
_dw
Cg = E

Here ¢, = —3k>.
The next step consists in writing the differential equation at order (e?) :

LOy; = —LWyg — 30, (ul). (3.8)
The following solvability condition is required at order (€?) :
(01 — 3k*0x)ug =0 or (O + cy0x)ug =0. (3.9)

We used the dispersion relation (3.7) to identify —3k? with the group velocity ¢, of the
wave packet. On the time scale T, the wave packet is just transported at the group
velocity and thus depends only on the variable £ = X — ¢,T. We then solve for u; :

LOy; = 38, (Y2e® k=t 4 cc). (3.10)
The general solution is
uy = Ag(X,T)e?ke=w) 1 cc. el 4 ceo 4+ 4g(X,T). (3.11)

The term t1e/*?~“%) can be incorporated into the term toe**~«“t by defining ¢ =
1o + €1. Then one has
_3@ik)y? y?

A= TR B

The final step consists in writing the differential equation at order (e?) :

LOuy = —LPug — LD uy — 60, (uour) — 30x (u2) . (3.12)



The following solvability condition that eliminates the terms proportional to e#(kz—«?)

and its complex conjugate is required at order (e?) :
—0:9 — 3ikOx x 1) — 6ik|[*)/k* — 6ikAgy) = 0. (3.13)
Equating the coefficients in front of the oscillation free terms gives
—0rAp — 60x | =0.
Taking into account the solvability condition (3.9) yields

2/y[°
k2

Ao = —

Finally, noting that —6k = d?w/dk?, (3.13) leads to the cubic NLS equation

oY 1wy 6,
154_5@6—52*_%'1“ P =0. (3.14)

Equation (3.14) describes the time evolution of the wave amplitude from an initial mod-
ulation (&, 7 = 0).

3.2 Rigorous derivation

In the previous subsection, we provided a formal derivation of the NLS equation. Let
@ = etp(X,T) expli(kz — wt)] + c.c. +e>Ax(X,T)exp[2i(kz — wt)]+ c.c. +€*Ao(X,T).
Then Schneider (1998) proved the following theorem :

Theorem 3.1. Let 0 > 3 and let ¢ € C([0,Tp], H5(R,C)) be a solution of the NLS
equation (3.14). Then we have C,eq > 0 such that for all € € (0,€) there are solutions
u of the KdV equation (3.1) such that

sup |lu —a(¥)||ge rr) < Ce?.
t€[0,To/€?]

The proof is not easy. There are two main difficulties : we are dealing with a quasi-
linear problem in Sobolev spaces, and the eigenvalues of the linearized problem do not
satisfy the non-resonance condition which is needed if quadratic terms are present in the
nonlinearity.

3.3 The water-wave problem

In order for this subsection to be self-contained, it is necessary to describe first the
water-wave problem (its governing equations, its boundary conditions, its linearization).



The governing equations The three-dimensional flow of an ideal and incompressible
fluid is governed by the conservation of mass

V-u=0 (3.15)

and by the conservation of momentum

u
- — e — 3.16
P =P8 Vp, (3.16)

where the material derivative is defined as D(x)/Dt = 9(x)/0t + (u - V)(*) . The hori-
zontal coordinates are denoted by 2 and y, and the vertical coordinate by z. The vector
u(z,y,z,t) = (u,v,w) is the velocity field, p(z,y, z) is the fluid density, g is the acceler-
ation due to gravity and p(z,y, z,t) the pressure.

It is assumed below that the density p is constant throughout the fluid domain.
This assumption is made for the sake of simplicity. A similar analysis can be made for
continuously stratified flows. Another assumption which is commonly made to analyze
surface waves is that the flow is irrotational (see however the paper by Colin, Dias and
Ghidaglia (1995) for rotational effects). If the flow is irrotational (V x u = 0), there
exists a scalar function ¢(z,y, z,t) (the so-called velocity potential) such that u = V¢.
The continuity equation (3.15) becomes

Ap=0. (3.17)

With all these assumptions, the equation of momentum conservation (3.16) can be inte-
grated into the so-called Bernoulli’s equation
0p 1

ot T2

|V¢F+gz+ﬁi§9:0, (3.18)
which is valid everywhere in the fluid. The constant pgy is a pressure of reference, for
example the atmospheric pressure.

The flow domain The surface wave problem consists in solving the incompressible
Euler equations (3.15) and (3.16) in a domain bounded above by a free surface (the
interface between air and water) and below by a solid boundary (the bottom). The free
surface is represented by F(z,y,z,t) = n(z,y,t) — z = 0. The bottom can be at any
depth and have any shape. The driving force is due to gravity, but the effects of surface
tension may be equally important in some physical situations.

Boundary conditions Whenever the potential and its derivatives are evaluated on
the free surface, the following notation is used :

‘P(%yat) = ¢($;y777at) s P(x) (Ib",y:t) = ¢*(5U,y;77:t) )

where the star stands for z, y, z or . Consequently, . and ¢, have different meanings.
They are however related since

P =P) TP Py =Pu) TNy, Pt=9Yr +PE)N-



The free surface must be found as part of the solution. Two boundary conditions are
required. The first one is the kinematic condition. It can be stated as DF/Dt = 0, which
leads to

e+ Pa)le + Py — Pz) =0- (3.19)

In the case of a steady motion, the kinematic condition states that the free surface is
a streamline. The second boundary condition is the dynamic condition which states
that the forces must be equal on both sides of the free surface. The force normal to
the free surface is the difference in pressure and is balanced by the effect of surface
tension. If o denotes the surface tension coefficient and C the curvature of the free
surface, p — po = —oC . For the air/water interface, 0 = 0.074 N/m. The expression for

Cis
Nz Ny
C=|rm—mtaer | +| s | - 3.20
((1+n§+n§)1/2>$ ((1+n3+n§)1/2>y (320

Bernoulli’s equation (3.18) written on the free surface z = n gives
Ly o 2 2 o
(4O (‘P(w) T @ T SD(Z)) +gn— ;C =0. (3.21)

Finally, the bottom z = —h(z,y) is assumed to be flat : z = —h. The boundary
condition at the bottom simply is

¢z($7y7_h7t) =0. (322)

To summarize, one wants to solve for 5(z,y,t) and ¢(x,y, z,t) the following set of
equations :

AP =g+ yy+ 0. = 0 for (z,y,2) € Rx R x[—h,n],
M+ Pz + Py — ¢ = 0,
0w+ (¢t + 0ty +oly) +am-2C = 0,
2 4 p
¢. = 0 on z=—h.

The conservation of momentum equation (3.16) is not stated; it is used to find the
pressure p once n and ¢ have been found. In water of infinite depth, the kinematic
boundary condition on the bottom (last equation) is replaced by

[Vg| -0 as z— —o0.

The surface wave problem has been studied for more than a century. It is a difficult
nonlinear problem because of its two nonlinear boundary conditions on the free surface.
Assumptions can be made to simplify the problem : linearization of the equations, re-
striction to periodic solutions or to steady solutions in a moving frame of reference, flat
bottom, two spatial dimensions only, model equations.



Linearization of the 2D problem and dispersion relation One looks for solutions
which are periodic in 2 with wave number k and in ¢ with frequency w. The following
dimensionless variables are introduced :

(@%,27) = (ka, kz), 7" =, wt, ¢"=— ¢,
where a denotes the amplitude of the wave. In terms of the dimensionless variables and

after dropping the stars, the surface wave problem linearized around the equilibrium
state n = 0, u = 0 reads :

Gpz + ¢, = 0 for (z,2) € R x [—kh,0],
m—¢, = 0 on z=0,
k ok3
oy + (i—2> - (W) Nee = 0 on z2=0,
¢, = 0 on z=—kh.

Consider solutions in the form of sinusoidal dispersive waves 7(z,t) = cos(z —t+ 0). In
the linear theory, the wave number k and the frequency w are assumed to be constant.
Since the equations are linear, the amplitude is arbitrary. On the other hand, for the
boundary conditions on the free surface to be satisfied, w and k must satisfy a dispersion
relation of the form D(w, k) = 0. Note that dimensional analysis immediately gives

w ok?
—~_ =g (kh,—,ka) .
Vak P9

Let us now obtain the function G. Laplace’s equation combined with the kinematic
conditions on the bottom and on the free surface gives

B 1 i cosh(z + kh)
ol —t.2) = o SR~ O — e
The dynamic condition on the free surface yields
— 2 ok’
D(w, k) = w® — gktanh(kh) [ 1+ g =0. (3.23)

The final expressions for the potential ¢ and for the elevation of the free surface n in the
original variables are

cosh(kz + kh)

¢ = bsm(km —wt‘f‘@)m,

n = acos(kx — wt + O), (3.24)

where



Figure 1. Dispersion relation (3.25) for capillary—gravity waves. The three curves cor-
respond, from top to bottom, to W = 0.4, W = 0.2 and W = 0.

Equation (3.23) is the well-known dispersion relation for linearized 2D capillary—gravity
periodic waves in water of finite depth. Written in terms of the phase speed ¢ rather
than the frequency w, the dispersion relation becomes

» _ tanh(kh)

F
kh

(1 + (kh)*W) , (3.25)

where the Froude number F' and the Weber number W are defined as

C g
—, W=—.
Vgh pgh?

Equation (3.25) has been plotted in Figure 1 for three different values of W. When
0 < W < 1/3, the curve has, in addition to the extremum at the origin, a minimum
where phase and group velocities are equal. Note that in infinite depth the dispersion
relation becomes

F =

2
D(w, k) = w?® — g|k| (1 + %) =0. (3.26)

The presence of the absolute value has subtle consequences.

For the air/water interface, the minimum is obtained (in infinite depth) for a wave
length of 1.73 cm and a wave speed of 23.2 cm/s. For short waves (kh large), surface
tension has a stronger effect than gravity. For long waves (kh small), it is the opposite.
If the Froude number F' is between the minimum value and one (and 0 < W < 1/3),
there are two corresponding positive wave numbers, one on the gravity side and one on
the capillary side.

In water of 10 centimeter depth, the critical speed \/gh is 1m/s. For the air/water
interface, the corresponding short wave having the same phase velocity is given by (since
kh is large)

kh~ -2

N o (kh)? = 0.00074(kh)?, or kh~ 1350,
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Figure 2. Wave packet (3.27) at time ¢ = 0 with £k = 1, 6k = 0.2 and A = 1/2. The
envelope is shown in dashed lines.

i.e. its wavelength is half a millimeter. If h = 5 cm, the wavelength is 1 mm.
The group velocity can be written as

1 (14 3(kh)*W kh
cg=clz + — .
2 \ 1+ (kh)2W sinh 2kh

For long waves (kh — 0), the group and phase velocities are equal to v/gh. There is no
dispersion. For pure capillary waves (g = 0), the group velocity is

UYL
€ =°\2 7" sinh2kh )

while, for pure gravity waves (o = 0), the group velocity is

_o(L_kh
€ =\2 7" sinh2kh ) -

A first interpretation of the group velocity is given by considering the superposition
of two linear waves, with almost equal wave numbers and frequencies :

m = Acos(kr —wt),
2 Acos[(k + dk)x — (w + dw)t].

The resulting profile is given by

24 cos [ (0kz — dwt)] cos [kz — wt + 1 (6kz — dwt)]
24 cos [2(0kz — dwt)] cos(kz — wt) (3.27)

n=m-+mn

Q

and is shown in Figure 2. The envelope (first cosine term) travels at the group velocity

10



while the carrying wave inside the envelope (second cosine term) travels at the phase
velocity.

A second interpretation of the group velocity is given by considering the speed of
propagation of energy. We define the kinetic energy density K and the average kinetic
energy over a wave length K

n o 1 z+L
K:/ LoVl d, K:z/ K dz, (3.28)
—h T

as well as the potential energy density V and the average potential energy over a wave
length V'

o 1 z+L
V=%P9772+J(\/1+n§—1), V:E/ Vdz, (3.29)

where L denotes the wave length. The total energy density is E = K + V.
For linearized waves, the expressions for K and V become

. 1 /EJFL /0 1 ) 1 5 o.kQ
= — —p|Vé|*dzdx = —=pga* {1+ — | ,
LJ, “h2 Vel 4 Py

— 1t o, 1 1, ok?
=— = = == 1+—1.
Vv L/z (ngn +2ffnz) de = - pga ( + pg)

Potential and kinetic energy are equal. This result, however, is no longer true for non-
linear waves.

For the sake of simplicity, let us now neglect the effects due to surface tension. The
kinetic energy balance for the flow of a perfect fluid can be written as

6/2p|V¢|2dQ+/ %p|V¢|2u-nda:/pf-udQ— pu-nda,
ot Q 09
where f is the force due to gravity, 2 the domain contained in the rectangle between two
vertical lines at x = z; and at £ = x5, the bottom and a horizontal line above the free
surface, 92 the boundary of this domain.

Let us transform first the term containing the gravity force, by introducing the po-
tential & = —gz. The free surface is denoted by X.

/pf-udQ = /pV@-udQ
Q Q

/pV-((bu)dQ (since V-u=0)
Q

| pounda- [ peu)-nas

(divergence theorem in the presence of a free surface)
—/ pgzu-nda— P9 dx.
a0

= V1472

(kinematic condition)

11



Therefore the right hand side of the kinetic energy balance can be rewritten as

/pf-udQ— pu-nda = _/ (p+p92)u-nda— PINM ds
Q oQ 99

2 /1+n?
op 4 2) PIN
= — + |V u-nda— —=d¥.
/BQ” (at 21V9l 5 /1+72

It follows that

9 / 1 2 / pYNTH 9¢
= [ 5p|VP|°dQ+ | ——=dE = — u-nda,
ot sz| 7 x /1+n2 an ot
o [* K
or a/ (/ 1p|Ve)? dz + %pgn2) dz = =F(22) + F(z1) .
1 —h
It yields the equation
OB OF _
ot  ox
where F is the energy flux defined by

0,

n
f=—/hp¢z¢tdz.

A local derivation of that equation can also be given.
For the waves (3.24) of the linearized problem with ® = 0, one computes easily

1 2kh 1 1 kh
E = —pga®cos®(kx —wt) {1+ ———— | + =pga® | = — ———
59 cos” (kr —wt) ( + sinh(Zkh)) P9 \3 T Simn(zkn) )
and 1 2kh
2W 2
= — -— - 1 .
F 5Pga” - cos (kx — wt) ( + sinh(2kh)>
By taking the average of these two expressions over a period, one finds

— 1 - 1
E = épga2 and F = Epgcgaz.

It follows that F = ch. The energy propagates with the group velocity.

IlNlustrations of the concept of group velocity There are several experiments which
clearly illustrate the concept of group velocity. We have seen that there are two inter-
pretations of the concept of group velocity, one which is purely kinematic and one which
is purely dynamical. The link between the two is not that clear (see Stoker (1958)).
Stoker gives a preference to the kinematic interpretation. Three well-known illustrations
of the concept of group velocity are the wave-maker, the fish-line problem and the ship
wake. The main feature of these three examples is that the free surface is perturbed
by a surface piercing object. In the problem of the wave maker, a paddle oscillates and
disturbs the free surface. In the problem of the fish-line, the object is fixed but the flow
has a current. In the problem of the ship wake, the ship is moving on the free surface of

a fluid otherwise at rest.

12



Dispersion relation for 3D waves The extension of the dispersion relation (3.23)
to three-dimensional waves is

k 2
D(w, k,1) = w® — g|k|tanh(|k|h) (1 + %) =0, (3.30)
where k| = V&2 + 2.

A brief account of the method of multiple scales to derive the NLS equation
from the full water-wave problem Accounting for nonlinear and dispersive effects
correct to third order in the wave steepness, the envelope of a weakly nonlinear gravity—
capillary wavepacket in deep water is governed by the NLS equation. A more accurate
envelope equation, which includes effects up to fourth order in the wave steepness, was
derived by Dysthe (1979) for pure gravity wavepackets. He used the method of multiple
scales. Later, Stiassnie (1984) showed that the Dysthe equation is merely a particular
case of the more general Zakharov equation that is free of the narrow spectral width
assumption. Hogan (1985) extended Stiassnie’s results to deep-water gravity—capillary
wavepackets. Apart from the leading-order nonlinear and dispersive terms present in the
NLS equation, the fourth-order equation of Hogan features certain nonlinear modulation
terms and a nonlocal term that describes the coupling of the envelope with the induced
mean flow. In addition to playing a significant part in the stability of a uniform wavetrain,
this mean flow turns out to be important at the tails of gravity—capillary solitary waves
in deep water as shown by Akylas, Dias and Grimshaw (1998).

The common ansatz used in the derivation of the NLS equation (or of the Dysthe
equation if one goes to higher order) is that the velocity potential ¢ and the free-surface
elevation 7 have uniformly valid asymptotic expansions in terms of a small parameter €
(the dimensionless amplitude of the wave, kA, for example). One writes

3

no= Y € nu(wo, m1, 2, Y1, 423 o, b1, 12) + O(e*), (3.31)
n=1
3
¢ = D € Pn(wo,T1,T2,Y1,Y2, 2 to, 11, t2) + O(€*) (3-32)
n=1
where
TQ=T,T) =€T,Ty =€,y =€y, yp =€ y,tg=1t,t1 =€t ,ty =€t. (3.33)

The order one component of 7 is the linearized monochromatic wave
m=Aelhr=wt 4 cc.. (3.34)

Applying the method of multiple scales leads to the following equation for the evolution
of the complex amplitude A of the wave :
0A 0%A 0%A

%o, TP t I57 + VAIAP = —ie(sAgyy +1Agee +uA’ A7 —v|APP Ag)

+ eA$§| (3.35)

21:0 )

13



The evolution equation has been written in dimensionless form, with all lengths nondi-
mensionalized by k, time by w and potential by 2k? /w. Here £ = 1 — ¢4ty and 21 = ez
are scaled variables that describe the wavepacket modulations in a frame of reference
moving with the group velocity c,. As expected, to leading order in the wave steepness
€ < 1, equation (3.35) reduces to the familiar NLS equation, while the coupling with
the induced mean flow is reflected in the last term of (3.35). Specifically, the mean-flow
velocity potential €2 ¢(&, 21,t2) satisfies the boundary-value problem

bee +¢zzy = 0 (—00 <21 <0, —00 < €< 00),
6., = (AP (21 =0),
5 - 0 (21 — —oo) R

from which it follows that

% ——/ Is| i€ FT(|A]%) ds, (3.36)

z21=0

where

1 > .

FTO =5 [ e
21 J_

denotes the Fourier transform. Hence, the coupling of the envelope with the induced mean

flow enters via a nonlocal term in the fourth-order envelope equation. The coefficients of

the rest of the terms in (3.35) are given by the following expressions, where B = ok?/pg :

2 ¢ B2 +6B -1
—Fdw _ 35 +85-1 (3.37)
W dk? 41+ B)?
k dw 1+3B
1=5a ~ 20+B)’ (3:38)
2B>+ B+38
T T T8(1-2B)1+B)’ (3:39)
(1-B)(B*+6B+1)
= - 4
" 8(1+ B) ’ (340)
3+2B+3B?
s = I+ B (3.41)
_ 2
w - U-BEB+B+8) (3.42)

16(1 — 2B)(1 + B)?

B4 +4B% —9B% 4+ B —
v = SUB+ 95" +B-8) (3.43)
8(1—2B)°(L + B)?

These expressions are not valid when B is close to 1/2, which corresponds to the resonance
between the first and second harmonics.

Derivation from Zakharov’s integral equation This derivation was first considered
by Stiassnie (1984) for gravity waves and by Hogan (1985) for capillary—gravity waves.

14



Instead of working directly with the free-surface elevation 7(x, t), the new variable B(k, t)
is introduced. The link between 1 and B is :

n(x,t) = oy / (Zw(k)) {B(k,t) exp{ik - x — w(k)t]} + c.c.} dk. (3.44)
Zakharov’s integral equation for B(k,t) is (see also Chapter 5)

—+oo
ia—B(k,t) = /// T(k,k1,ko,k3)B*(ky,t)B(ky,t)B(ks,t)d(k + k; — ks — k3)

ot
X exp{l[w(k) + W(kl) - w(kz) - w(k3)]t} dk1 dk2 dk3 s (345)

where the wave vector k and the frequency w are related through the linear dispersion

relation (3.30)

w(k) = (glk| +o/p [*) "2 .

The function T'(k, k;, ks, k3) is a lengthy scalar function given for example by Krasitskii

(1990). Equation (3.45) describes four-wave interaction processes obeying the resonant
conditions

k+ki = ks +ks , (346)
wk) +wk) = wks)+wks). (3.47)

But, as pointed out by Zakharov (1968), there are difficulties in applying equation (3.45)
to capillary—gravity waves. This is because, unlike gravity waves, these waves can satisfy
triad resonances. The condition for triad resonance will give a zero denominator in one
of the terms of T'(k, k1,ks,ks) corresponding to the second-order interaction. However,
if the wave packet is sufficiently narrow, then the resonance condition cannot be satisfied.

Let k = ko + x where kg = (k,0) and x = (p,q). Let € denote the order of the spectral
width |x|/k. Let also w(ko) = w and x; = (pi,¢),1 =1,2,3.

Introducing a new variable A(x,t) given by

A(x,t) = B(k,t) exp{—ilw(k) — w(ko)]t} (3.48)
in equations (3.45) and (3.44), one obtains

L0A

+oo
G0~ 00 —wldet) = [[[ Ttk +x1ko+ x0ko +x0) (349)

S(x+x1—x2 — x3)A"(x1)A(x2)A(xs) dx1 dx2 dxs,

and

400 1/2
n(x,t) = exp{i(kz — wt)}% /_ (23‘8{)) A(x,t)eX*dy + c.c. (3.50)

The Taylor expansion of |kg + x|/2w(ko + x) in powers of |x|/k is

(%)1 (Zg 1+B ) ( i (ﬁ—ﬁ)) ; (3.51)
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in which terms up to order € have been retained.

Substituting equation (3.51) into (3.50), n(x,t) can be expressed as

n(x,t) = Re {a(x, t)eike—«0} (3.52)

a(x,t) = % (%)1/2 /_ j (1 + 2 (;—g» AluDeX*dy.  (3.53)

By Taylor expanding w(k) —w in powers of |x|/k and keeping terms up to order € we get

1/2 2 2 2
o= (9 p- (Z1+6B+3B°\ ¢
wk)—w = 2(k(1+B)> {p(1+3B)+4k( 1+ B +2k(1+3B)
3 _ 2 2 2
L P (1-B)1+6B+B°)\ pg° (3+2B+3B . (3.54)
812 1+ B)? 412 1+ B

In (3.49), we substitute the expression (3.54) for w(k) —w. By replacing A(x,t) by a(x,1)
and taking the inverse Fourier transform, one finds

1/2 2
o g , —1+6B+3B (1+3B)
2| — 1 Ba, — zT
1“t+2(k(1+3)> {1( +3B)a +( k(1 + B) ok

_.(1—B)(1+63+Bz)a +i3+23+332a
8k2(1 + B)2 v 4k2(1+B) Y

_ 1 ( 2w )1/2///+°° [1+p2+p3 ~p (1—3)}
27 \g(1+ B) oo 4k 1+B
xT(ko + X2 + x3 — X1, Ko + x1, ko + x2,ko + x3)

X A*(x1)A(x2)A(xs) exp{i(x2 + x3 — x1) - x} dx1 dx2 dxs -

(3.55)
Now it can be shown that the Taylor expansion of T' keeping terms up to order € becomes

k* [ (8+ B+2B?)

T(k —x1,k k k =

(ko + x2 + x3 — X1, ko + x1, ko + X2, ko + X3) ) [4(1+B)(1—2B)

)2 )2

_ (p3 pl) _ (pZ pl) :| . (3-56)
Elxi —xsl  klx1 — xz
By using this form of T', we find by using (3.53) that the right-hand side of (3.55) becomes
on integration

+3(p2 +p3) (8— B+9B% —4B°% —4B*)
8k (14 B)2(1 — 2B)?

g [F@B+B+ 2B2)a|a|2 12 (1-B)(8+ B+ 232)a2a*
16w (1 -2B) 2 (1+ B)(1 - 2B) @
_31k2(8—3+932—4B3—4B4) 2

|a|2a$ - k—aI;
(1+B)(1—2B) P

(3.57)
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where

— T (1 —p2)® . i(x2—x1)x
I= A*(x1)A(x2)e dx1 dxs - (3.58)
—0 |X1 - X2|
It can be shown that
_ g(1+ B) /+O° 0 o z—X
I= [7%) 2 . _8X(|a| )7|X—X|3 dX. (3.59)

The integral I can be related to the mean-flow velocity potential ¢ (3.36). Collecting the
results from equations (3.55) and (3.59), together with those from the expression (3.57),
and making the same scaling transformation as above leads to equation (3.35). More
details can be found in Dias and Kharif (1999). See also the interesting paper by Phillips
(1981), which provides a history of wave interactions.

4 Mathematical properties

In this section, we consider the NLS equation in the following form :
lug + QUgy +v|u’u=0, wecC. (4.1)

This form can always been obtained with rescaling. We emphasize here that there is
only one NLS equation (focussing if ary > 0 and defocussing if ay < 0) for all physical
systems. Incidentally the NLS equation (3.14) derived from the KdV equation is of the
defocussing type. The NLS equation derived from the water-wave problem is of the
focussing type if kh > 1.363 and of the defocussing type if kh < 1.363.

4.1 Hamiltonian structure

The NLS equation (4.1) is a Hamiltonian partial differential equation. Taking real
coordinates, the following Hamiltonian system can be derived. Let u = wy + iug and
write U = (u1,u2). Then the NLS equation takes the form

JU, + aU,, +1|[UPU =0 where J= (? _(1)) , (4.2)
or
JU, = VH(U), (4.3)
with
H(0) = [ [3allU.IP - 12U da. (4.4)

The expression for H clearly shows why the case ary > 0 is called focussing.

4.2 Conservation laws

There is an infinite number of conservation laws satisfied by solutions to the NLS
equation. Only two will be of concern to us. The first one is the conservation law for
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|u(z,t)|?, which is given by

9
ot

0
|u|? = ia=—(Tu, — ully) -

or

Suppose |u|? can be integrated over an x—interval in such a way that (@wu, —u,) vanishes
at the boundary of the interval. Then

d 24, —
E/M dz=0.

The second one is the energy conservation. Define the energy density E(z,t) and the
energy flux F(z,t) by

E(z,t) = jalul’ = iylul* (4.5)
F(z,t) = —30(Ugus + ugly) - (4.6)

Note that the energy is indefinite : the integral of E(zx,t) over x can be negative or
positive, depending on the initial data. A calculation shows that the energy conservation
law is

0B OF _

ot ox
Integrating over z and assuming that the boundary conditions are such that [ 0F/dz dz =
0 yields

0. (4.7)

d
7 / (Lajuy|? — tvjul!) dz =0.

5 An NLS model for the Benjamin—Feir instability

The discovery of the Benjamin—Feir (BF) instability of Stokes travelling waves was a
milestone in the history of water waves. It is due to the seminal work of Benjamin
and Feir (1967) which combined experimental evidence with a weakly nonlinear theory.
Mathematically, the BF instability can be characterized as a collision of two pairs of
purely imaginary eigenvalues of opposite energy sign (see Figure 3 for a schematic). For
the full water-wave problem, there is in addition to the four eigenvalues shown in Figure
3 a countable number of stable purely imaginary eigenvalues. This point of view of the
BF instability was a byproduct of the proof of the BF instability provided by Bridges
and Mielke (1995). It also appears in the nonlinear Schrédinger model, where it can be
shown explicitly. One of the pairs of modes in the collision has negative energy (relative
to the basic state) and one pair has positive energy.

As said above, the NLS equation describes the modulations of weakly nonlinear, deep-
water gravity waves, with basic wave number ko and frequency wg (ko) :

Wo

I(AT + CgAX) - @
0

1.
Axx — 5wolcg|,4|2,4 =0, (5.1)

18



(@ (b) ©

Figure 3. Schematic of the eigenvalue movement associated with the Benjamin—Feir
instability. The circles indicate simple eigenvalues, while the crosses indicate double
eigenvalues.

where A varies slowly in X and T, and ¢, = wo/(2ko) is the group velocity. At leading
order, the free-surface elevation n(z,t) is given by

n(z,t) = A(X, T)elkoz—wot) 4 ¢c (5.2)
In a frame of reference moving with the group velocity, equation (5.1) becomes
. wo 1 20 A12 4 — ; —
iAr — @A& - §w0kO|A| A=0, with {£=X—¢,T. (5.3)
0

By scaling T, ¢ and changing A into u, one obtains the normalized equation (4.1), where
a and vy are taken to be positive.

The basic travelling wave solution Equation (4.1) admits travelling wave solutions.
Let 6(x,t) = kx + wt + ©, and consider the basic travelling wave solution to (4.2)

o cosf —sinf
U(z,t) = Ry(s,n)Uo, Rp= (sin6 cos0) . (5.4)
Then Uy, w, k satisfy
w + ak? = v||Uol|*. (5.5)

Below we show that the condition for a BF instability of the basic travelling wave solution
of (4.1) is ary > 0, a condition satisfied by deep water waves. The BF instability does
not occur in the defocussing NLS equation (ay < 0).

Formulating the conservative BF stability problem Linearize the partial differ-
ential equation (4.2) about the basic travelling wave (5.4). Let U(z,t) = Ry(,,¢)(Uo +
V(z,t)), substitute into the governing equation (4.2), linearize about Uy, and simplify
using (5.5). One gets

TV +2akJV, + aVy + 2v(Uq, VIUy = 0, (5.6)
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where (-,-) is the standard scalar product on RZ2.

The class of solutions of interest are solutions which are periodic in £ with wavenumber
0. The parameter ¢ represents the sideband. The BF instability will be associated with
the limit |o| < 1. Therefore let

V(z,t) =1Vo(t) + i(Vn(t) cosnox + Wy, (t)sinnox) .
n=1

The o—independent mode satisfies
JO Vo +27UoUl Vo =0. (5.7)

Letting Vo(t) = eMVy, it is easy to verify that A satisfies A2 = 0. All solutions of this
equation are neutral, and therefore do not contribute to instability. The c—independent
modes are associated with the superharmonic instability which is known to be stable at
low amplitude.

The o—dependent modes decouple into 4—dimensional subspaces for each n, and
satisfy

JO:V,, + 2akno JW,, — a(no)*V,, + 29U UV, = 0
JO,W,, — 2aknoJV,, — a(no)*W, + 2¢UUiW, = 0.

When the amplitude ||Ug|| = 0 it is easy to show that all eigenvalues of the above system
(i.e. taking solutions of the form e* and computing )\) are purely imaginary. Considering
all other parameters fixed, and increasing ||U||, we find that there is a critical amplitude
where the n = 1 mode becomes unstable through a collision of eigenvalues of opposite
signature.

To analyze this instability, take n = 1 and study the reduced four dimensional system

JO; V1 + 2akc JW; — ac? V1 + 29UUIV, = 0
JO,W, — 2ako IV, — ac® Wi + 2¢UUIW, = 0.

To determine the spectrum, let (Vi, W;) = (Q,P)e*. Then (A, Q,P) satisfy

A — ac®l + 2’7U0Ug1 2akoJ Q\ (o0 (5.8)
—2akoJ M —ao?T +29U,Ur | \P) ~\0) - ’

Denote the determinant of the left hand side by A(A, o). Then a calculation shows that
AN 0) = M+ 2(p* + 4k2?0?)N? + (p° — 4k?a’0?)?,

where
p? = a?o* — 2a||Uol|?0?.

Suppose p? > 0, then all four roots are purely imaginary (see Figure 3a) and given by

A =1i2ako +ip, —i2ako +ip.
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These modes are purely imaginary as long as p? > 0 or
2va||Ugl)? < a?o?.
Since ary > 0, the instability threshold is achieved when the amplitude reaches

|ad|
V2oy -

At this threshold, a collision of eigenvalues occurs at the points A = £2ikaoc (see Figure
3b).

1Tol| =

(5.9)

Signature of the colliding modes Purely imaginary eigenvalues of a Hamiltonian
system have a signature associated with them, and this signature is related to the sign
of the energy (cf. Cairns (1979), MacKay and Saffman (1986), Bridges (1997)). Collision
of eigenvalues of opposite signature is a necessary condition for the collision resulting in
instability.

It is straightforward to compute the signature of the modes in the NLS model. Sup-
pose that the amplitude ||Uy|| of the basic state is smaller than the critical value (5.9)
for instability. Then there are two pairs of purely imaginary eigenvalues, and they each
have a signature. Let us concentrate on the eigenvalues on the positive imaginary axis

A=iQ4 with Q4 =2koa=Lp. (5.10)

Then
Sign(2+) =i(Q,JQ) +i(P, JP),

where the inner product is real in order to make the conjugation explicit, and (Q,P)
satisfy (5.8). Omne can also show that this signature has the same sign as the energy
perturbation restricted to this mode.

The eigenvalue problem for Q4 is (5.8) with A replaced by i21. From the system
(5.8) it follows that

2akoP = [-iQ4] — ao®J + 2vJU UG | Q.
First compute the case where ||Ug|| = 0, then
2akoP = [-i04] — a0®J] Q,
and so
(20ko)?Sign(Qy) =1 (207 F 2a0” (2ako)) (Q, JQ) — 20021.07(Q, Q) -

After some computation it is found that

Qi = (il) , associated with the eigenvalue A =iy,
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and so (Q,Q) = 2 and (Q, JQ) = F2i. Substitution into the expression for signature
yields

Sign(y) = t4.
Hence the two modes which ultimately collide have opposite signature when Uy = 0.
Since p? decreases as the amplitude increases, the two modes will have opposite signature
for all ||Up|| between [|Uq|| = 0 and the point of collision.

6 The effect of dissipation on the Benjamin—Feir instability

Having established that there is a collision between modes of opposite signature, we
can appeal to the well-known result that dissipation always destabilizes negative energy
modes (Cairns (1979); Craik (1988); MacKay (1991)) to conclude that dissipation en-
hances the BF instability. But one has to be a bit careful. For example, Segur et al.
(2004) recently studied the perturbed NLS equation with weak damping of the form

iug + Qe + v [ufu+idu=0, wueC, (6.1)
where 6 > 0.
The perturbed NLS equation takes the form
JU; +aU,, +9||U|PU +6JU =0, (6.2)
or
JU, =VH(U) -4JU, (6.3)

with H defined by (4.4).
Looking for travelling wave solutions of this perturbed equation leads to

[(—w — ak® + || Uo||*)I + 6J] Ug = 0.

The main theoretical result of Segur et al. (2004) is that a uniform train of plane
waves of finite amplitude is stable for any physical system modeled by (6.1). Dissipation,
no matter how small, stabilizes the Benjamin—Feir instability.

The cornerstone of their argument is the §—perturbed conservation law for |u(z,t)|?,

0, 0
—|ul? = i (du, —ut,) — 26|ul?.
oo lul? =i (i, — uiy) — 20
As above suppose |u|? can be integrated over an z—interval in such a way that (Wu, —ut)
vanishes at the boundary of the interval. Then

%/|u|2dz:—25/|u|2dz.

Clearly all solutions are damped no matter how small § is. This argument is however
a global argument. By integrating over space, all x—distribution and modal distribution
of |u|? are smoothed out by the averaging (integration) process. From this global view
it is impossible to determine the interplay between the various modes. It is shown below
that in fact there is an interplay between the modes. Incidentally, it can be shown easily
by using the —perturbed conservation law for the energy E (4.5) that the energy can
grow with time (at best it is bounded from below).
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A model problem Consider the following prototype for a linear ordinary differen-
tial equation on R* with a collision of eigenvalues of opposite signature, and Rayleigh
damping,

Qi +2bJQ; + (a®> —b*)Q +26Q; =0, (6.4)

where § > 0 represents the Rayleigh damping coefficient, a and b are real parameters
and b is the “gyroscopic coefficient”. Let

Q(t) = Qe*,
then substitution into (6.4) leads to the characteristic polynomial
AN) = (A + 200 = b* +a®)* +40°X* = 0,
which can be factored into
[(A +1b)% 4+ a® + 20A] x [(A —ib)® + a® +26A] = 0.

When § = 0 there are four roots A = %i(b &+ a). Suppose a is small and positive (just
before the collision) and look at the effect of dissipation on the two modes

/\0 =ib+tia.
Let
A(6) = Ag + 01 + 0((52) .

Then substitution into the characteristic polynomial leads to
1
)\1 = :Fa (b + a) ,

and so 5
A@) =ib+iaF —(b+a)+ 0(8%).

In other words, the negative energy mode A = i(b — a) has positive real part when
dissipatively perturbed, and the positive energy mode A = i(b + a) has negative real
part under perturbation. Consequently, when small dissipation is added the mode with
negative energy will become unstable before the collision, and after the collision it will
have a larger growth rate. This result is generic, and depends only on the property
that the system has an instability arising through a collision of eigenvalues of opposite
signature.

Effect of dissipation on the NLS model of BF instability Consider the n =1
model reduced system for the BF instability with the type of damping introduced in
(6.1) :

JO V1 + 20ka JW1 — ac®Vi +29UoUlV, +6JV, = 0
JOW, — 2akoJV) — oW + 29U Us W, +6JW; = 0.
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This form of damping is very special. It can be factored out by the transformation
(V1, Wi) = (V1, Wi)e ™.

Let’s modify this damping slightly to break the symmetry, and to make it closer
in spirit to Rayleigh damping, which is a much more widely used form of damping in
mechanics.

Also without loss of generality, set ||[Ug|| = O since the negative energy and posi-
tive energy modes exist already then, and the analysis is exactly the same (but more
complicated) for the case ||Uy]| > 0,

JatV1 + 2akaJW1 - a02V1 + (5JV1 =0
2

)
JOW1 — 2akoJV1 — ao’Wq + 6JW1 + ——JV; — 62V1
2ako k

0.

While the two extra terms in the second equation may look unusual, when the two
equations are combined into a single second order equation we find

V1 + 2a0° JO; V1 + (4a’k*0® — o*0*) V1 + 260, V1 =0,

which is precisely of the form (6.4), and so we can conclude immediately that dissipation
enhances the BF instability in the NLS model! More details can be found in Bridges and
Dias (2004).

7 Numerical integration of the NLS equation

The experimental and theoretical investigation of Lake et al. (1977) showed that the
evolution of a 2D nonlinear wave train on deep water, in the absence of dissipative effects,
exhibits the Fermi-Pasta-Ulam (FPU) recurrence phenomenon. This phenomenon is
characterized by a series of modulation-demodulation cycles in which initially uniform
wave trains become modulated and then demodulated until they are again uniform.
As explained in Section 5, modulation is caused by the growth of the two dominant
sidebands of the Benjamin—Feir instability at the expense of the carrier. During the
demodulation the energy returns to the components of the original wave train (carrier,
sidebands, harmonics). The FPU recurrence process is well described by the focusing
1D NLS equation. Lake et al. (1977) successfully solved the NLS equation numerically
and found that the instability does not grow unboundedly as expected in linear theory,
but that the conservation laws satisfied by the NLS equation tend to inhibit the growth.
The result is that the solution returns to the initial condition periodically.

In the numerical study of the NLS equation there are two types of solutions which
attract much interest : solitons, in which the solution and its spatial derivatives vanish
at infinity (see for example Zakharov and Shabat (1971) for exact soliton solutions),
and solutions that describe modulational instability and recurrence. Periodic boundary
conditions are then appropriate. We focus on these solutions. Therefore we restrict
ourselves to L-periodic solutions defined by

u(z + L,t) = u(z,t), —oco<z<oo, t>0. (7.1)

24



Without loss of generality, we consider equation (4.1) with & = 1. We have seen in
Section 5 that an instability may occur if v > 0. If

0 <n?0® < 29/|Uo|P?,

two of the eigenvalues have positive real part and lead to exponential growth.

7.1 The split-step method

For this subsection, we follow closely the paper by Weideman and Herbst (1986).
The solution of (4.1) may be advanced from one time level to the next by means of the
formula

u(z,t + 1) R expir(L + N (u)) - u(z, ), (7.2)

where 7 denotes the time step. In general (7.2) is first order accurate, but it is exact if
|u|? is time-independent.
The time-splitting procedure consists of replacing the right-hand side of (7.2) by

expit(L + N (u)) - u(z,t) =~ expitL - expitN (u) - u(z,t) .

This expression is exact whenever £ and N commute. Otherwise the splitting is first
order accurate. What the splitting does is to solve successively the equations

u =iNWu, uw=1iLlu,

where the solution of the former equation is used as initial condition for the latter.
From now on, U denotes the approximation to u(z,t). Introducing the quantity

V™ = expitN({U™)- U™, (7.3)

where U™ denotes the approximation at the time m7, the split-step scheme can be
written as

Ut = expir - V™. (7.4)

For the discretization of the space variable, one can use finite differences or a Fourier
method. We give details for the Fourier method. The first step is to replace V™ (z) and
U™*L(z) in (7.4) by their Fourier series. The Fourier-series of a L-periodic function w(x)
is given by

w(z) = Z W, exp(inoz) ,

n=—oo

with 0 = 2w/ L. The Fourier coefficients w,, are given by

Wy, = —/ w(z) exp(—inoz)dz .
LJ_ 1,

This yields
4™t = exp(=in®o?1)0™, nE€Z, (7.5)
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where the 9™ and 4™*! are the Fourier coefficients of the continuous functions V™ (z)

and U™ (z), respectively. The discretization of equation (7.5) gives, after replacing o]
by V™ and 4™*+! by U+,

A

1
vm ~ 2 Vit exp(=inoz;), n=-N/2,---,N/2-1
J

Umtt = exp(—in’c?r)V™, n=-N/2,---,N/2-1.
The intermediate solution V;™ is given by
V" = exp(iry|UJ"?) - U™
Finally the approximation at the next time level is calculated from the inverse transform

Urtt =3 " Umtexp(inos;), j=-N/2,---,N/2—1.
n
In the numerical computations, Fast Fourier Transforms are used.

Weideman and Herbst (1986) showed that a necessary condition for the solution to
be stable again high frequency perturbation in the case v > 0 is

L2
TN2"

T <

In the case v < 0, a necessary condition is

T L?
< 579
20+ 7 = w2N2

. 7| Uol2r
6= 1 .
- ([1+72||U0||472]1/2

These two conditions prevent any unwanted high frequency instabilities in the numerical
solution.

where

7.2 Numerical results

We show some numerical results, based on the z-independent solution of the NLS

equation
1 t
u(z,t) = 5 exp (1%) ,

with the initial condition u(z,0) = 1. Perturbations of the initial condition will take the
following form :
u(z,0) = 1 [1+0.1(1 — 2|z|/L)] .

Energy is introduced into all modes.
In Figures 4 and 5, the only difference is the time step 7. The critical value for 7 is
7* = 0.0905. In Figure 4, the numerical stability condition is satisfied (7 < 7*). The only
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Figure 4. Tllustration of the recurrence phenomenon. Split-step Fourier solution of the
NLS equation with initial condition u(z,0) = 0.5[1 + 0.1(1 — |z|/8)], —8 < x < 8. The
parameters are v = 2, L = 16, 7 = 0.09. The number of points is N = 30.

Figure 5. Same as Figure 4 with 7 = 0.091.

unstable modes are the two modes of lowest frequency. Most of the energy is transferred
between the unstable modes with intermittent returns to the initial condition. In Figure
5 (r > 7*), there are in addition to the two analytically unstable modes corresponding
to |n| =1 and |n| = 2 a high frequency numerical instability corresponding to |n| = 15.
After the return to the initial condition, the high frequency component suddenly becomes
unstable, resulting in the highly oscillatory appearance of the solution.

In Figure 6, v < 0. If the numerical stability condition is satisfied, which is the case
with L = 8, nothing happens as expected. If we take L = 7.98, numerical instability
occurs. Figure 6 shows that the mode of highest frequency (|n| = 10) grows. But the
solution returns to the initial state.

Some other numerical results are shown in Figures 7-9. The initial condition in Figure
7 leads to a homoclinic orbit. The initial conditions in Figures 8 and 9 are on opposite
sides of the homoclinic orbit. See Ablowitz and Herbst (1990) for an explicit expression
of the homoclinic solution and Osborne et al. (2000) for similar numerical results.
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Figure 6. Same as Figure 4 with initial condition w(z,0) = 0.5[1 + 0.1(1 —
|2]/3.99)], —3.99 < z < 3.99. The parameters are v = —2, L = 7.98, 7 = 0.05.
The number of points is N = 20.

Figure 7. The initial condition is u(z,0) = £ + 107°(1+i) cos(2nz/L), with L = 2v/27.
It leads to a homoclinic orbit. The parameters are v = 2, 7 = 0.05. The number of
points is N = 30.

Figure 8. The initial condition is u(z,0) = & + 0.1 cos(oz), with L = 2/27 and o =
27/L. The term cos(oz) appears periodically. The other parameters are the same as in
Figure 7.
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Figure 9. The initial condition is u(z,0) = 1 + 0.1 icos(oz), with L = 2v/2r and
o = 2r/L. Interchanges between cos(oz) and coso(z + L) take place.

8 Bifurcation of waves when the phase and group velocities are
nearly equal

As shown in Section 2, the dispersion relation for 2D capillary—gravity waves on the
surface of a deep layer of water is given by

1 o
2
=g- + —k. 1
C gk+pk (8.1)

A trivial property of this dispersion relation is that it exhibits a minimum cpin, but
surprisingly it was only quite recently that some of its consequences were discovered. In
the classic textbooks such as Lamb (1932), pp. 462-468; Lighthill (1978), pp. 260-269;
Whitham (1974), pp. 407-408, pp. 446-454; Milne-Thomson (1968), pp. 447-449; Stoker
(1958), the presence of this minimum is of course mentioned. It represents a real difficulty
for linearized versions of the water-wave problem. For example, consider the fishing-
rod problem, in which a uniform current is perturbed by an obstacle. Rayleigh (1883)
investigated this problem. He assumed a distribution of pressure of small magnitude and
linearized the equations around a uniform stream with constant velocity ¢. He solved
the resulting linear equations in closed form. For ¢ = ¢1 (> ¢min), the solutions are
characterized by trains of waves in the far field of wavenumbers k2 and k1 < k2. The
waves corresponding to k; and ks appear behind and ahead of the obstacle, respectively.
The asymptotic wave trains are given by

2pP
~ —————sin(kix , >0,
n (kQ _ kl)o_ ( 1 )
2pP
~ —————sin(kox , <0,
n (k2 _ kl)a_ ( 2 )

where P is the integral of pressure. For ¢ < cpin, Rayleigh’s solutions do not predict
waves in the far field, and the flow approaches a uniform stream with constant velocity
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¢ at infinity. This is consistent with the fact that equation (8.1) does not have real roots
for k when ¢ < cmin. Rayleigh’s solution is accurate for ¢ # c¢pin in the limit as the
magnitude of the pressure distribution approaches zero. However it is not uniform as
¢ = Cmin- It is clear that the linearized theory fails as one approaches c¢pin : the two
wavenumbers k; and ky merge, the denominators approach zero, and the displacement
of the free surface becomes unbounded. Therefore there was a clear need for a better
understanding of the limiting process, but for several decades this problem was left
untouched. In the late 80’s and early 90’s, several researchers worked on the nonlinear
version of this problem independently. Longuet-Higgins (1989) indirectly touched upon
this problem with numerical computations. Iooss and Kirchgissner (1990) tackled the
problem mathematically. Vanden-Broeck and Dias (1992) made the link between the
numerical computations of Longuet-Higgins (1989) and the mathematical analysis of
Tooss and Kirchgassner (1990). One can say that the mathematical results shed some
light on the difficulty : there is a difference between a temporal approach and a spatial
approach. Roughly speaking, in temporal bifurcation theory the wavenumber £k is treated
as a given real parameter while in spatial bifurcation theory the wavespeed c is treated as
a given real parameter. Again the best way to understand what happens is to consider a
model equation. The appropriate model equation is the NLS equation for the amplitude
A of a modulated wave train :
oi 0A 0%A 0%A
o, TPoxT Mgy
Akylas (1993) and Longuet-Higgins (1993) showed that, for values of ¢ less than ¢min,
equation (8.2) admits particular envelope-soliton solutions, such that the wave crests
are stationary in the reference frame of the wave envelope. These solitary waves, which
bifurcate from linear periodic waves at the minimum value of the phase speed, have de-
caying oscillatory tails and are sometimes called “bright” solitary waves. More generally,
one can look for stationary solutions of equation (8.2). Using o/pc? as unit length and
o/pc? as unit time, allowing for interfacial waves (i.e. waves propagating at the interface
between a heavy fluid of density p; and a lighter fluid of density p2), considering waves
without y;-variations and evaluating the coefficients p and v at ¢ = ¢min, One can show
that these stationary solutions satisfy the equation

+yAJAP? =0. (8.2)

2 16r2 -5
r A+ Axx + r

O 7O 41APR = :
1+ 7 ﬂ1+m2| "=0, (8.3)

where the bifurcation parameter y is defined by g = o — i, with a = go/pc* and
Qmin = go/pct. = 1/2r(1 +r). The parameter r is the density ratio (p1 — p2)/(p1 +
p2). Note that the coefficient of the cubic term vanishes when 7 = rq = v/5/4. The
corresponding profile for the modulated wave is given by

n(X)=0Q+r)[AX)exp (iX/(1+r)) + cc].
Introduce the scaling |u|2 A= A, X = |u|2 (2r/(1+ 7)) X, and the coefficient

B 16r2 — 5
7_41“(1—}—7‘)'
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Figure 10. Profile of a dark solitary wave, given by (8.9), with » = 0.15 and p = 0.05.

The resulting equation is
Sign(u)A — A5 ¢ — ¥A|A]? = 0. (8.4)
Writing A = s(X) %) leads to

sxx - Sign(w)s +35° —s(0x) = 0, (8.5)
20);—3)? + 805{—);—

I
(e
%
D

=

The system has two first integrals I; and I, defined as follows :

’LLGJ'( = Il s (87)
Hug)® = Sign(pu® - 3w’ — I + Lu, (8.8)

where u = s?. These two integrals are related to the energy flux and flow force, respec-
tively, as shown by Bridges et al. (1995).

For a full description of all the bounded solutions of equation (8.4), one can refer to
Tooss and Péroueme (1993), Dias and Iooss (1993) or Dias and Iooss (1996). There are
four cases to consider :

o 7 < 19, ¢ > Cmin : there are periodic solutions, quasiperiodic solutions and soli-

tary waves, homoclinic to the same periodic wave with a phase shift at +o0o and
—0o0 (these homoclinic solutions are sometimes called “dark” solitary waves if the
amplitude vanishes at the origin and “grey” solitary waves if it does not). A dark
solitary wave is shown in Figure 10.

e 7 < 19, ¢ < Cmin : there are no bounded solutions.

® r > 7o, c> Cmin - there are periodic solutions and quasiperiodic solutions.

® 7 > 19, ¢ < Cmin : there are periodic solutions (of finite amplitude only), quasiperi-

odic solutions and solitary waves, homoclinic to the rest state (such a solitary wave
is shown in Figure 11).
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Figure 11. Profile of a bright solitary wave, given by (8.10), with p = 0.005.

When r < r¢ (defocussing case), ¢ > cmin (1 < 0), there is a one-parameter family of
grey solitary waves (Dias and Iooss (1996), Laget and Dias (1997)). The “darkest” one,
which is such that the amplitude vanishes at the origin, has an envelope given by

X
s = |7|72 tanh <%) .

The elevation of the dark solitary wave is given by
1
|p|2 X) sin ( X) . (8.9)

r(l+r)?

=+
n(X) = 4\ T 157

When r > ro (focussing case), ¢ < cmin (1 > 0), there are bright solitary waves, the

envelope of which is given by

V2

VicoshX

This case includes water waves. The elevation of the solitary wave for water waves is

given by
16,/n cos(X/2)
V11 cosh/pX "

The results obtained on the NLS equation also apply to the full water-wave and
interfacial wave problems. In particular envelope-soliton solutions have been studied in
detail by Longuet-Higgins (1989), Vanden-Broeck and Dias (1992), Dias et al. (1996) and
Dias and Iooss (1993).

Supporting the asymptotic and numerical studies cited above, Iooss and Kirchgéssner
(1990) provided a rigorous proof, based on center-manifold reduction, for the existence
of small-amplitude symmetric solitary waves near the minimum phase speed in water of
finite depth. The proof could not be extended to the infinite-depth case, however. Later,
Tooss and Kirrmann (1996) handled this difficulty by following a different reduction

A=+

nX) ==+

(8.10)
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procedure which also brought out the fact that the solitary-wave tails behave differently
in water of infinite depth, their decay being slower than exponential, although the precise
decay rate could not be determined. By assuming the presence of an algebraic decay, Sun
(1997) was able to show that the profiles of interfacial solitary waves in deep fluids must
decay like 1/z? at the tails. We also remark that earlier Longuet-Higgins (1989) had
inferred such a decay on physical grounds for deep-water solitary waves. Akylas, Dias
and Grimshaw (1998) showed that the profile of these gravity—capillary solitary waves
actually decays algebraically (like 1/z?) at infinity, owing to the induced mean flow that
is not accounted for in the NLS equation.

The NLS equation also admits asymmetric solitary waves, obtained by shifting the
carrier oscillations relative to the envelope of a symmetric solitary wave. Yang and
Akylas (1997) examined the fifth-order Korteweg—de Vries equation, a model equation
for gravity—capillary waves on water of finite depth, and showed by using techniques
of exponential asymptotics beyond all orders that asymmetric solitary waves are not
possible. On the other hand, an infinity of symmetric and asymmetric solitary waves, in
the form of two or more NLS solitary wavepackets, exist at finite amplitude.

The implications of the study of the 1:1 resonance in the context of water waves have
gone far beyond the field of surface waves. Applications have been given to all sorts of
problems in physics, mechanics, thermodynamics and optics since these studies on water
waves. See Dias and Iooss (2003) for a mathematical review.

9 The 2D “hyperbolic” NLS equation

As shown in Section 3, the 2D NLS equation that arises in the description of surface
gravity waves on deep water is

This is the two-dimensional “hyperbolic” Schrédinger equation. Sulem and Sulem (1999)
write that numerical integrations of (9.1) in spatially periodic domains show no tendency
to collapse, and FPU recurrence is observed. However, in contrast with the focusing one-
dimensional problem, this recurrence can only be approximate, since a small fraction
of the energy is pumped to higher frequencies during each cycle because the region of
unstable wave vectors is unbounded. In contrast, for the two-dimensional elliptic NLS
equation, numerical evidence of finite-time blowup has been reported.

Osborne et al. (2000) write that the very existence of “coherent structures” in the 2D
hyperbolic NLS equation (or “unstable modes” in the sense of the 1D NLS equation) has
been left in doubt. They performed more numerical computations and concluded that
unstable modes do indeed exist in the 2D hyperbolic NLS equation. They can take the
form of large amplitude “rogue” waves. Onorato et al. (2001) extended these results to
random initial conditions and concluded that freak waves are more likely to occur for
large values of the Phillips parameter and the enhancement coefficient in the Joint North
Sea Wave Project (JONSWAP) power spectrum.
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10 Forced NLS equation

The NLS equation can still be used as a model when one considers water waves forced by
an obstacle or by a pressure disturbance on the free surface. Let us for example consider
capillary—gravity waves forced by a pressure distribution acting locally on the free surface
and moving at a velocity slightly below the velocity corresponding to the minimum of
the dispersion curve. In this regime, the linear analysis of Rayleigh (1883) is no longer
valid.

The water wave problem has several formulations. One based on the velocity potential
was presented in Section 2. One can also use a formulation based on the conservation of
mass and the irrotationality condition. In 2D, the resulting equations are

Uy +w, =0, u, —w;=0. (10.1)

In addition to the problem considered in Section 3, there is now a pressure distribution
moving along the free surface at the speed c. Introduce nondimensional variables by
taking ¢ as unit velocity and o/pc? as unit length. The boundary conditions in a frame
of reference moving with the pressure distribution are given on the bottom by

w=0, for z=-1/b
and on the free-surface by

Nzx
T+ )7

Here A = gh/c? and b = o/phc? are dimensionless numbers. The dimensionless pressure
is denoted by epo(x). The function pg is assumed to be of compact support and such that
(po) = ffooo po(z)dz # 0. The dispersion relation for capillary—gravity waves is given by

1
uny —w =0, =(u®>+w?—=1)+b—

5 +epo =0, forz=n(z). (10.2)

(bA + k%) tanh(k/b) — k=0, (10.3)

where k is the dimensionless wavenumber. For any k € [0,1/2], there exists a unique
pair A(k),b(k) such that equation (10.3) admits a double root in k. The corresponding
speed iS Cmin-

The analysis is based on reformulating equations (10.1)-(10.2) as a dynamical system
in z, on reducing the problem to its center manifold as in Kirchgéssner (1988) and on
putting the reduced system in normal form in the presence of a reversible 1:1 resonance as
in Tooss and Péroueme (1993). Introducing v; = (u?+w?—1)/2, v = w/u, vy the trace of
vy on the free surface, gooi, cp{c the eigenvectors and generalized eigenvectors corresponding
to the double imaginary eigenvectors +ik, and the parameter p proportional to ¢y, — ¢,
one can write

(vo,v1,v2) = A(2)g + B(z)el + A(@)gg + B(z)er + ®(p, 57, 4,B,4,B), (10.4)
with A and B given by the normal form

A, = ikA+ B+iAP (u;|AP?, Li(AB — AB)) — iP1Poepo + - -+ (10.5)
B, = ikB+iBP (p;|A]>,5i(AB — AB)) + AQ (p; |A]?, 2i(AB — AB))
+Poepo + -+, (10.6)
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where P and () are polynomials defined as

P(u;U, V) = pipp+pU+psV + Ol + U] + [V])?, (10.7)
QuuUV) = qp—qU+gV +0(u| +|U|+|V])2. (10.8)

The positive constants Py and P; have been computed by Dias and Iooss (1993). After
rescaling, the system (10.5) can be replaced by

i; = B+oO (|u|1/2) (10.9)

. ~ ~ I &

B: = A(qlsign(p)—q2|A|2)+€e’““”—0+(9(|u|1/2). (10.10)
(Po)

The sign of € depends on the sign of the pressure distribution. One can replace Py/{P,)
by do, the Dirac delta function, since Py/{Py) converges towards 0 for all & # 0 and
the average (Po/(Pp)) is equal to 1. At leading order, one gets the forced nonlinear
Schrédinger equation

Azz = q1Sign(u)A — 2 A|A2 + &6, . (10.11)

The mathematical problem of the persistence of the solutions of equation (10.11) when
dealing with the full system (10.1)-(10.2) can be tackled as in Iooss and Péroueme (1993)
or Tooss and Kirrmann (1996) for the study of persistence without forcing, and Mielke
(1986) or Kirchgéssner (1988) for the study of persistence with forcing. But there is
numerical evidence by Vanden-Broeck and Dias (1992) that the solutions obtained here
persist.

We look for continuous and bounded solutions of equation (10.11) on the whole real
line, with Az(0+)— Az(0—) = &, which satisfy (10.11) with & = 0 for  # 0. The analysis
is restricted to homoclinic solutions. Let uo = (g2/247)'/?cPo(po). When 0 < p < po,
there are no homoclinic solutions. When p = pg, there are two homoclinic solutions.
When g > o, there are four homoclinic solutions. Writing A(z) = s(x)ei(ke+0())
we show in Figure 12 the four possibilities for the envelope s(z) in deep water. The
corresponding wave profiles 5(x) = 4Re(s(x)e?*?) are shown in Figure 13. The expression
of s(x) is given by

s(z) = i(qup/qg)l/Z/cosh(\/@|m| + a1/2) , (10.12)

where ay /5 > 0 are the roots of sinh a/ cosh? o = g /2p. Figure 14 shows the amplitude
|n(0)| as a function of p for : (i) the solution of the linearized problem with € # 0, (ii)
the analytical solution with e = 0, (iii) the present solutions with € # 0. More details
can be found in Pardu and Dias (2000).

Forced nonlinear Schrodinger equations have been obtained elsewhere (see for example
Akylas (1984) and Barnard et al. (1977)). Even if g2 < 0, ¢ > 0, 4 > 0, one can
obtain homoclinic solutions to zero, although it is impossible without forcing as shown
for example by Pariu and Dias (2002). Our goal here was to deal with the divergence of
the solutions of the linearized problem when the velocity ¢ approaches cmin, by studying
the influence of the nonlinear terms.
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Figure 12. Forced gravity—capillary solitary waves in deep water. The four possibilities
for the wave envelope s(z) given by equation (10.12).
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Figure 13. Forced gravity—capillary solitary waves in deep water. The corresponding
profiles n(z) with s(z) > 0 (top) and with s(z) < 0 (bottom).
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Figure 14. Amplitude at the origin as a function of y. Comparison between linearized
theory with pressure (dash-dotted line), nonlinear theory without pressure (dotted line)
and nonlinear theory with pressure (solid line).
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