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a b s t r a c t

This paper investigates the interaction of plane incident waves with a wave farm in the open ocean. The

farm consists of a periodic array of large flap-type wave energy converters. A linear inviscid potential-flow

model, already developed by the authors for a single flap in a channel, is considered. Asymptotic analysis of

the wave field allows to obtain new expressions of the reflection, transmission and radiation coefficients of

the system. It is shown that, unlike a line of heaving buoys, an array of flap-type converters is able to exploit

resonance of the system transverse modes in order to attain high capture factor levels. Relations between

the hydrodynamic coefficients are derived and applied for optimising the power output of the wave farm.
c© 2012 Elsevier Ltd. All rights reserved.

1. Introduction

Research on wave energy converters (WECs) has concentrated tra-

ditionally on systems of small floating bodies, like offshore heaving

buoys [see1–4] . However, the seminal theories on WECs that orig-

inated from this first scientific approach to wave energy extraction

in the 1970s, do not capture exhaustively the dynamics of the last-

generation WECs. The latter are usually large-scale devices designed

to be deployed in arrays, some of them in the near-shore environment.

For example, while studying the dynamics of an offshore heaving

WEC in a channel, Srokosz [3] showed that resonance of the channel

sloshing modes is detrimental to the efficiency of power absorption.

Conversely, in a recent analysis of a large flap-type WEC in a channel,

Renzi and Dias [5] noted that the trapping of transverse modes near

the flap increases the efficiency of the converter. Because of the image

effect of the channel walls, this fact is also expected to occur in an

infinite array of flap-type converters. The aim of this work is to dis-

cover the dynamics of a system of last-generation flap-type WECs and

to outline its similarities and differences with respect to the systems

of the first generation. As a result of this analysis, an optimisation

criterion for an array of flap-type WECs is devised, depending on the

physical and geometrical parameters of the system.

In Section 2 the behaviour of an array of converters in the open

ocean is investigated by taking as a reference the theoretical frame-

work of Renzi and Dias [5]. The expressions of the free-surface ele-

vation for the diffracted and radiated wave field in the fluid domain

are derived accordingly. Analysis of the wave motion in the far field

allows to obtain new formulae for the reflection, transmission and

radiation coefficients. Various relations between the hydrodynamic
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coefficients are then shown in Section 4. Some of these relations corre-

spond directly to Srokosz’s results [3] for floating bodies of symmetric

shape in a channel. Some others, on the other hand, incorporate spe-

cific properties of the wave field generated by the flap-type converter,

not considered before, and point out the peculiarity of such WEC with

respect to the converters of the first generation. The analytical model

is validated against known theories in the small-gap and in the point-

absorber limit. In Section 5, a parametric analysis is undertaken for

optimising the performance of the system. It is shown that the maxi-

mum capture factor is attained at complete trapping of the transverse

modes of the array. When complete trapping is not possible, partial

trapping can still increase the performance of the system. Finally, in

Section 6 a practical application of an array of large flap-type WECs

is devised. Comparison with available data obtained with a finite-

element numerical code is very satisfactory (see Appendix C).

2. Mathematical model

2.1. Theoretical background

Consider an in-line array of identical flap-type wave energy con-
verters, each hinged on a bottom foundation of height c′ in an ocean
of constant depth h′, as shown in Fig. 1.Primes denote dimensional
quantities. Monochromatic incident waves of amplitude AI

′, period
T′ and frequency ω′ = 2π/T′ are coming from the right and set the
flaps into motion, which is converted into useful energy by means
of generators linked to each device. Since the practical applications
of such a system are usually in the nearshore [6], where wave fronts
are almost parallel to the shoreline because of refraction, normal in-
cidence is also assumed. Let w′ and b′ be the width of each flap and

the spatial period of the array, respectively. Then the gap between

two consecutive flaps is a′ = b′ − w′ (see again Fig. 1 ). A Cartesian
coordinate system is set, with the x′ direction orthogonal to the flaps,
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the y′ axis along the flap lineup and the z′ axis rising from the undis-
turbed water level z′ = 0, positive upwards; t′ denotes time. Due to
periodicity, the origin of the system can be set arbitrarily on any flap,
which is therefore identified as the reference flap. The analysis is per-
formed in the framework of a linear inviscid potential-flow theory for
small-amplitude oscillations. The velocity potential Φ′ must satisfy
the Laplace equation:

∇′2Φ′(x′, y′, z′, t′) = 0, (1)

in the fluid domain. The linearised kinematic–dynamic boundary con-

dition on the free surface reads:

Φ′
t′t′ + gΦ′

z′ = 0, z′ = 0, (2)

where g is the acceleration due to gravity and subscripts denote dif-

ferentiation with respect to the relevant variables. Absence of normal

flux at the bottom yields:

Φ′
z′ = 0, z′ = −h′. (3)

Because of normal incidence of the incoming wave field, periodicity

of the problem requires

f ′(x′, y′ + mb′, z′, t′) = f ′(x′, y′, z′, t′),

m = 0, ± 1, ± 2, . . . , y′ ∈
(−b′

2
,

b′

2

)
,

(4)

where f′ indicates any physical quantity associated to the problem and

m each of the flaps; m = 0 denotes the reference flap. Extension to

an obliquely incident wave field can be easily made [see for example

7]. However, since flap-type WECs are usually designed to operate

under normally incident waves [see 6], only normal incidence will be

considered here. Because of the periodicity condition (4), the solution

to the complete problem can be obtained by investigating the wave

interaction with the reference flap centred at the origin, with |y′| <

b′/2. Symmetry of the problem requires also

Φ′
y′ = 0, y′ = ± b′

2
, (5)

which can be regarded as a no-flux boundary condition on two imagi-

nary waveguides at y′ = ± b′/2 (see again Fig. 1 ). Let θ ′(t′) be the angle

of rotation of the flap, positive if anticlockwise; then the kinematic

boundary condition on the flap yields:

Φ′
x′ = −θ ′

t′ (t
′)(z′ + h′ − c′)H (z′ + h′ − c′),

x′ = ± 0,
∣∣y′∣∣ < w′

2
,

(6)

where the thin-body approximation has been applied [8]. The Heavi-

side step function H in (6) assures absence of flux through the bottom

foundation. The problem defined above is formally equivalent to that

solved by Renzi and Dias [5] for a single converter in a channel. Here

the main arguments of the theory in [5] are retraced and applied to the

array configuration. First, the system (1)–(6) is non-dimensionalised

as follows [see 5, Eq. (2.1)]:

(x, y, z, h, w, a, c) = (x′, y′, z′, h′, w′, a′, c′)
b′ , t =

√
g

b′ t′,

Φ =
(√

gb′ A′
)−1

Φ′, θ =
(

b′

A′

)
θ ′,

(7)

where the wave amplitude scale A′ � b′ because of the hypothesis of

small-amplitude oscillation θ ′. In expression (7), a = (1 − w) ∈ (0, 1)

defines the aperture of the array. Then time is factored out by setting:

Φ (x, y, z, t) = � {φ (x, y, z) e−iωt
}
, θ (t) = � {�e−iωt

}
(8)

with ω = √
b′/g ω′ [see 5, Eq. (2.11)]. The global spatial potential:

φ = φR + φS

is the sum of the radiation potential φR and the scattering potential

φS. The latter is in turn decomposed into

φS = φ I + φD ,

where

φ I (x, y, z) = − i AI

ω cosh kh
cosh k (z + h) e−ikx (9)

is the incident wave potential and φD is the diffraction potential. φR

and φD must be both outgoing at large |x|. In (9), AI = A′
I/A′ is the non-

dimensional amplitude of the incident wave and k is the wavenumber,

corresponding to the real solution of the dispersion relationship ω2 =
k tanh kh. Following the method described in Appendix B of [5], appli-

cation of the Green integral theorem yields two hypersingular integral

equations, in terms of the jump in radiation and scattering potentials

across the plate [see 5, Eq. (B10)]. Those equations are solved by ex-

panding the jumps in potential into series of Chebyshev polynomials

of even order [for details, see Eqs. (B11)–(B18) of 5]. Careful treatment

of the singularity [see 5, Eq. (B19)] ultimately allows to write the po-

tentials in the reference domain |y | < 1/2 in a new semi-analytical

form [see 5, Eqs. (B24) and (B25)]. The radiation potential is

φR (x, y, z) =
+∞∑
n=0

P∑
p=0

+∞∑
m=−∞

φR
npm (x, y, z) , (10)

where

φR
npm(x, y, z) = − iwV

8
κnxZn(z)α(2p)n

∫ 1

−1
(1 − u2)

1/2

×U2p(u)

H
(1)
1

(
κn

√
x2 + (y − (1/2) wu − m)

2
)

√
x2 + (y − (1/2) wu − m)

2
du,

(11)

H
(1)
1 being the Hankel function of the first kind and first order. In

(11), V = i ωΘ is the complex angular velocity of the flap, the sub-

script m identifies the contribution of each single flap, while the sub-

script p indicates the order of the Chebyshev expansion, U2p being

the Chebyshev polynomial of the second kind and even order 2p,

p = 0, 1, ..., P ∈ N. The subscript n identifies the contribution of each

depth mode:

Zn(z) =
√

2 cosh κn(z + h)

(h + ω−2 sinh
2 κnh)

1/2
, n = 0, 1, . . . , (12)

where κ0 = k, while κn = ikn denotes the complex solutions of the

dispersion relationship:

ω2 = −kn tan knh, n = 1, 2, . . . (13)

Finally, theα(2p)n are the complex solutions of a system of linear equa-

tions ensuring that φR satisfies the kinematic condition on the flap

[see 5, Eqs. (B22) and (B23)]. This system is solved numerically with

a collocation scheme, therefore the solution (11) is partly numerical.

In summary, φnpm (11) indicates the nth depth mode, pth order po-

tential of the wave field radiated by the mth flap (mth array mode),

moving at unison with all the other flaps. The diffraction potential is

given by

φD (x, y, z) =
P∑

p=0

+∞∑
m=−∞

φD
pm (x, y, z) , (14)

where

φD
pm(x, y, z) = − iwAI

8
kx Z0(z)β2p

∫ 1

−1

(
1 − u2

)1/2

×U2p(u)

H1
(1)

(
k

√
x2 + (y − (1/2) wu − m)

2
)

√
x2 + (y − (1/2) wu − m)

2
du.

(15)

In the latter, the β2p are the complex solutions of a system of linear

equations, which ensures that φD satisfies the no-flux condition on

the flap [see 5, Eqs. (B22) and (B23)]. Again, φD
pm indicates the pth

order potential diffracted by the mth flap, in the presence of all the

other flaps. Note that in φD (15) only the 0th depth mode is present,
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Fig. 1. Geometry of the array (a) and the reference flap (b) in physical variables.

as required by the solvability of the whole radiation–diffraction prob-

lem [see Appendix B.2 of 5]. Computational aspects involved in the

numerical evaluation of (11) and (15) are detailed in Section 2.2 of

[5].

2.2. Body motion

The equation of motion of the reference flap in the frequency

domain is that of a damped harmonic oscillator [see Eq. (2.33) of 5],

namely[
−ω2 (I + μ) + C − iω (ν + νpto)

]
Θ = F , (16)

depending on the moment of inertia of the flap I = I′/(ρb′5), on the

flap buoyancy torque C = C′/(ρgb′4) and on the power take-off (PTO)

coefficient νpto = ν ′
pto/(ρb′4√

gb′), where ρ is the water density. The

latter parameters are assumed to be all known. In (16)

μ = πw

2
√

2
�

⎧⎪⎨
⎪⎩

∞∑
n=0

α0n
κn(h − c) sinh κnh + cosh κnc − cosh κnh

κ2
n

(
h + ω−2 sinh

2 κnh
)1/2

⎫⎪⎬
⎪⎭(17)

is the added inertia torque [see Eq. (2.34) of 5], while

ν = πw

2
√

2

 {α00}

ω [k(h − c) sinh kh + cosh kc − cosh kh]

k2
(

h + ω−2 sinh
2

kh
)1/2 (18)

and

F = − iπwAI

2
√

2
β0

ω [k(h − c) sinh kh + cosh kc − cosh kh]

k2
(

h + ω−2 sinh
2
kh
)1/2 (19)

denote, respectively, the radiation damping [see Eq. (2.35) of 5] and

the complex exciting torque [see Eq. (2.36) of 5]. If the PTO system is

designed such that

νpto =
√[

C − (I + μ)ω2
]2

ω2
+ ν2,

which corresponds to the optimum PTO damping [see Eq. (2.40) of 5],

then the average generated power over a period is

P = 1

4
|F |2

⎡
⎣
√[

C − (I + μ)ω2
]2

ω2
+ ν2 + ν

⎤
⎦

−1

. (20)

Now, the generated power (20) is maximum under resonant amplifi-

cation of the body motion, which occurs when

ω =
√

C

I + μ
. (21)

By substitution of the latter expression into (20), the optimum power

available for extraction from each flap is therefore

Popt = 1

8

|F |2
ν

, (22)

which matches the well-known result of Srokosz [3]. The performance

of each element of the array is assessed quantitatively by using two

main factors. The amplitude factor

AF = (h − c) tan |Θ|
AI

(23)

is defined as the ratio between the flap horizontal stroke and the am-

plitude of the incident waves, Θ being the solution of the equation of

motion (16). Finally, the capture factor is defined as the ratio between

the power extracted per unit flap width and the power available per

unit crest length:

C F = P

(1/2) A2
I C gw

, (24)

where

C g = ω
2k

(
1 + 2kh

sinh 2kh

)
(25)

is the group velocity of the incident waves. Since P = P(a) and w =
1 − a, the capture factor (24) depends intrinsically on the aperture

of the array. A strength point of the method of [5] is that knowing

the coefficients α0n and β0 is sufficient to obtain immediately all

the physical quantities describing the performance of the device (Eqs.

(17)–(24) ), without need to evaluate the potentials (10) and (14). The

wave motion at large distance from the array will be now analysed.

3. The far field

In this section the behaviour of the wave field is investigated at

large distance from the array. First, consider the radiation potential

φR
npm given by (11). For n > 0 the Hankel function in (11) can be
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rewritten as

H
(1)
1

⎛
⎝κn |x|

√
1 +

(
y

x
− wu

2x
− m

x

)2
⎞
⎠

= − 2

π
K1

⎛
⎝kn |x|

√
1 +

(
y

x
− wu

2x
− m

x

)2
⎞
⎠ ,

(26)

where Kn denotes the modified Bessel function of the second kind and

order n [see Section 8.407 of 9]. Since K1(z) ∝ e−z as z → ∞ in (26) and

hence in (11), the argument of φR
npm for n > 0 decays exponentially in

the far field, so that at leading order:

φR
npm ∼ 0, |x| → ∞ , n > 0. (27)

This happens since the modes n > 0 physically represent the parasite

waves generated by the motion of the flaps. These remain trapped

near the device and do not contribute to the wave motion in the far

field [10]. As a consequence,

φR ∼
P∑

p=0

+∞∑
m=−∞

φR
0pm, |x| → ∞. (28)

Now substituting (11) into (28), using the asymptotic expression (A.5)

with (X, Y) = (x, y − wu/2) and the integral formulae (B.2), (B.4) and

finally developing some straightforward algebra, yields

φR ∼ − iV

ω
cosh k (z + h)

cosh kh

q∑
q=0

A±
q e± iγqkx cos (2qπ y) , x → ± ∞.(29)

In the latter expression, γq =
√

1 − (2qπ/k)
2

and q = q(k) is the

largest integer for which γ q is real, while

A±
0 = ∓ iπ

8
wωα00 Z0 (0) , (30)

A±
q = ∓ i

4
wωZ0 (0) εq

P∑
p=0

α(2p)0(−1)
p

(2p + 1)
J 2p+1 (qπw)

qw
. (31)

In (31), εq is the Jacobi symbol, while J2p + 1 is the Bessel function of

first kind and order 2p + 1. Note that the radiation potential in the

far field (29) is the sum of a progressive long-crested wave (term q

= 0) and several progressive short-crested waves (terms 0 < q < q),

which correspond to the propagating sloshing modes of the equiva-

lent channel configuration of [5]. Expression (29) is similar in form to

(2.24) of [3] (accounting for the various differences in the nomencla-

ture), which gives the far-field expression of the radiation potential

for a floating body, symmetric with respect to the x-axis, in a channel.

In (2.24) of [3], however, the coefficientsA±
q are left in a general form,

while here they are determined explicitly for the flap-type converter.

The same steps can be repeated to find the far-field expression of

the diffraction potential φD (14). By substituting (15), (A.5), (B.2) and

(B.4) in (14) and developing the algebra, the diffraction potential in

the far field becomes

φD ∼ ∓ i AI

ω
cosh k(z + h)

cosh kh

×
q∑

q=0

Rqe± iγq kx cos(2qπ y), x → ±∞,
(32)

where

R0 = − iπ
8

wωβ0 Z0 (0) , (33)

Rq = − i

4
wωZ0 (0) εq

P∑
p=0

β2p(−1)
p

(2p + 1)
J 2p+1 (qπw)

qw
. (34)

Eq. (32) is similar to (2.25) of [3], in which, however, the Rq values are

left in a general form. Note that the calculation of the coefficients A±
q

and Rq is straightforward once the linear system for α(2p)0 and β2p is

solved [see Eq. B23 of 5].

3.1. The free-surface elevation

The amplitude of the free surface in the far field is an important

parameter in order to assess the impact of the array on the wave

climate of the surrounding area. Given the total potential Φ(x, y, z, t),

the free-surface elevation is

ζ (x, y, t) = −Φt|z=0 = � {η (x, y) e−iωt
}
,

where

η (x, y) = iω
(
φ I (x, y, 0) + φR (x, y, 0) + φD (x, y, 0)

)
(35)

is the relevant complex spatial component. Substituting (9) for φI and

the far-field expressions (29) and (32) for φR and φD, respectively,

yields

η(x, y) ∼⎧⎪⎨
⎪⎩

AI e−ikx +
∑q

q=0

(
AI Rq + VA+

q

)
eiγq kx cos(2qπ y), x → +∞∑q

q=0

(
AI Tq + VA−

q

)
e−iγq kx cos(2qπ y), x → −∞

,
(36)

where

T0 = 1 − R0, Tq = −Rq . (37)

Overall, the free-surface elevation is the sum of a long-crested wave

(term q = 0) and several short-crested waves (terms 0 < q < q),

namely the propagating transverse modes of the array. Physically, in

(36) the termsA±
q represent the qth-mode radiation coefficients, Rq is

the qth-mode reflection coefficient and finally Tq represents the qth-

mode transmission coefficient. They enjoy all the general properties

of the analogous terms introduced by Srokosz [3] for bodies of sym-

metric shape in a channel. In addition, such coefficients have some

specific properties, peculiar to flap-type bodies, which derive from

their analytical structure, as shown in detail in Section 4. Fig. 2 shows

the behaviour of R0 and T0 against the nondimensional wavenumber

k for a typical configuration where a = 1/2. The plots in Fig. 2 compare

favourably with those of Williams and Crull [11, Fig. 3] and Porter and

Evans [7, Fig. 2], who studied the scattering of incident waves by an

array of thin screens.

Note the spiky behaviour of the coefficients, with spikes occurring

at the resonant wavenumbers k = 2(q + 1)π , q = 0, 1, . . . of the trans-

verse short-crested waves, for which the (q + 1)th transverse mode

turns from trapped to propagating. In the following, the coefficients

R0, T0 and A±
0 will be shown to enjoy some interesting properties

and to be very useful for determining some relations between the

hydrodynamic coefficients of the system.

4. Derivation of relations for an array of flap-type WECs

In this section, relations are derived for an array of flap-type WECs,

based on the results obtained in the previous section. Some of these

relations correspond directly to Srokosz’s results [3] for floating bod-

ies of symmetric shape, while some others incorporate specific prop-

erties of the wave field (36) generated by the array of flap-type con-

verters. In this sense, such expressions are new and point out the

peculiarity of flap-type WECs with respect to the converters of the

first generation.

4.1. Extended Bessho–Newman relation

First consider A+
0 and R0. From (30) and (33) it is immediate to

get, respectively, arg(A+
0 ) = arg(α00) − π/2 and arg(R0) = arg(β0) −

π/2. Since arg(α00) = arg(β0) [see Appendix C of 5], then the complex

coefficients A+
0 and R0 must have the same argument, say δ, for which

A+
0 = ∣∣A+

0

∣∣ eiδ, R0 = |R0| eiδ, (38)
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Fig. 2. Magnitude of the fundamental reflection and transmission coefficients, respec-

tively R0 (33) and T0 (37), versus the non-dimensional wavenumber k. In this layout

the flap width equals the gap size, i.e. a = w = 1/2.

Fig. 3. Ratio R0/A+
0 (45) versus non-dimensional wavenumber k (solid line) and ap-

proximate expression (46) for large k (dashed line). Parameters of the system are b′ =
91.6 m, h′ = 10.9 m, c′ = 1.5 m.

for any wavenumber k. The same relation, but only for k < 2π , can be

also derived from the Bessho–Newman relation:

A+
0 −

q∑
q=0

γq

εq

(
A+∗

q Rq + A−∗
q Tq

)
= 0, (39)

where ()* denotes the complex conjugate. Expression (39) is obtained

by applying Green’s integral theorem to φS and (φR − φR*) and cor-

responds to (3.2) of [3], with small variations due to the difference in

the nomenclature. Note that the Bessho–Newman relation (39) is a

general form valid for any floating body, symmetric with respect to

the x-axis, in a channel (or for an infinite array of such bodies). Con-

sidering k < 2π , i.e. q = 0, and using the identities A−
0 = −A+

0 (see

(30 ) ), with A+
0 = |A+

0 |eiδ , and T0 = 1 − R0 (see (37) ) , (39) becomes:

2R0 − 1 = e2i δ , which implies (38). However, while with the general

Bessho–Newman relation (39) it is possible to obtain (38) only in the

domain k < 2π , usage of the explicit forms (30) and (33), respec-

tively for A+
0 and R0, has allowed to extend (38) to any wavenumber.

Furthermore, by using (37) and (38), (39) yields

cosδ = ∣∣A+
0

∣∣−1∑q

q=0

γq

εq

∣∣∣A+
q Rq

∣∣∣ (40)

for any k. Expression (40) is a particular form of the Bessho–Newman

relation, valid for a periodic array of flap-type converters under nor-

mally incident waves. Note that for k < 2π , i.e. q = 0, all the transverse

modes are trapped near the array and (40) reduces to

cos δ = |R0|, k < 2π. (41)

4.2. Relation between F and A±
0 (array Haskind relation)

Consider the complex exciting torque (19) and the fundamental

radiation coefficient (30). Isolating the term α00 from (30) and sub-

stituting it into (19), yields after some algebra:

F = ± 2AI A±
0 C g. (42)

According to (42), the long-crested component of the radiated wave

field is sufficient to obtain the exciting torque acting on each flap, for

any value of k. Furthermore, since AI and Cg are real numbers, (42)

requires

F = |F | eiδ. (43)

Expression (42) can be transformed into physical variables via (7),

thus giving

F ′ = 2ρgb′ AI
′A+

0

′
C g

′.

The latter is similar in form to the well-known two-dimensional

Haskind relation [10] except for the factor b′, which represents the

array spacing. Finally, note that (42) is an extension to intermediate

water depth of Srokosz’s equation (4.3) in [3].

4.3. Relation between F and R0

The relation between the exciting torque and the fundamental

reflection coefficient can be easily obtained by isolating β0 from (33),

substituting it in (19) together with (12) and developing the algebra,

so that

F = 2AI R0
tanh kh

k

(
h − c + cosh kc − cosh kh

k sinh kh

)
. (44)

Hence the exciting torque acting on each flap is related to the ampli-

tude of the long-crested component of the reflected wave field, for

any value of k.

4.4. Relation between R0 and A+
0

By equating (42) and (44) it is immediate to obtain

R0

A+
0

= kC g

tanh kh
(

h − c + coshkc−coshkh
k sinh kh

) , (45)

valid for any k. Physically, (45) measures the ratio between the re-

flective capacity of the system as an array of screens and the radiative

capacity of the system as an array of wavemakers, oscillating at uni-

son. In short waves, where the flaps are deemed to be operating [12],

it is roughly k � 1, so that (45) becomes

R0

A+
0

�
√

k

2(h − c − k−1)
, (46)

as shown in Fig. 3.
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Since the ratio (46 ) is O(k1/2), the diffractive phenomena occurring

in the system dominate over the radiative ones in short waves. This

suggests that the effects of diffraction are not to be neglected if an

accurate description of the system dynamics is to be pursued.

4.5. Relation between ν and A+
0

Consider expression (18), which defines the radiation damping ν
for the reference plate. Isolating I{α00} in (30) and substituting it

into (18) yields, after some algebra,

ν = 2� {A+
0

} tanh kh

k

(
h − c + cosh kc − cosh kh

k sinh kh

)
, (47)

for any k. Incidentally, by isolating A+
0 in the array Haskind relation

(42) and substituting it into (47), the latter becomes

ν = �
{

F

AI

}
tanh kh

kC g

(
h − c + cosh kc − cosh kh

k sinh kh

)
,

which corresponds to expression (C3) of Renzi and Dias [5]. Note

that (44), (45) and (47) allow to obtain the exciting torque and the

radiation damping – and consequently the optimum generated power

(22) – directly from the fundamental reflection coefficient R0. This is

a peculiar property of the flap-type converter and does not hold in

general for converters of different shape.

The above relations have been used to check the numerical calcu-

lations in this paper. In order to assess the accuracy of computations

for a given equation of the form l.h.s = r.h.s., the relative error

ε =
∣∣l.h.s. − r.h.s.

∣∣∣∣r.h.s.
∣∣ (48)

is defined. For a typical system configuration (see Appendix C), tak-

ing 40 array modes, 5 depth modes and 5 terms in the Chebyshev

expansion, is sufficient to obtain a relative error of O(10−16) in cal-

culating the Haskind relation (42) and O(10−15) in calculating the

remaining relations (44)–(47). Hence the method of solution based

on the Green’s theorem of [5] reveals to be fast convergent and very

efficient. In the following, the influence of the array aperture on the

performance of the system is assessed, based on the relations found

in this section.

5. Performance evaluation

Consider the optimum capture factor:

C
opt
F = 1

4

|F |2
ν A2

I C gw
, (49)

obtained by substituting the optimum power output (22) into (24). By

replacing F with (44), ν with (47), and by performing some algebra,

(49) can be rewritten as

C
opt
F = 1

2

|R0|
(1 − a) cos δ

, (50)

where δ is still the argument of R0. According to (50), the performance

of the array depends on the reflection coefficient magnitude and ar-

gument, which in turn are functions of the array aperture. Hence

the solution of the scattering problem alone is sufficient to assess

the performance of the system via (50). This result confirms that

diffraction effects are fundamental in wave-power extraction from

flap-type WECs. Therefore, the empiric criterion for which “to absorb

waves means to generate waves” [4], valid for small floating bodies

in the absence of diffraction, does not apply here in full. In the fol-

lowing, expression (50) will be validated against known theories in

the small-gap and point-absorber limits. Then the maximum capture

factor will be assessed.

5.1. Small-gap limit

In the limit a → 0, the flaps become joined to each other and

the system is two-dimensional. In this case it is R0 → 1, because of

complete reflection of the incident wave in the diffraction problem.

Then it is straightforward to show that (50) becomes

C
opt
F → 1

2
, (51)

i.e. the capture factor coincides with the classical hydrodynamic effi-

ciency for 2D devices [10].

5.2. Point-absorber limit

Consider now the limit w = w′/b′ → 0, for fixed array spacing

b′. In this limit, the wavelength λ = 2π/k of the incident wave is

much larger than the flap width, λ � w, and the interaction between

the flaps is weak. Hence the results of the present theory can be

compared to those of Budal [2] and Srokosz [3] for an infinite array of

point absorbers. For such a system, the efficiency is assessed via the

absorption length:

L ′ = P

(1/2) A2
I C g

b′ = C F w′, (52)

which is the ratio between the power captured by the single device

and that incident per unit wave crest length. For an array of converters

the optimum absorption length is

L ′
opt = l ′opt s, (53)

where l′opt is the optimum absorption length for an isolated body and

s is an interaction factor [2,3]. When w � λ, each flap can be con-

sidered as a three-dimensional axisymmetric body, whose optimum

absorption length for given wavelength of the incident wave is

l ′opt = ξ
λ

2π
b′, (54)

where ξ = 1 for heave and ξ = 2 for surge (see [1,12]). By substituting

(54) into (53), then the latter into (52) and employing (50) for the

optimum capture factor, the interaction factor becomes

s = k

2ξ

|R0|
cos δ

, (55)

where ξ = 2, because in the point-absorber approximation the

flap moves essentially in surge [12]. Fig. 4 shows the plot of s versus

the non-dimensional wavenumber k = k′b′ for a typical configuration

in which w = 0.05. When k < 2π (i.e. λ > 1) all the transverse modes

are trapped and the behaviour of the curve is linear: s = k′b′/(2ξ ).

This agrees formally with the results shown by Budal [2] and Srokosz

[3] for an infinite array of heaving point-absorbers, where ξ = 1.

When k > 2π , i.e. λ < 1, incomplete trapping of the transverse modes

strongly modifies the behaviour of the curve. The interaction factor

globally decreases, but spikes occur near the resonant wavenumbers

k = 2(q + 1)π . Note that this dynamics is different from that shown

in [3 ] for a system of heaving point absorbers. In the latter, s drops

to zero when k → 2(q + 1)π from the left, so that the trapping of

the transverse modes has a detrimental effect on the performance

of the system [3, see Fig. 2]. Here, instead, resonance produces lo-

cal maxima of s near k = 2(q + 1)π (see again Fig. 4 ) and therefore

is beneficial in increasing the optimum efficiency, even away from

complete trapping. This happens because the resonance of the trans-

verse modes enhances the horizontal (surge) actions and drops the

vertical (heave) loads [13]. Therefore surging WECs benefit the most

from the resonant mechanisms activating in an array configuration.
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Fig. 4. Interaction factor (55) versus non-dimensional wavelength k for the point-

absorber approximation. Parameters of the system are b′ = 91.6 m, w′ = 4.58 m, h′ =
10.9 m, c′ = 1.5 m. The ratio w = w′/b′ = 0.05 justifies the use of the point-absorber

approximation. The vertical dash-dotted lines show the resonant wavenumbers k =
2(q + 1)π ; the grey dashed line shows the linear behaviour s = k /4 for k < 2π .

5.3. Maximum capture factor

Consider again the optimum capture factor, given by (50). Expres-

sion (40) shows that |R0|/cos δ has a unit upper limit (41) when all the

transverse modes are trapped near the array. This situation is most

favourable for energy extraction and yields the maximum capture

factor attainable by an array of oscillating wave energy converters of

given aperture a. Substitution of (41) into (50) yields

C
opt
F = C max

F = 1

2 (1 − a)
, k < 2π (56)

for the maximum capture factor. Incidentally, note that (56) corre-

sponds to Srokosz’s [3] maximum efficiency E max = wC max
F for a sym-

metric floating body in a channel. Since a < 1, the maximum capture

factor (56) for the array configuration is larger than the well-known

limit value of 1/2, obtained in the small-gap approximation a → 0

(see expression 51). Hence the mutual interaction between the flaps,

which is responsible for the trapping of energy near the array in the

form of short-crested waves, can increase the capture factor of the

system [5].

6. Application to wave energy extraction

In applications, the incident wave period T′ and wavelength λ′ are

known, together with the flap width w′. The array aperture a needs to

be optimised so that the capture factor is maximum. Expression (56)

for the maximum capture factor would suggest to increase the aper-

ture as much as possible, so that a → 1 and consequently C F → ∞.

However, (56) is to be regarded as a theoretical upper limit. This is

motivated by two reasons. First and most important, as a → 1, then

w = 1 − a → 0. Now recall that w = w′/b′, being w′ the width of the

single flap, which in practical applications is large. As a consequence,

in order to have w → 0, it must be b′ → ∞. In this limit, λ = λ′/b′

→ 0 and k → ∞ ; hence expression (56) for the maximum capture

factor is no longer valid. Physically, by increasing the array aperture a,

the spatial period b′ increases so much, so that the array is no longer

able to trap all the transverse modes, resulting in more energy leak-

age. Second, recall that expression (56) for the theoretical maximum

Table 1

Array spatial period b′ , power output P′ , capture factor CF and maximum theoretical

capture factor for an infinite array of flap-type converters similar to Oyster 800TM.

Different apertures are considered, from compact (a = 0.3) to sparse (a = 0.95). Calcu-

lations are made with the mathematical model of Section 2.

a 0.3 0.40 0.50 aopt =
0.58

0.70 0.95

b′ (m) 37 43 52 62 87 520

P′ (kW) 504 564 660 795 574 605

CF 0.60 0.68 0.79 0.95 0.69 0.73

0.71 0.83 1 1.19 (1.67) (10)

capture factor is obtained under the assumption (21), i.e. that the

self-oscillation frequency of each flap is tuned to the frequency of the

incoming waves. However, flap-type converters are usually designed

to avoid this eventuality. At body resonance, the stroke of the flap

would exceed by far the amplitude of the incident wave [12]. It is

then clear that this condition is undesirable and not compatible with

the power take-off mechanism [14]. Away from body resonance, the

maximum values of CF attained are smaller than those predicted by

(56). This is due to the presence of the inertial terms at the denomi-

nator of P (20), which in turn reduce CF (24).

The mathematical model of Section 2 is now applied to determine

an optimisation criterion for the array aperture a, which maximises

the power output of an array of flap-type WECs. The configuration

investigated here is that of an infinite array of converters similar to

Oyster 800TM.1 Each converter has a width w′ = 26 m and is placed

upon a foundation of height c′ = 1.5 m from the bottom of the ocean;

water depth is h′ = 10.9 m. Monochromatic incident waves of am-

plitude A′
I = 1 m, period T′ = 7 s (wavelength λ′ = 62 m), represen-

tative on average of the wave climate off the west coast of Ireland

[15], are considered. For these parameters, several different layouts,

from compact (a = 0.30) to sparse (a = 0.95), are analysed to de-

termine the optimum array aperture aopt. In each case the power P′

= ρA′2b′3/2g3/2P extracted by a single flap and the relevant capture

factor CF (24) are calculated with the mathematical model of Section

2. Table 1 shows the selected values of a, the corresponding value of

the array spacing b′, the generated power P′ in kW, the capture factor

CF and the theoretical maximum C max
F

The largest power output and capture factor are attained at the

optimum configuration a = aopt = 0.58, which corresponds to λ′ =
b′ (i.e. k = 2π ), the trapping wavelength of the first transverse mode

[5]. For a < aopt, λ′ > b′ (i.e. k < 2π ) and all the transverse modes

are perfectly trapped (see Table 1 ). However, since a is small, the

theoretical maximum (56) sets a relatively small upper limit for CF.

By increasing a, C max
F increases and so does the actual capture factor

CF, until it reaches its maximum at a = aopt . For a > aopt the theoretical

limit C max
F still increases, while the actual capture factor CF decreases.

This happens since in these cases λ′ < b′ (i.e. k > 2π ) and complete

trapping of the transverse modes is not possible, so that (56) does

not hold in practice. Energy leakage associated to the propagating

transverse waves lowers the power absorption of the array well below

the theoretical maximum values. In conclusion, the optimum aperture

that maximises the capture factor is the one for which λ′ = b′, i.e.

aopt = 1 − w′

λ′ , (57)

which can be used as a preliminary design formula.

The theory exposed here reveals to be useful for the optimisation

of the efficiency of an infinite array of flap-type wave energy convert-

ers in incident monochromatic waves of given period. Of course, in

real seas superposition of different wave components must be con-

sidered. The power output may thus vary, depending on the coupling

between the spectrum energy period and the torque peak period

1 Oyster is a trademark of Aquamarine Power Limited.
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[15,16]. Further analysis is therefore necessary to obtain more ac-

curate estimates of wave power generation in random seas. Finally,

due to real sea bottom conditions, converters in array are likely to be

deployed in a staggered configuration and in a finite number. Ongo-

ing work is investigating the dynamics of a finite array of staggered

converters and will be disclosed in the near future.

7. Conclusions

A periodic array of flap-type WECs has been analysed in this work

by using the semi-analytical model of Renzi and Dias [5]. Asymptotic

analysis in the far field has allowed to obtain new expressions for

the radiation, reflection and transmission coefficients. Relations have

been determined between the 0th-mode coefficients and the hydro-

dynamic parameters of the system. Some of these relations constitute

an extension to intermediate water of the previous results obtained

by Srokosz [3] for an array of floating bodies in deep water, while

some others are peculiar to the flap-type converter. The efficiency

of the system, evaluated via the capture factor, has been shown to

depend on the reflection coefficient magnitude and argument, which

in turn are functions of the array aperture. This result shows that

diffraction effects are fundamental in wave-power extraction from

flap-type WECs. Unlike a line of heaving buoys [3], an array of flap-

type WECs can exploit the resonance of transverse modes to attain

high capture factor levels, even when complete trapping of the trans-

verse modes does not occur. The maximum capture factor is attained

in the regime of complete trapping (i.e. no propagating short-crested

modes), for which the amount of energy available for extraction is the

largest. Given the wave period and the flap width, the capture factor

can be maximised by varying the spacing between the flaps, such that

complete trapping of the transverse modes occurs. These results have

been obtained under the assumptions that the fluid is inviscid and the

flow is irrotational. Viscous effects and turbulent dissipations may re-

duce the values predicted here, especially near trapping frequencies

(see [13]).
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Appendix A. Asymptotic analysis of a summation

Consider the sum

S (X, Y ) =
+∞∑

m=−∞

H
(1)
1

(
k

√
X2 + (Y − m)

2

)
√

X2 + (Y − m)
2

, (A.1)

where k is a real positive number. To determine the asymptotic be-

haviour of S for |X | → ∞, first consider expressions (2.7) and (2.13)

of [17], which together give

∞∑
m=−∞

H
(1)
0

(
k

√
X2 + (Y − m)

2

)
= 2

i

+∞∑
q=−∞

e−
√

(2qπ )2−k2 |X |√
(2qπ )

2 − k2

e2iqπY .

Differentiating the latter by using the property H
(1)
0

′ = −H
(1)
1 (the

prime here indicates differentiation with respect to the argument)

and substituting the result in (A.1) yields, after some elementary ma-

nipulations,

S (X, Y ) = 2

ikX
sign (X)

+∞∑
q=−∞

eiγq k|X |e2iqπY , (A.2)

where

γq =
√

1 −
(

2qπ
k

)2

. (A.3)

Now note that the argument of the square root in γ q (A.3) is positive

only if |q | < k /(2π ). Then define q as the largest integer for which

|q| <
k

2π
. (A.4)

For |q| < |q|, γ q is real and the relevant terms in S (A.2) are oscillating

functions of X. On the other hand, for |q| > |q|, γ q is purely imagi-

nary and the relevant terms in S decay exponentially with X. Hence

neglecting the evanescent terms in (A.2), transforming the exponen-

tial in Y with the Euler formula and developing some straightforward

algebra yields

S (X, Y ) =
+∞∑

m=−∞

H
(1)
1

(
k

√
X2 + (Y − m)

2

)
√

X2 + (Y − m)
2

∼ 2

ikX
sign (X)

×
q∑

q=0

εqeiγqk|X | cos (2qπY ) , |X | → +∞,

(A.5)

whereεq = 2 −δ0q is the Jacobi symbol andδnm the Kronecker symbol,

n, m ∈ N.

Appendix B. Evaluation of an integral

Consider the integral

I pq =
∫ 1

−1
(1 − u2)

1/2
U2p(u) cos

[
2qπ

(
y − wu

2

)]
du, (B.1)

where p and q are integers and |y | < 1/2. For q = 0, application of

the property (7.343) of [9] for the Chebyshev polynomials U2p gives

immediately

I p0 =
∫ 1

−1

(
1 − u2

)1/2
U2p (u) du = π

2
δp0. (B.2)

Now consider the case q > 0. Expanding the cosine in (B.1), performing

the substitution u = cos θ and using the property

U2p

(
cos θ

) = sin
[
(2p + 1)θ

]
sin θ

,

yields after some algebra

Ipq = cos (2qπ y)

∫ π/2

0
2 sin θ sin

[
(2p + 1)θ

]
cos

(
z cos θ

)
dθ, (B.3)

where z = qπw. Substituting the identity

2 sin θ sin
[
(2p + 1)θ

] = cos
(
2pθ

)− cos
[
(2p + 2)θ

]
in (B.3), using the property

∫ π/2

0
cos 2pθ cos

(
z cosθ

)
dθ = (−1)

p π
2

J 2p (z)

[see Section 3.714 of 9], where J2p is the Bessel function of first kind

and order 2p, and going back to the original variables yields finally

Ipq =
∫ 1

−1
(1 − u2)

1/2
U2p(u) cos

[
2qπ

(
y − wu

2

)]
du

= cos(2qπ y)(−1)
p × (2p + 1)

J 2p+1(qπw)

qw
, q > 0,

(B.4)

where the relation Jn − 1(z) + Jn + 1(z) = 2nJn(z)/z [see Section 8.471 of

9] has also been used.
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Fig. 5. (a) Amplification factor versus period of the incident waves. (b) Capture factor versus period of the incident waves. Parameters of the system are b′ = 91.6 m, w′ = 18 m, h′

= 10.9 m, c′ = 1.5 m. The solid line shows the results obtained with the analytical model of Section 2, dots show the results of the numerical model.

Appendix C. Comparison with numerical model

In this section the mathematical model of Section 2 is further

validated against available numerical results. The latter have been

obtained with a finite-element numerical model developed by the

University of Roma Tre (Italy), as detailed in [18]. In the numerical

model, the array layout is replaced by the equivalent configuration

of a single plate of width w′/2 on the side of a channel of width b′/
2. This allows to speed up the calculations without loss of physical

meaning. The numerical model solves the equation of motion (1), with

boundary conditions (2) on the free-surface, (3) on the bottom, (5) on

the channel lateral walls and (6) on the flap. A radiation condition,

including a source term for generating the desired incoming waves,

is imposed at the open generation boundary, which also allows the

waves reflected back by the device to leave the computational domain

freely. At the end of the flume, a sink term is imposed to simulate an

open boundary, where the transmitted waves leave the domain freely.

The flume length is 3 times the wave length to assure that there

is enough space for waves to develop and then leave the domain.

In the geometry chosen for comparison, each flap has width w′ =
18 m and the ocean has depth h′ = 10.9 m. The foundation is c′ =
1.5 m tall and the spatial period of the array is b′ = 91.6 m, which

corresponds to an array aperture a � 0.8. The flap thickness is null in

the semi-analytical model and equal to 1.8 m in the numerical model.

Comparisons between the semi-analytical model of Section 2 and the

numerical results are shown in Fig. 5.

In the left panel the amplitude factor AF (23) is plotted versus

the period of the incident waves for the geometry described above.

Agreement between analytical and numerical data is very satisfac-

tory. Overall, AF ≥ 0.5 for all periods considered, meaning that the

flaps effectively convert the wave motion into pitching motion. Fig. 5

(right panel) shows the behaviour of the capture factor CF (24) ver-

sus the incident wave period. Comparison between analytical and

numerical data is very good at small periods, while the numerical

model predicts larger values with longer waves. This is likely to be a

thickness-induced effect, which becomes important with larger os-

cillations of the flap at larger periods. However, even at large T′ the

results predicted by the two models are still in satisfactory general

agreement. Note also that the capture factor is CF ≥ 0.6 in the interval

T ∈ [5,8] s, indicating that flap-type WECs are most effective in short

waves.
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