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farm consists of a periodic array of large flap-type wave energy converters. A linear inviscid potential-flow
model, already developed by the authors for a single flap in a channel, is considered. Asymptotic analysis of
the wave field allows to obtain new expressions of the reflection, transmission and radiation coefficients of
the system. It is shown that, unlike a line of heaving buoys, an array of flap-type converters is able to exploit
resonance of the system transverse modes in order to attain high capture factor levels. Relations between
the hydrodynamic coefficients are derived and applied for optimising the power output of the wave farm.
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1. Introduction

Research on wave energy converters (WECs) has concentrated tra-
ditionally on systems of small floating bodies, like offshore heaving
buoys [see1-4] . However, the seminal theories on WECs that orig-
inated from this first scientific approach to wave energy extraction
in the 1970s, do not capture exhaustively the dynamics of the last-
generation WECs. The latter are usually large-scale devices designed
to be deployed in arrays, some of them in the near-shore environment.
For example, while studying the dynamics of an offshore heaving
WEC in a channel, Srokosz [3] showed that resonance of the channel
sloshing modes is detrimental to the efficiency of power absorption.
Conversely, in a recent analysis of a large flap-type WEC in a channel,
Renzi and Dias [5] noted that the trapping of transverse modes near
the flap increases the efficiency of the converter. Because of the image
effect of the channel walls, this fact is also expected to occur in an
infinite array of flap-type converters. The aim of this work is to dis-
cover the dynamics of a system of last-generation flap-type WECs and
to outline its similarities and differences with respect to the systems
of the first generation. As a result of this analysis, an optimisation
criterion for an array of flap-type WECs is devised, depending on the
physical and geometrical parameters of the system.

In Section 2 the behaviour of an array of converters in the open
ocean is investigated by taking as a reference the theoretical frame-
work of Renzi and Dias [5]. The expressions of the free-surface ele-
vation for the diffracted and radiated wave field in the fluid domain
are derived accordingly. Analysis of the wave motion in the far field
allows to obtain new formulae for the reflection, transmission and
radiation coefficients. Various relations between the hydrodynamic
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coefficients are then shown in Section 4. Some of these relations corre-
spond directly to Srokosz’s results [3] for floating bodies of symmetric
shape in a channel. Some others, on the other hand, incorporate spe-
cific properties of the wave field generated by the flap-type converter,
not considered before, and point out the peculiarity of such WEC with
respect to the converters of the first generation. The analytical model
is validated against known theories in the small-gap and in the point-
absorber limit. In Section 5, a parametric analysis is undertaken for
optimising the performance of the system. It is shown that the maxi-
mum capture factor is attained at complete trapping of the transverse
modes of the array. When complete trapping is not possible, partial
trapping can still increase the performance of the system. Finally, in
Section 6 a practical application of an array of large flap-type WECs
is devised. Comparison with available data obtained with a finite-
element numerical code is very satisfactory (see Appendix C).

2. Mathematical model
2.1. Theoretical background

Consider an in-line array of identical flap-type wave energy con-
verters, each hinged on a bottom foundation of height ¢’ in an ocean
of constant depth h’, as shown in Fig. 1.Primes denote dimensional
quantities. Monochromatic incident waves of amplitude A;’, period
T and frequency @’ = 27t /T are coming from the right and set the
flaps into motion, which is converted into useful energy by means
of generators linked to each device. Since the practical applications
of such a system are usually in the nearshore [6], where wave fronts
are almost parallel to the shoreline because of refraction, normal in-
cidence is also assumed. Let w' and b’ be the width of each flap and
the spatial period of the array, respectively. Then the gap between
two consecutive flaps is @ = b’ — w’ (see again Fig. 1 ). A Cartesian
coordinate system is set, with the x’ direction orthogonal to the flaps,
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the y’ axis along the flap lineup and the 7’ axis rising from the undis-
turbed water level z = 0, positive upwards; t' denotes time. Due to
periodicity, the origin of the system can be set arbitrarily on any flap,
which is therefore identified as the reference flap. The analysis is per-
formed in the framework of a linear inviscid potential-flow theory for
small-amplitude oscillations. The velocity potential ® must satisfy
the Laplace equation:

V20X, y,Z,t)=0, (1)

in the fluid domain. The linearised kinematic-dynamic boundary con-
dition on the free surface reads:

7 =0, (2)

where g is the acceleration due to gravity and subscripts denote dif-
ferentiation with respect to the relevant variables. Absence of normal
flux at the bottom yields:

Z=-N. ()

Because of normal incidence of the incoming wave field, periodicity
of the problem requires

@'y +8P'y =0,

@, =0,

X,y +mb.Z,t)= f'(X.,y.Z.t),
m=0, £1, £2,..., y’e( b g) @)

where f indicates any physical quantity associated to the problem and
m each of the flaps; m = 0 denotes the reference flap. Extension to
an obliquely incident wave field can be easily made [see for example
7]. However, since flap-type WECs are usually designed to operate
under normally incident waves [see 6], only normal incidence will be
considered here. Because of the periodicity condition (4), the solution
to the complete problem can be obtained by investigating the wave
interaction with the reference flap centred at the origin, with |y’| <
b’/2. Symmetry of the problem requires also
+b

< (5)
which can be regarded as a no-flux boundary condition on two imagi-
nary waveguides aty’ = + b’/2 (see again Fig. 1). Let '(t') be the angle
of rotation of the flap, positive if anticlockwise; then the kinematic
boundary condition on the flap yields:

Oy = —0'(E)Z + 0 —CHEZ + 1 — ),
¥ ==x0, ly|<¥
= s i<5s

Py =0 y=

(6)

where the thin-body approximation has been applied [8]. The Heavi-
side step function H in (6) assures absence of flux through the bottom
foundation. The problem defined above is formally equivalent to that
solved by Renzi and Dias [5] for a single converter in a channel. Here
the main arguments of the theory in [5] are retraced and applied to the
array configuration. First, the system (1)-(6) is non-dimensionalised
as follows [see 5, Eq. (2.1)]:

(x,y,z,h,w,a,c)= (X’y’Z’Z/’W’a’C), t:\/gt’
7)
, LAY} (
(\/ bA ) @, (W) 0,
where the wave amplitude scale A’ « b’ because of the hypothesis of

small-amplitude oscillation 6’. In expression (7),a = (1 —w) € (0, 1)
defines the aperture of the array. Then time is factored out by setting:

QX y.2t) =R {P(x,y.2)e7 '}, O(t)=n[ee ) (8)
with w = /b’/g @' [see 5, Eq. (2.11)]. The global spatial potential:
¢ =¢"+¢°

is the sum of the radiation potential ¢} and the scattering potential
5. The latter is in turn decomposed into

¢S:¢I+¢D’

where

o' (x,y.2)= —ﬁ cosh k(z+ h)e ik 9)
is the incident wave potential and ¢P is the diffraction potential. ¢pR
and ¢P must be both outgoing at large |x|. In (9), A; = A’;/A’ is the non-
dimensional amplitude of the incident wave and k is the wavenumber,
corresponding to the real solution of the dispersion relationship w? =
k tanh kh. Following the method described in Appendix B of [5], appli-
cation of the Green integral theorem yields two hypersingular integral
equations, in terms of the jump in radiation and scattering potentials
across the plate [see 5, Eq. (B10)]. Those equations are solved by ex-
panding the jumps in potential into series of Chebyshev polynomials
of even order [for details, see Eqs. (B11)-(B18) of 5]. Careful treatment
of the singularity [see 5, Eq. (B19)] ultimately allows to write the po-
tentials in the reference domain |y | < 1/2 in a new semi-analytical
form [see 5, Egs. (B24) and (B25)]. The radiation potential is

+oo P 400

*.%.2)=)" 3" > bomx.¥.2), (10)
n=0 p=0 M=-o00
where
; 1
‘p#pm(xvys Z) = *%/Knxzn(z)a(zmn/7 (1 - u2)1/2
Hl(l)<Kn\/x2+(y—(1/2)wu—m)2) (11)
xUpp(u) du,

\/x2 —(1/2)wu — m)?

R being the Hankel function of the first kind and first order. In
(11), V=i w0O is the complex angular velocity of the flap, the sub-
script m identifies the contribution of each single flap, while the sub-
script p indicates the order of the Chebyshev expansion, Uy, being
the Chebyshev polynomial of the second kind and even order 2p,

p=0,1,.., P € N. The subscript n identifies the contribution of each
depth mode:
Zn(2) = V2 cosh kn(z + h) ne 01 (12)

) 172°
(h+ -2 sinh® kph)"’
where k¢ = k, while k, = ik, denotes the complex solutions of the
dispersion relationship:

w? = —kytan ksh, n=1,2,... (13)

Finally, the c¢(,,,), are the complex solutions of a system of linear equa-
tions ensuring that ¢ satisfies the kinematic condition on the flap
[see 5, Eqs. (B22) and (B23)]. This system is solved numerically with
a collocation scheme, therefore the solution (11) is partly numerical.
In summary, @npm (11) indicates the nth depth mode, pth order po-
tential of the wave field radiated by the mth flap (mth array mode),
moving at unison with all the other flaps. The diffraction potential is
given by

WﬂZZ%M, (14)
p=! =0 M=—00
where
D WA 1 N 172
¢pm(x7yvz)__ kszZﬂZp/ 1(]—”)
(k\/x2 —(1/2)wu —m) ) (15)
XUZp(U) du.

\/xz +(y - (1/2) wu — m)?

In the latter, the B, are the complex solutions of a system of linear
equations, which ensures that ¢P satisfies the no-flux condition on
the flap [see 5, Eqs. (B22) and (B23)]. Again, ¢Em indicates the pth
order potential diffracted by the mth flap, in the presence of all the
other flaps. Note that in ¢P (15) only the Oth depth mode is present,
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Fig. 1. Geometry of the array (a) and the reference flap (b) in physical variables.

as required by the solvability of the whole radiation-diffraction prob-
lem [see Appendix B.2 of 5]. Computational aspects involved in the
numerical evaluation of (11) and (15) are detailed in Section 2.2 of
[5].

2.2. Body motion

The equation of motion of the reference flap in the frequency
domain is that of a damped harmonic oscillator [see Eq. (2.33) of 5],
namely

[7w2(1+,u)+Cfia)(ervpm)]@:F, (16)

depending on the moment of inertia of the flap I = I'/(pb’>), on the
flap buoyancy torque C = C'/(pgb'*) and on the power take-off (PTO)
coefficient vy = v;,to/(pb’4J§F), where p is the water density. The
latter parameters are assumed to be all known. In (16)

—¢) sinh «kph + cosh kyc — cosh kyh

Tw > Kn(h
m="=R1> o 7 (17)
W25 K2 (h + @2 sinh? Knh) !
is the added inertia torque [see Eq. (2.34) of 5], while
) W _ ool w [k(h — c) sinh kh + cosh kc — cosh kh] ()
= R} 1/2
22 2(h + -2 sinh? k)’
and
o iTWA, w [k(h — c) sinh kh + cosh kcl—zcosh kh] (9
T on 2(h + -2 sinh?kh)

denote, respectively, the radiation damping [see Eq. (2.35) of 5] and
the complex exciting torque [see Eq. (2.36) of 5]. If the PTO system is
designed such that

c-( 2)?
Vpto = \/[ ( +2[L)60 ] +v2,
w

which corresponds to the optimum PTO damping [see Eq. (2.40) of 5],
then the average generated power over a period is

-1

2
p_11:|2{\/[c(1+“)w2]+u2+v} ) (20)

4 ?

Now, the generated power (20) is maximum under resonant amplifi-
cation of the body motion, which occurs when

[ ¢
w= I+up 1)

By substitution of the latter expression into (20), the optimum power
available for extraction from each flap is therefore

11|F?
Popt = FERTER (22)
which matches the well-known result of Srokosz [3]. The performance
of each element of the array is assessed quantitatively by using two
main factors. The amplitude factor

_(h=c¢) tan ||

AF A

(23)
is defined as the ratio between the flap horizontal stroke and the am-
plitude of the incident waves, © being the solution of the equation of
motion (16). Finally, the capture factor is defined as the ratio between
the power extracted per unit flap width and the power available per
unit crest length:

p
Cr=— ', 24
"7 a2)Acw (24)
where
w 2kh
Ce=o¢ <1 * Sinh 2kh> (25)

is the group velocity of the incident waves. Since P = P(a) and w =
1 — a, the capture factor (24) depends intrinsically on the aperture
of the array. A strength point of the method of [5] is that knowing
the coefficients «q, and B is sufficient to obtain immediately all
the physical quantities describing the performance of the device (Egs.
(17)-(24) ), without need to evaluate the potentials (10) and (14). The
wave motion at large distance from the array will be now analysed.

3. The far field

In this section the behaviour of the wave field is investigated at
large distance from the array. First, consider the radiation potential
(b,fpm given by (11). For n > 0 the Hankel function in (11) can be
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rewritten as

2
wu m
H (Kn |X|\/1 " <§ 22X §>

2 y wu m\?
——jTK](knlxl\/]-‘r(X—zx—X)),

where K, denotes the modified Bessel function of the second kind and
order n [see Section 8.407 of 9]. Since K;(z) «xe=? asz— oo in (26) and
hence in (11), the argument of (]),fpm for n > 0 decays exponentially in
the far field, so that at leading order:

¢r$pm ~0,

This happens since the modes n > 0 physically represent the parasite
waves generated by the motion of the flaps. These remain trapped
near the device and do not contribute to the wave motion in the far
field [10]. As a consequence,

(26)

|X| = oo, n > 0. (27)

P 4o
PR~ D P Xl oo (28)
p=0m=—o0

Now substituting (11) into (28), using the asymptotic expression (A.5)
with (X, Y) = (x, y — wu/2) and the integral formulae (B.2), (B.4) and
finally developing some straightforward algebra, yields

_iVcoshk(z+h) a

T DL A et cos (2qy). x> +00.(29)
q=0

o ~

In the latter expression, Y4 = 1—(2q7‘r/l<)2 and q =q(k) is the
largest integer for which y 4 is real, while

i
.Ag: = :F% WwWwgoZo (0), (30)
+ i 7040 P 1P (2 1 Japi1(qmTw)
A = FgwoZol )fqga(zp)o(* )y (2p+ )T- (31)

In (31), &4 is the Jacobi symbol, while Jpp + 1 is the Bessel function of
first kind and order 2p + 1. Note that the radiation potential in the
far field (29) is the sum of a progressive long-crested wave (term q
= 0) and several progressive short-crested waves (terms 0 < g < q),
which correspond to the propagating sloshing modes of the equiva-
lent channel configuration of [5]. Expression (29) is similar in form to
(2.24) of [3] (accounting for the various differences in the nomencla-
ture), which gives the far-field expression of the radiation potential
for a floating body, symmetric with respect to the x-axis, in a channel.
In (2.24) of [3], however, the coefficients Aqi are leftin a general form,
while here they are determined explicitly for the flap-type converter.
The same steps can be repeated to find the far-field expression of
the diffraction potential ¢p° (14). By substituting (15), (A.5), (B.2) and
(B.4) in (14) and developing the algebra, the diffraction potential in
the far field becomes

iA; coshk(z+ h)

D o et
¢ B T°w ~coshkh
q ) 2
« Z Rqe* 7% cos(2qm y), x - =+ o0,
q=0
where
i
Ro= -4 wwBoZo(0), &y
; p J2pi1 (gTw)
Ry =—zwaZo(0) € ) Pop(-1) 2p+ D= 0m—  (34)
p=0

Eq.(32)is similar to (2.25) of [3], in which, however, the Rq values are
left in a general form. Note that the calculation of the coefficients A;ﬁ

and Ry is straightforward once the linear system for ¢¢(5,)o and Bap is
solved [see Eq. B23 of 5].

3.1. The free-surface elevation

The amplitude of the free surface in the far field is an important
parameter in order to assess the impact of the array on the wave
climate of the surrounding area. Given the total potential ®(x, y, z, t),
the free-surface elevation is
§(x,y.6) = =Dz = % {1 (x. y)e 'Y,

where

nxy)=io (@' (x,y,0)+ " (x,y,0)+ ¢ (x.y,0)) (35)
is the relevant complex spatial component. Substituting (9) for ¢! and
the far-field expressions (29) and (32) for ¢R and ¢P, respectively,
yields
n(x, y) ~
i q .
Are ilox Zq=o (A, Ry + VA;) ek cos(2gTry). x > +00  (36)

q N .
Zq=0 (A[Tq +VA; ) e~ 1Yakx cos(2qm y), X —> —00

where

To=1-Ro. Tq=—Rq. (37)

Overall, the free-surface elevation is the sum of a long-crested wave
(term g = 0) and several short-crested waves (terms 0 < q < q),
namely the propagating transverse modes of the array. Physically, in
(36) the terms Aqi represent the gth-mode radiation coefficients, Rq is
the qth-mode reflection coefficient and finally T, represents the qth-
mode transmission coefficient. They enjoy all the general properties
of the analogous terms introduced by Srokosz [3] for bodies of sym-
metric shape in a channel. In addition, such coefficients have some
specific properties, peculiar to flap-type bodies, which derive from
their analytical structure, as shown in detail in Section 4. Fig. 2 shows
the behaviour of Ry and Ty against the nondimensional wavenumber
k for a typical configuration where a = 1/2. The plots in Fig. 2 compare
favourably with those of Williams and Crull [11, Fig. 3] and Porter and
Evans [7, Fig. 2], who studied the scattering of incident waves by an
array of thin screens.

Note the spiky behaviour of the coefficients, with spikes occurring
attheresonantwavenumbersk = 2(q + 1)r,§G =0, 1, ... of the trans-
verse short-crested waves, for which the (g + 1)th transverse mode
turns from trapped to propagating. In the following, the coefficients
Ro, Tp and AOi will be shown to enjoy some interesting properties
and to be very useful for determining some relations between the
hydrodynamic coefficients of the system.

4. Derivation of relations for an array of flap-type WECs

In this section, relations are derived for an array of flap-type WECs,
based on the results obtained in the previous section. Some of these
relations correspond directly to Srokosz’s results [3] for floating bod-
ies of symmetric shape, while some others incorporate specific prop-
erties of the wave field (36) generated by the array of flap-type con-
verters. In this sense, such expressions are new and point out the
peculiarity of flap-type WECs with respect to the converters of the
first generation.

4.1. Extended Bessho—Newman relation

First consider .A{ and Ry. From (30) and (33) it is immediate to
get, respectively, arg(AJ) = arg(oo) — 7w /2 and arg(Ro) = arg(Bo) —
7 /2.Since arg(ago) = arg(Bo) [see Appendix C of 5], then the complex
coefficients A} and Ry must have the same argument, say 8, for which

Af =|AS|€®, Ro=IRole€?, (38)
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Fig. 2. Magnitude of the fundamental reflection and transmission coefficients, respec-

tively Ry (33) and Ty (37), versus the non-dimensional wavenumber k. In this layout
the flap width equals the gap size,i.e.a=w=1/2.
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Fig. 3. Ratio Ro/A{ (45) versus non-dimensional wavenumber k (solid line) and ap-
proximate expression (46) for large k (dashed line). Parameters of the system are b’ =
91.6m,h" =109 m,c =1.5m.

for any wavenumber k. The same relation, but only for k < 277, can be
also derived from the Bessho-Newman relation:
z Ya
DI (A5 Rq+A7"Tg) = 0, (39)
q=0

where ()* denotes the complex conjugate. Expression (39) is obtained
by applying Green’s integral theorem to ¢S and (¢f — ¢&*) and cor-
responds to (3.2) of [3], with small variations due to the difference in
the nomenclature. Note that the Bessho-Newman relation (39) is a
general form valid for any floating body, symmetric with respect to
the x-axis, in a channel (or for an infinite array of such bodies). Con-
sidering k < 27, i.e. 7 =0, and using the identities A; = — Al (see
(30)), with Ao+ = |A3|ei‘s. and Ty =1 — Ry (see (37) ), (39) becomes:

2Ry — 1 = €21 which implies (38). However, while with the general
Bessho-Newman relation (39) it is possible to obtain (38) only in the
domain k < 27r, usage of the explicit forms (30) and (33), respec-
tively for A7 and Ry, has allowed to extend (38) to any wavenumber.
Furthermore, by using (37) and (38), (39) yields

cosd = (Agr]ZzzolLZ |45 Ry| (40)

for any k. Expression (40) is a particular form of the Bessho-Newman
relation, valid for a periodic array of flap-type converters under nor-
mally incident waves. Note that for k < 277, i.e.q = 0, all the transverse
modes are trapped near the array and (40) reduces to

cos 6 = |Rg|, k<2m. (41)

4.2. Relation between F and .AOi (array Haskind relation)

Consider the complex exciting torque (19) and the fundamental
radiation coefficient (30). Isolating the term oo from (30) and sub-
stituting it into (19), yields after some algebra:

F = +2A1AFCy. (42)

According to (42), the long-crested component of the radiated wave
field is sufficient to obtain the exciting torque acting on each flap, for
any value of k. Furthermore, since A; and Cg are real numbers, (42)
requires

F =|F|€d. (43)

Expression (42) can be transformed into physical variables via (7),
thus giving

F'=2pgb'A)’ AJ'Cq'.

The latter is similar in form to the well-known two-dimensional
Haskind relation [10] except for the factor b’, which represents the
array spacing. Finally, note that (42) is an extension to intermediate
water depth of Srokosz’s equation (4.3) in [3].

4.3. Relation between F and Ry

The relation between the exciting torque and the fundamental
reflection coefficient can be easily obtained by isolating 8 from (33),
substituting it in (19) together with (12) and developing the algebra,
so that

F =2A/Ro (44)

tanh kh hecxt cosh kc — cosh kh
k k sinh kh

Hence the exciting torque acting on each flap is related to the ampli-
tude of the long-crested component of the reflected wave field, for
any value of k.

4.4. Relation between Ry and A}

By equating (42) and (44) it is immediate to obtain
Ro _ kCg (45)
A tanhkh (h— ¢ + coshicocomhic

valid for any k. Physically, (45) measures the ratio between the re-
flective capacity of the system as an array of screens and the radiative
capacity of the system as an array of wavemakers, oscillating at uni-
son. In short waves, where the flaps are deemed to be operating [12],
itis roughly k > 1, so that (45) becomes

Ro Kk
AT T 2h—c—k1y

as shown in Fig. 3.

(46)
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Since the ratio (46 )is O(k'/2), the diffractive phenomena occurring
in the system dominate over the radiative ones in short waves. This
suggests that the effects of diffraction are not to be neglected if an
accurate description of the system dynamics is to be pursued.

4.5. Relation between v and A

Consider expression (18), which defines the radiation damping v
for the reference plate. Isolating J{oo} in (30) and substituting it
into (18) yields, after some algebra,

tanh kh ( cosh kc — cosh kh>
h—c+ v —,

o A+
V=20 {A5} % sinh kh

(47)

for any k. Incidentally, by isolating 4] in the array Haskind relation
(42) and substituting it into (47), the latter becomes

—w F tanh kh hecxt cosh kc — cosh kh
T A kCq k sinh kh ’

which corresponds to expression (C3) of Renzi and Dias [5]. Note
that (44), (45) and (47) allow to obtain the exciting torque and the
radiation damping - and consequently the optimum generated power
(22) - directly from the fundamental reflection coefficient Rq. This is
a peculiar property of the flap-type converter and does not hold in
general for converters of different shape.

The above relations have been used to check the numerical calcu-
lations in this paper. In order to assess the accuracy of computations
for a given equation of the form Lh.s = r.h.s., the relative error

[Lh.s. —r.h.s.|
€=—""""

|r.hs.| (48)

is defined. For a typical system configuration (see Appendix C), tak-
ing 40 array modes, 5 depth modes and 5 terms in the Chebyshev
expansion, is sufficient to obtain a relative error of 0(10-16) in cal-
culating the Haskind relation (42) and 0(10~1°) in calculating the
remaining relations (44)-(47). Hence the method of solution based
on the Green’s theorem of [5] reveals to be fast convergent and very
efficient. In the following, the influence of the array aperture on the
performance of the system is assessed, based on the relations found
in this section.

5. Performance evaluation

Consider the optimum capture factor:

opt _ 1 |F?
F =3 VAZCow’ (49)
obtained by substituting the optimum power output (22) into (24). By
replacing F with (44), v with (47), and by performing some algebra,
(49) can be rewritten as

opt __ 1 [Rol
€ = 2(1—a)cos §’ (50)
where § is still the argument of Rq. According to (50), the performance
of the array depends on the reflection coefficient magnitude and ar-
gument, which in turn are functions of the array aperture. Hence
the solution of the scattering problem alone is sufficient to assess
the performance of the system via (50). This result confirms that
diffraction effects are fundamental in wave-power extraction from
flap-type WECs. Therefore, the empiric criterion for which “to absorb
waves means to generate waves” [4], valid for small floating bodies
in the absence of diffraction, does not apply here in full. In the fol-
lowing, expression (50) will be validated against known theories in
the small-gap and point-absorber limits. Then the maximum capture
factor will be assessed.

5.1. Small-gap limit

In the limit a — 0, the flaps become joined to each other and
the system is two-dimensional. In this case it is Ry — 1, because of
complete reflection of the incident wave in the diffraction problem.
Then it is straightforward to show that (50) becomes

1
(g 2 (51)
i.e. the capture factor coincides with the classical hydrodynamic effi-
ciency for 2D devices [10].

5.2. Point-absorber limit

Consider now the limit w = w'/b’ — 0, for fixed array spacing
b'. In this limit, the wavelength A = 27 /k of the incident wave is
much larger than the flap width, A > w, and the interaction between
the flaps is weak. Hence the results of the present theory can be
compared to those of Budal [2] and Srokosz [3] for an infinite array of
point absorbers. For such a system, the efficiency is assessed via the
absorption length:

, P

LI'c — b —Cpw, 52
(1/2) A2Cq F (52)

which is the ratio between the power captured by the single device

and that incident per unit wave crest length. For an array of converters
the optimum absorption length is

L/opt = l/optsa (53)

where I'qy¢ is the optimum absorption length for an isolated body and
s is an interaction factor [2,3]. When w « A, each flap can be con-
sidered as a three-dimensional axisymmetric body, whose optimum
absorption length for given wavelength of the incident wave is

A
Vopt =& P b, (54)

where & = 1 for heave and & = 2 for surge (see [1,12]). By substituting
(54) into (53), then the latter into (52) and employing (50) for the
optimum capture factor, the interaction factor becomes

s K IR
2& cos §’

(55)

where & = 2, because in the point-absorber approximation the
flap moves essentially in surge [12]. Fig. 4 shows the plot of s versus
the non-dimensional wavenumber k = k'b’ for a typical configuration
in which w = 0.05. When k < 27t (i.e. A > 1) all the transverse modes
are trapped and the behaviour of the curve is linear: s = k'b’/(2§).
This agrees formally with the results shown by Budal [2] and Srokosz
[3] for an infinite array of heaving point-absorbers, where & = 1.
When k > 27, i.e. A < 1, incomplete trapping of the transverse modes
strongly modifies the behaviour of the curve. The interaction factor
globally decreases, but spikes occur near the resonant wavenumbers
k = 2(g + 1)7r. Note that this dynamics is different from that shown
in [3 ] for a system of heaving point absorbers. In the latter, s drops
to zero when k — 2(q + 1)t from the left, so that the trapping of
the transverse modes has a detrimental effect on the performance
of the system [3, see Fig. 2]. Here, instead, resonance produces lo-
cal maxima of s near k = 2(g + 1)7r (see again Fig. 4 ) and therefore
is beneficial in increasing the optimum efficiency, even away from
complete trapping. This happens because the resonance of the trans-
verse modes enhances the horizontal (surge) actions and drops the
vertical (heave) loads [13]. Therefore surging WECs benefit the most
from the resonant mechanisms activating in an array configuration.
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Fig. 4. Interaction factor (55) versus non-dimensional wavelength k for the point-
absorber approximation. Parameters of the system are b’ = 91.6 m, w' =458 m, h' =
10.9 m, ¢ = 1.5 m. The ratio w = w/'/b’ = 0.05 justifies the use of the point-absorber
approximation. The vertical dash-dotted lines show the resonant wavenumbers k =
2(q + 1)7r; the grey dashed line shows the linear behaviour s = k /4 for k < 27.

5.3. Maximum capture factor

Consider again the optimum capture factor, given by (50). Expres-
sion (40) shows that |Rg|/cos & has a unit upper limit (41) when all the
transverse modes are trapped near the array. This situation is most
favourable for energy extraction and yields the maximum capture
factor attainable by an array of oscillating wave energy converters of
given aperture a. Substitution of (41) into (50) yields

Cgpf _ Canax _ 1

0-a) k <2m (56)

for the maximum capture factor. Incidentally, note that (56) corre-
sponds to Srokosz’s 3] maximum efficiency E™# = wC ' for a sym-
metric floating body in a channel. Since a < 1, the maximum capture
factor (56) for the array configuration is larger than the well-known
limit value of 1/2, obtained in the small-gap approximation a — 0
(see expression 51). Hence the mutual interaction between the flaps,
which is responsible for the trapping of energy near the array in the
form of short-crested waves, can increase the capture factor of the
system [5].

6. Application to wave energy extraction

In applications, the incident wave period T and wavelength A’ are
known, together with the flap width w’. The array aperture a needs to
be optimised so that the capture factor is maximum. Expression (56)
for the maximum capture factor would suggest to increase the aper-
ture as much as possible, so that a — 1 and consequently Cr — co.
However, (56) is to be regarded as a theoretical upper limit. This is
motivated by two reasons. First and most important, as a — 1, then
w =1 —a— 0. Now recall that w = w'/b’, being w' the width of the
single flap, which in practical applications is large. As a consequence,
in order to have w — 0, it must be b’ — oo. In this limit, A = A’/b’
— 0 and k — oo ; hence expression (56) for the maximum capture
factor is no longer valid. Physically, by increasing the array aperture a,
the spatial period b’ increases so much, so that the array is no longer
able to trap all the transverse modes, resulting in more energy leak-
age. Second, recall that expression (56) for the theoretical maximum

Table 1

Array spatial period b’, power output P, capture factor Cr and maximum theoretical
capture factor for an infinite array of flap-type converters similar to Oyster 800™.
Different apertures are considered, from compact (a = 0.3) to sparse (a = 0.95). Calcu-
lations are made with the mathematical model of Section 2.

a 03 0.40 0.50 Qopt = 0.70 0.95
0.58

b (m) 37 43 52 62 87 520

P (kW) 504 564 660 795 574 605

Cr 0.60 0.68 0.79 0.95 0.69 0.73

0.71 0.83 1 1.19 (1.67) (10)

capture factor is obtained under the assumption (21), i.e. that the
self-oscillation frequency of each flap is tuned to the frequency of the
incoming waves. However, flap-type converters are usually designed
to avoid this eventuality. At body resonance, the stroke of the flap
would exceed by far the amplitude of the incident wave [12]. It is
then clear that this condition is undesirable and not compatible with
the power take-off mechanism [14]. Away from body resonance, the
maximum values of Cr attained are smaller than those predicted by
(56). This is due to the presence of the inertial terms at the denomi-
nator of P (20), which in turn reduce Cr (24).

The mathematical model of Section 2 is now applied to determine
an optimisation criterion for the array aperture a, which maximises
the power output of an array of flap-type WECs. The configuration
investigated here is that of an infinite array of converters similar to
Oyster 800™.1 Each converter has a width w' = 26 m and is placed
upon a foundation of height ¢’ = 1.5 m from the bottom of the ocean;
water depth is i’ = 10.9 m. Monochromatic incident waves of am-
plitude A’y = 1 m, period T' = 7 s (wavelength A’ = 62 m), represen-
tative on average of the wave climate off the west coast of Ireland
[15], are considered. For these parameters, several different layouts,
from compact (a = 0.30) to sparse (a = 0.95), are analysed to de-
termine the optimum array aperture aop. In each case the power P’
= pA'2b'3/2g3/2P extracted by a single flap and the relevant capture
factor Cr (24) are calculated with the mathematical model of Section
2. Table 1 shows the selected values of a, the corresponding value of
the array spacing b’, the generated power P’ in kW, the capture factor
Cr and the theoretical maximum C ¥

The largest power output and capture factor are attained at the
optimum configuration a = aep; = 0.58, which corresponds to A’ =
b’ (i.e. k = 27), the trapping wavelength of the first transverse mode
[5]. For a < aopr, A > b’ (i.e. k < 27r) and all the transverse modes
are perfectly trapped (see Table 1 ). However, since a is small, the
theoretical maximum (56) sets a relatively small upper limit for Cg.
By increasing a, C "®* increases and so does the actual capture factor
Cr, until it reaches its maximum at a = dop . For a > aqp; the theoretical
limit C " still increases, while the actual capture factor Cr decreases.
This happens since in these cases A’ < b’ (i.e. k > 27r) and complete
trapping of the transverse modes is not possible, so that (56) does
not hold in practice. Energy leakage associated to the propagating
transverse waves lowers the power absorption of the array well below
the theoretical maximum values. In conclusion, the optimum aperture
that maximises the capture factor is the one for which A’ = b/, i.e.

w

AT

which can be used as a preliminary design formula.
The theory exposed here reveals to be useful for the optimisation

of the efficiency of an infinite array of flap-type wave energy convert-

ers in incident monochromatic waves of given period. Of course, in

real seas superposition of different wave components must be con-

sidered. The power output may thus vary, depending on the coupling

between the spectrum energy period and the torque peak period

Qopt = 1- (57)

T OQyster is a trademark of Aquamarine Power Limited.
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[15,16]. Further analysis is therefore necessary to obtain more ac-
curate estimates of wave power generation in random seas. Finally,
due to real sea bottom conditions, converters in array are likely to be
deployed in a staggered configuration and in a finite number. Ongo-
ing work is investigating the dynamics of a finite array of staggered
converters and will be disclosed in the near future.

7. Conclusions

A periodic array of flap-type WECs has been analysed in this work
by using the semi-analytical model of Renzi and Dias [5]. Asymptotic
analysis in the far field has allowed to obtain new expressions for
the radiation, reflection and transmission coefficients. Relations have
been determined between the Oth-mode coefficients and the hydro-
dynamic parameters of the system. Some of these relations constitute
an extension to intermediate water of the previous results obtained
by Srokosz [3] for an array of floating bodies in deep water, while
some others are peculiar to the flap-type converter. The efficiency
of the system, evaluated via the capture factor, has been shown to
depend on the reflection coefficient magnitude and argument, which
in turn are functions of the array aperture. This result shows that
diffraction effects are fundamental in wave-power extraction from
flap-type WECs. Unlike a line of heaving buoys [3], an array of flap-
type WECs can exploit the resonance of transverse modes to attain
high capture factor levels, even when complete trapping of the trans-
verse modes does not occur. The maximum capture factor is attained
in the regime of complete trapping (i.e. no propagating short-crested
modes), for which the amount of energy available for extraction is the
largest. Given the wave period and the flap width, the capture factor
can be maximised by varying the spacing between the flaps, such that
complete trapping of the transverse modes occurs. These results have
been obtained under the assumptions that the fluid is inviscid and the
flow is irrotational. Viscous effects and turbulent dissipations may re-
duce the values predicted here, especially near trapping frequencies
(see [13]).
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Appendix A. Asymptotic analysis of a summation

Consider the sum

oo H (k,/x2 +(Y - m)2>
S(X.Y)= > , (A1)
m=—oo X2 +(Y —m)?

where k is a real positive number. To determine the asymptotic be-
haviour of S for |X | — oo, first consider expressions (2.7) and (2.13)
of [17], which together give

o0 +oo  —J(2qm)2—k2 |X| )
3 HY (k,/x2 +(Y - m)z) _2 ) D —L

m=—o0 a=—co /(2qT)? — k2

Differentiating the latter by using the property Hé”’ = —Hl(l) (the
prime here indicates differentiation with respect to the argument)
and substituting the result in (A.1) yields, after some elementary ma-
nipulations,

+00
S(X.Y)= %sign(X) > efvakiXig2iamy (A2)

g=—oc0

where

Vo=[1- <7>2 (A3)

Now note that the argument of the square root in y ¢ (A.3) is positive
only if |q | < k /(277 ). Then define § as the largest integer for which

k

lql < TR (A4)
For |q| < |gl, V q is real and the relevant terms in S (A.2) are oscillating
functions of X. On the other hand, for |q| > [q|, ¥4 is purely imagi-
nary and the relevant terms in S decay exponentially with X. Hence
neglecting the evanescent terms in (A.2), transforming the exponen-
tial in Y with the Euler formula and developing some straightforward
algebra yields

oo H <k,/x2 +(Y - m)2>
S(X.Y)= >

m=—o0

~ —sign(X)
X2 4+ (Y — m)y? ikx (A5)

q
x Zeqe”’q"'x‘ cos(2qmY), |X|— +oo,
q=0

where g4 =2 — 8 is the Jacobi symbol and 8 i, the Kronecker symbol,
n,meN.

Appendix B. Evaluation of an integral

Consider the integral

Ipg = /;(1 - uz)l/zuzp(u)cos [an (y— %)] du, (B.1)

where p and q are integers and |y | < 1/2. For g = 0, application of
the property (7.343) of [9] for the Chebyshev polynomials Uy, gives
immediately

1 1/2
Io = f,1 (1-12) “Usp(wy du =780, (B2)

Now consider the case g > 0. Expanding the cosine in (B.1), performing
the substitution u = cos 6 and using the property

sin[(2p+1)0]

Uyp (cos 0) = Sin 0

)

yields after some algebra
/2

Ipg = cos(any)/ 2 sin 0 sin[(2p+1)0] cos (z cos 0) db, (B.3)
0

where z = g7t w. Substituting the identity

2sin 0 sin[(2p+1)0] = cos (2pd) — cos[(2p+2)0]
in (B.3), using the property

/:/2 cos 2pf cos (z cosB) df = (—1)”%]21,(2)

[see Section 3.714 of 9], where J, is the Bessel function of first kind
and order 2p, and going back to the original variables yields finally

1
Ipg = / (1- uz)l/zuzp(u)cos [Zqﬂ (yf %)} du
1

=cos(2qy) (-1 x 2p+ 1)%, q>0,

(B.4)

where the relation J, _ 1(z) + Jn +1(2) = 2nJ,(2)/z [see Section 8.471 of
9] has also been used.
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Fig. 5. (a) Amplification factor versus period of the incident waves. (b) Capture factor versus period of the incident waves. Parameters of the system are b’ =91.6 m, w = 18 m, i’
=10.9m, ¢’ = 1.5 m. The solid line shows the results obtained with the analytical model of Section 2, dots show the results of the numerical model.

Appendix C. Comparison with numerical model

In this section the mathematical model of Section 2 is further
validated against available numerical results. The latter have been
obtained with a finite-element numerical model developed by the
University of Roma Tre (Italy), as detailed in [18]. In the numerical
model, the array layout is replaced by the equivalent configuration
of a single plate of width w’/2 on the side of a channel of width b’/
2. This allows to speed up the calculations without loss of physical
meaning. The numerical model solves the equation of motion (1), with
boundary conditions (2) on the free-surface, (3) on the bottom, (5) on
the channel lateral walls and (6) on the flap. A radiation condition,
including a source term for generating the desired incoming waves,
is imposed at the open generation boundary, which also allows the
waves reflected back by the device to leave the computational domain
freely. At the end of the flume, a sink term is imposed to simulate an
open boundary, where the transmitted waves leave the domain freely.
The flume length is 3 times the wave length to assure that there
is enough space for waves to develop and then leave the domain.
In the geometry chosen for comparison, each flap has width w' =
18 m and the ocean has depth ¥ = 10.9 m. The foundation is ¢’ =
1.5 m tall and the spatial period of the array is b’ = 91.6 m, which
corresponds to an array aperture a ~ 0.8. The flap thickness is null in
the semi-analytical model and equal to 1.8 m in the numerical model.
Comparisons between the semi-analytical model of Section 2 and the
numerical results are shown in Fig. 5.

In the left panel the amplitude factor Ar (23) is plotted versus
the period of the incident waves for the geometry described above.
Agreement between analytical and numerical data is very satisfac-
tory. Overall, Ar > 0.5 for all periods considered, meaning that the
flaps effectively convert the wave motion into pitching motion. Fig. 5
(right panel) shows the behaviour of the capture factor Cr (24) ver-
sus the incident wave period. Comparison between analytical and
numerical data is very good at small periods, while the numerical
model predicts larger values with longer waves. This is likely to be a
thickness-induced effect, which becomes important with larger os-
cillations of the flap at larger periods. However, even at large T' the
results predicted by the two models are still in satisfactory general

agreement. Note also that the capture factor is Cr > 0.6 in the interval
T € [5,8] s, indicating that flap-type WECs are most effective in short
waves.
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