Clustering high dimensional mixed data:

joint analysis of phenotypic and genotypic data

Damien McParland*, Catherine Phillips, Lorraine Brennan,
Helen Roche and Claire Gormley*

*School of Mathematics and Statistics & the Insight Centre for Data Analytics

University College Dublin.



What's coming up...

@ Modelling high dimensional data of mixed type:
continuous, binary, nominal.




What's coming up...

@ Modelling high dimensional data of mixed type:
continuous, binary, nominal.

@ Clustering using finite mixture models.




What's coming up...

@ Modelling high dimensional data of mixed type:
continuous, binary, nominal.

@ Clustering using finite mixture models.

@ Bayesian estimation, with variable and model selection.




What's coming up...

@ Modelling high dimensional data of mixed type:
continuous, binary, nominal.

@ Clustering using finite mixture models.

@ Bayesian estimation, with variable and model selection.

@ Motivating application: LIPGENE-SU.VI.MAX study.
‘Diet, genomics and the metabolic syndrome: an integrated
nutrition, agro-food, social and economic analysis.’




What's coming up...

@ Modelling high dimensional data of mixed type:
continuous, binary, nominal.

@ Clustering using finite mixture models.
@ Bayesian estimation, with variable and model selection.
@ Motivating application: LIPGENE-SU.VI.MAX study.
‘Diet, genomics and the metabolic syndrome: an integrated

nutrition, agro-food, social and economic analysis.’

@ Aim: uncover any sub-phenotypes, identify discriminating
variables, considering all data.
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The metabolic syndrome (MetS)

@ Complex disorder that can lead to increased risk of type 2
diabetes and cardiovascular disease.

@ The World Health Organisation estimates global diabetes
prevalence will double by 2030.

@ Diagnosed if have > 3 abnormalities:

Fasting glucose >5.5 mmol |~

concentration

Serum TAG > 1.5 mmol |-

concentration

Serum HDL-c < 1.04 mmol I=T (Men)

concentration < 1.29 mmol I=' (Women)

Blood pressure  Systolic BP > 130 mm Hg
Diastolic BP > 85 mm Hg

Waist > 94 cm (Men)

circumference > 80 cm (Women)
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The LIPGENE-SU.VI.MAX study

@ Pan-European, prospective population based study
focusing on interaction of nutrients and genotype in MetS.

@ Initial data collected on N = 505 participants.

@ Continuous phenotypic variables:
e Anthropometric (eg. waist circumference) and biochemical
(eg. plasma fatty acid levels) measurements. (A = 26)

@ Nominal genetic SNP data.
@ B = 341 nominal SNPs with 3 levels.
e Eg. rs512535 € {AA, GG, AG}

@ Binary genetic SNP data.
e C =371 SNPs with 2 levels.
e Eg. rs17777371 € {GG, CG/CC}

@ Aim: model J = A+ B+ C = 738 variables simultaneously.
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The LIPGENE-SU.VI.MAX study

@ Seven year follow up data: continuous phenotypic data
only collected.

@ Participants were then diagnosed as having the MetS or
not.

@ Questions of interest:
@ In the initial data, are there clusters or sub-phenotypes?

@ If so, are there discriminating variables?

@ If so, are discriminating variables genetic, phenotypic, or
both?

© Is there a correspondence between the initial clusters and
the 7-yr follow up diagnosis?
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State of the art

@ Early attempts employed latent variable models and
location models:
Everitt (1988), Hunt & Jorgensen (1999) . ..

@ Non-model based approaches:
Huang (1997), Ahmad & Dey (2007), ...

@ Clustering mixed categorical data:
Cai et al. (2011), Morlini (2011), Browne & McNicholas
(2012), McParland et al. (2014) ...

@ Clustering mixed continuous & categorical data:
McParland & Gormley (2016) & associated R package
clustMD

@ Copula based approaches:
Marbec et al. (2014), Kosmidis & Karlis (2015), ...
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Clustering data of mixed type.

@ Discovering clustering structure when we have mixed data
i.e. binary, nominal and continuous variables.

@ (Categorical) data are high dimensional.

@ Draw on ideas from item response theory and latent
variable models.

@ Three data types:

e Binary data — item response theory model.
e Nominal data — mutinomial probit model.

e Continuous data — factor analysis.
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Binary data: item response theory model.

@ The binary response y;; serves as an indicator of z;:

if Vi = k then Vik-1 < Zj < Yk
@ For threshold parameters y, for variable j with Kj = 2 levels:
7.0 < Y1 S 2

e Identifiability:

Y0 = —00 %1 =0 VK = 0
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ltem response theory model: factor analytic structure.

@ Model z; = (zj1,...,2ic)" as alinear function of a latent,
low dimensional Gaussian variable 6;:

Zi=p+N;+¢

where
I C-vector of negative item difficulty parameters
A C x @Q matrix of item discrimination parameters
0; ~ MVNg(0,1)
¢ ~ MVNG(O,I)

@ Dimension Q of the latent trait §; is unknown, but Q <« C.
Zi|0; ~ MVNc(p+ Ag;,1)



Nominal data: multinomial probit model.

@ Underlying y; are Kj — 1 latent Gaussian variables {z,f/? .




Nominal data: multinomial probit model.

@ Underlying y; are Kj — 1 latent Gaussian variables {z,f/? .

@ Each observed nominal SNP y; has K; = 3 levels.




Nominal data: multinomial probit model.

@ Underlying y; are Kj — 1 latent Gaussian variables {z,f/? .
@ Each observed nominal SNP y; has K; = 3 levels.

@ Example: SNP rs512535 € {AA, GG, AG}. Thus,

_ 2
z;={z}.7;




Nominal data: multinomial probit model.

Damien:

Density of First Latent Dimension Density of Second Latent Dimension
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Nominal data: multinomial probit model.

Lorraine:

Density of First Latent Dimension Density of Second Latent Dimension
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Nominal data: multinomial probit model.

Claire:

Density of First Latent Dimension Density of Second Latent Dimension
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Nominal data: multinomial probit model.

e Nominal response y; serves as an indicator of (z} i U)T:

o if y; = AAthen (z},25)" < (0,0)".

o if yj = GG then z} = ml?x{z,f} and z} > 0.

o if yj = AGthen zf = max{z }and z& > 0.
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Multinomial probit model: factor analytic structure.

@ Model z; = (21, ..., Zj2g)) as a linear function of a latent,
low dimensional Gaussian variable 6;:

Zi=p+N;+¢

where
14 2B dimensional mean vector.
A 2B x Q loadings matrix
0; ~ MVNg(0,1)
e, ~ MVNyg(0,l)

@ Again, Q << 2B and
Zi|0; ~ MVN2g(p + A9;, 1)
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@ Model V=2 = =(zj1,... z,A)T as a linear function of a
latent, Iow dlmen5|onal Gaussian variable 6;:

Zi=p+N;+¢

where
I A dimensional mean vector.
A Ax Qloadings matrix
0; MVNg(0,1)
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Continuous data: factor analysis model.

@ Model V=2 = =(zj1,... z,A)T as a linear function of a
latent, Iow dlmen5|onal Gaussian variable 6;:

Zi=p+N;+¢

where
I A dimensional mean vector.
A Ax Qloadings matrix
0; MVNg(0,1)
€ MVN4(0, V)

@ Again, Q << Aand
Zi|0; ~ MVNa(p + AG;, V)
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Hybrid model: factor analysis for mixed data (FA-MD)

@ Similar model structure suggests a hybrid may be fruitful:

z; if variable j is continuous.
yj =< k ifvariable jis binary and ;1 < Zj < 7j«-
k if variable j is nominal and zK~' = max{zf} > 0.

@ Collect latent variables together into a single
D = A+ 2B + C dimensional vector z;.

@ Model this joint latent vector using a factor analytic

structure:
ZI’|QI' ~ MVND(H + AQ,', \U)

@ Marginally, have a parsimonious covariance structure:

Z; ~ MVNp(p, M\T + W)



Hybrid model: factor analysis for mixed data (FA-MD)

@ Complex, augmented, likelihood function:
P(Z,|Ha /\agi’@a F,lll) = H N(:U’]—FA/TQHQZ)])
jcns

< T N7 (i + A 0,,1)1{ 2}
j bin

Ki—1

.
< TTTT VTG + X0, 2
jnom k=1
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Mixture of factor analysers for mixed data (MFA-MD)

@ Facilitate clustering using a mixture modelling framework.
@ Each of G clusters modelled using an FA-MD model.

@ Clustering occurs at the latent variable level:

G
P(z;) =) mg MVND( 1, Aghg + W)
g=1

@ Means and loadings are cluster specific; for parsimony



Variable selection, Bayesian inference
and model selection.
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Variable selection

@ Highlight discriminating variables and ease computational
burden.

@ Compare within cluster variance to overall variance for
each variable.

G N = \2
VR, = Switin _ 29 2i- (Zj — Zg)
g2 - N —
Soverall >0 (Zj — Z)?

@ Small values of VA; indicate that variable j discriminates
between clusters.

@ If VR; > 7 then variable j is dropped from the model.
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Bayesian inference.

@ For each participant, employ latent indicator variable:

£; ~ Multinomial(1, )

@ Conjugate priors leads to Gibbs sampling.
@ Identifiability issues:

@ rotational invariance = Procrustean rotations employed.

@ label switching = minimise loss function.
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Bayesian inference.

@ Incorporating variable selection results in three stage fitting
procedure:

@ Burnin phase:
Gibbs sampling algorithm with all variables included.

@ Variable selection phase:
remove variables for which VR; > 7, burnin,
repeat until no variables removed at successive checks.

© Posterior sampling phase:
Gibbs sampling algorithm with only discriminating variables
included.
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Model selection

@ Both G and @ are unknown, but standard model selection
tools are infeasible.

@ Likelihood evaluation requires integration of the
multidimensional truncated Gaussian distribution,
where truncation limits differ and are dependent across the
dimensions.

@ Also, different models may have different variable sets.

@ Let y denote the A continuous, B nominal and C binary
d|scr|m|nat|ng variables.

@ And y the A continuous, B nominal and C binary removed
variables.
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Model selection

@ Approximate the observed likelihood:
£ = f(I)HY)

Byl
- {ZWQ{MVN (g, Aghy + V) H y,ieg)}]

g=1

B+C
MVN 4 (1, AAT + W) H P(¥j)




Model selection

@ Approximate the observed likelihood:

Li = f(y)(y,)
B+C
= {ZWQ{MVN (hg: Aghg + V) HPyjleg)H
g=1 J=1

B+C
MVN (1, AN+ W) TT PO | -
J=1

@ For categorical variables, empirical probabilities are
calculated from the observed data.




Model selection

@ Approximate the observed likelihood:
£ = f(I)HY)

B+C
= {ZWQ{MVN (hg: Aghg + V) HPyjleg)H

g=1 j=1

B+C
MVN (1, AN+ W) TT PO | -
j=1

@ For categorical variables, empirical probabilities are
calculated from the observed data.

@ Incorporate £ in BIC-MCMC (Frithwirth-Schnatter (2011)):
BIC-MCMC =2 x log £ — v x log(N)
e 4 4444



Application to the LIPGENE-SU.VI.MAX cohort.




The optimal model: G =2 and Q = 8.
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The optimal model: G =2 and Q = 8.
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@ Of the J = 738 original variables, 25 are retained:
12 phenotypic, 11 nominal SNPs and 2 binary SNPs.



Phenotypic cluster means
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Binary SNP cluster means
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SNP interpretations

Gene SNP Associated biological
pathway

ADD1 rs17777371 Blood pressure
regulation

APOB rs512535 Lipid metabolism

APOL1 rs136147 Lipid metabolism

CETP rs4784744  Lipid metabolism

GYS1 rs2270938  Glucose homeostasis

SLC6AT14 rs2071877  Amino acid

transporter
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Correspondence between sub-phenotypes
and 7-year follow-up diagnosis

Follow up data
Healthy MetS

Initial data Cluster 1 (‘Healthy’) 220 42
Cluster 2 (‘Atrisk’) 39 204

@ Rand index is 0.73 (adjusted Rand = 0.46).
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Better than just using the phenotypic abnormality

criterion?

Follow up data

Healthy MetS
Healthy 194 31
MetS 65 215

Initial data

@ Rand index: 0.69 (adjusted Rand: 0.38).

@ Highlights the importance of utilising both phenotypic and
genotypic factors.

@ Suggests potential utility of early screening.
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Quantifying sub-phenotype membership uncertainty

@ Synonymous with concepts of precision medicine &
nutrition.
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Assessing model fit

@ Use Bayesian residuals & Bayesian latent residuals.




Assessing model fit

@ Use Bayesian residuals & Bayesian latent residuals.

@ Eg. Density estimates of the Bayesian latent residuals for
the rs17777371 SNP for 50 randomly selected

participants.




Discussion and further work

@ MFA-MD provides a method to cluster high dimensional
data of mixed type in their innate form.

@ Proposed approach can incorporate variable and model
selection.

@ Proposed method has applicability in any similar setting.




Discussion and further work

@ MFA-MD provides a method to cluster high dimensional
data of mixed type in their innate form.

@ Proposed approach can incorporate variable and model
selection.

@ Proposed method has applicability in any similar setting.

@ Highlighted influence of phenotypic and genotypic factors
in the MetS.

@ Highlighted the importance of early screening.

@ Provides a tool to enable precision medicine.



Discussion and further work

@ Include other variable types e.g. count
@ More model flexibility eg Qg # Qg .

@ Adapt to model longitudinal data.

@ Variational approach to estimation should improve
efficiency.




Discussion and further work

Include other variable types e.g. count

More model flexibility eg Qy # Qg

Adapt to model longitudinal data.

Variational approach to estimation should improve
efficiency.

Incorporate covariates such as gender etc.

Improved approach to dealing with missing data in the
LIPGENE-SU.VI.MAX cohort.
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