
Fronts & Frontogenesis



Fronts & Frontogenesis
In a landmark paper, Sawyer (1956) stated that

“although the Norwegian system of frontal analysis has
been generally accepted by weather forecasters since the
1920’s, no satisfactory explanation has been given for the
up-gliding motion of the warm air to which is attributed
the characteristic frontal cloud and rain. Simple dynami-
cal theory shows that a sloping discontinuity between two
air masses with different densities and velocities can exist
without vertical movement of either air mass . . . ”.
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“although the Norwegian system of frontal analysis has
been generally accepted by weather forecasters since the
1920’s, no satisfactory explanation has been given for the
up-gliding motion of the warm air to which is attributed
the characteristic frontal cloud and rain. Simple dynami-
cal theory shows that a sloping discontinuity between two
air masses with different densities and velocities can exist
without vertical movement of either air mass . . . ”.

Sawyer goes on to suggest that

“. . . a front should be considered not so much as a sta-
ble area of strong temperature contrast between two air
masses, but as an area into which active confluence of air
currents of different temperature is taking place.”



Several processes including friction, turbulence and vertical
motion (ascent in warm air leads to cooling, subsidence in
cold air leads to warming) might be expected to destroy the
sharp temperature contrast of a front within a day or two
of formation.
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Several processes including friction, turbulence and vertical
motion (ascent in warm air leads to cooling, subsidence in
cold air leads to warming) might be expected to destroy the
sharp temperature contrast of a front within a day or two
of formation.

Therefore, clearly defined fronts are likely to be found only
where active frontogenesis is in progress; i.e., in an area
where the horizontal air movements are such as to intensify
the horizontal temperature gradients.

These ideas are supported by observations.
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Kinematics of Frontogenesis
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Kinematics of Frontogenesis
Examples of two basic horizontal flow configurations which
can lead to frontogenesis are shown below.

The intensification of horizontal temperature by horizontal
shear, and pure horizontal deformation.
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A parallel shear flow and a pure deformation field can in-
tensify temperature gradients provided the isotherms are
suitably oriented.
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A parallel shear flow and a pure deformation field can in-
tensify temperature gradients provided the isotherms are
suitably oriented.

To understand the way in which motion fields in general
lead to frontogenesis and, indeed, to quantify the rate of
frontogenesis, we need to study the relative motion near a
point P in a fluid, as indicated in the following figure.
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Let P be at (x, y) and Q at (x + δx, y + δy). Let the velocity
at P be (u0, v0) and that at Q be (u0 + δu, v0 + δv).

5



Let P be at (x, y) and Q at (x + δx, y + δy). Let the velocity
at P be (u0, v0) and that at Q be (u0 + δu, v0 + δv).

The relative motion between the flow at P and at the neigh-
bouring point Q is

δu = u− u0 ≈
∂u

∂x
δx +

∂u

∂y
δy δv = v − v0 ≈

∂v

∂x
δx +

∂v

∂y
δy

5



Let P be at (x, y) and Q at (x + δx, y + δy). Let the velocity
at P be (u0, v0) and that at Q be (u0 + δu, v0 + δv).

The relative motion between the flow at P and at the neigh-
bouring point Q is

δu = u− u0 ≈
∂u

∂x
δx +

∂u

∂y
δy δv = v − v0 ≈

∂v

∂x
δx +

∂v

∂y
δy

In matrix form, this is(
δu
δv

)
=

[
∂u
∂x

∂u
∂y

∂v
∂x

∂v
∂y

] (
δx
δy

)
=

[
ux uy

vx vy

](
δx
δy

)
= M

(
δx
δy

)

5



Let P be at (x, y) and Q at (x + δx, y + δy). Let the velocity
at P be (u0, v0) and that at Q be (u0 + δu, v0 + δv).

The relative motion between the flow at P and at the neigh-
bouring point Q is

δu = u− u0 ≈
∂u

∂x
δx +

∂u

∂y
δy δv = v − v0 ≈

∂v

∂x
δx +

∂v

∂y
δy

In matrix form, this is(
δu
δv

)
=

[
∂u
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∂u
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∂v
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)
=

[
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](
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)
= M

(
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)
Any matrix can be written as a sum of a symmetric matrix
and an antisymmetric matrix:

M = 1
2(M + MT) + 1

2(M − MT)
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We introduce a pair of matrices, S:

S = 1
2(M + MT) =

[ 1
2 (ux + ux) 1

2

(
uy + vx

)
1
2

(
vx + uy

) 1
2

(
vy + vy

) ]
and A:

A = 1
2(M − MT) =

[ 1
2 (ux − ux) 1

2

(
uy − vx

)
1
2

(
vx − uy

) 1
2

(
vy − vy

) ]
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(
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It follows that

M = S + A =

[
ux uy

vx vy
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and therefore(

δu
δv

)
= M

(
δx
δy

)
= S

(
δx
δy

)
+ A

(
δx
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)
Such a decomposition is standard in developing the equa-
tions for viscous fluid motion (see e.g. Batchelor, 1970, 2.3).
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It can be shown that S and A are second order tensors. S is
symmetric (Sji = Sij) and A antisymmetric (Aji = −Aij).
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We now locate the origin of coordinates at the point P, so
that (δx, δy) become simply (x, y).
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It can be shown that S and A are second order tensors. S is
symmetric (Sji = Sij) and A antisymmetric (Aji = −Aij).

Note that A has only one independent non-zero component,
equal to half the vertical component of vorticity, 1

2ζ.

We can write

δu = (S11δx + S12δy) + (A11δx + A12δy)

δv = (S21δx + S22δy) + (A21δx + A22δy)

Using the fact that A11 and A22 are zero, we have

δu = S11δx + (S12 + A12)δy

δv = (S21 + A21)δx + S22δy

We now locate the origin of coordinates at the point P, so
that (δx, δy) become simply (x, y).

Also, A21 = 1
2(vx − uy) = 1

2ζ and A12 = −A21 = −1
2ζ.
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Now, in preference to the four derivatives ux, uy, vx, vy, we
define the equivalent four combinations of these derivatives:

D = ux + vy, the divergence (formerly δ)

E = ux − vy, the stretching deformation

F = vx + uy, the shearing deformation

ζ = vx − uy, the vorticity
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E = ux − vy, the stretching deformation

F = vx + uy, the shearing deformation

ζ = vx − uy, the vorticity

Obviously, we can solve for ux, uy, vx and vy as functions of
D, E, F and ζ:

ux = 1
2(D+E) , uy = 1

2(F −ζ) , vx = 1
2(F +ζ) , vy = 1

2(D−E) .

Note that E is like D, but with a minus sign; F is like ζ, but
with a plus sign.

E is called the stretching deformation because the velocity
components are differentiated in the direction of the com-
ponent. In F , the shearing deformation, each velocity com-
ponent is differentiated at right angles to its direction.
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We can write the relative velocity as(
δu
δv

)
=

[
ux

1
2(vx + uy) − 1

2ζ
1
2(vx + uy) + 1

2ζ vy

](
x
y

)
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= 1

2
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D 0
0 D

)
+

(
E 0
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+

(
0 F
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(
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In component form, this is

u = u0 + 1
2(Dx + Ex + Fy − ζy)

v = v0 + 1
2(Dy − Ey + Fx + ζx)

where δu = u − u0, δv = v − v0, and (u0, v0) is the translation
velocity at the point P.
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+

(
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+

(
0 F
F 0

)
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(
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In component form, this is

u = u0 + 1
2(Dx + Ex + Fy − ζy)

v = v0 + 1
2(Dy − Ey + Fx + ζx)

where δu = u − u0, δv = v − v0, and (u0, v0) is the translation
velocity at the point P.

Henceforth, we choose our frame of reference so that
u0 = v0 = 0. That is, the frame moves with the point P.

9



Schematic diagram of the components of flow in the neighbourhood of

a point: (a) pure divergence/convergence; (b) pure rotation; (c) pure

stretching deformation; and (d) pure shearing deformation.
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Decomposition of Relative Motion
Clearly, the relative motion near the point P can be decom-
posed into four basic components, as follows.
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(I) Pure divergence (only D nonzero). Then u = 1
2Dx, v =

1
2Dy or, in vector notation, u = 1

2D(r cos θ, r sin θ) = Dr, r be-
ing the position vector from P. Thus the motion is purely
radial and is to or from the point P according to the sign
of D.
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(I) Pure divergence (only D nonzero). Then u = 1
2Dx, v =

1
2Dy or, in vector notation, u = 1

2D(r cos θ, r sin θ) = Dr, r be-
ing the position vector from P. Thus the motion is purely
radial and is to or from the point P according to the sign
of D.

(II) Pure rotation (only ζ nonzero). Then u = −1
2ζy, v = 1

2ζx,

whereupon u = 1
2(−r sin θ, r cos θ) = 1

2ζrθ̂, where θ̂ is the unit
normal vector to r. Clearly such motion corresponds with
solid body rotation with angular velocity 1

2ζ.
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Schematic diagram of the components of flow in the neighbourhood of

a point: (a) pure divergence/convergence; (b) pure rotation; (c) pure

stretching deformation; and (d) pure shearing deformation.
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(III) Pure stretching deformation (only E nonzero). The ve-
locity components are given by

u = 1
2E x , v = −1

2E y

On a streamline, dy/dx = v/u = −y/x, or x dy+y dx = d(xy) =
0. Hence the streamlines are rectangular hyperbolae xy =
constant. In the figure, the indicated flow directions are
for E > 0. For E < 0, the directions are reversed.
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locity components are given by

u = 1
2E x , v = −1

2E y

On a streamline, dy/dx = v/u = −y/x, or x dy+y dx = d(xy) =
0. Hence the streamlines are rectangular hyperbolae xy =
constant. In the figure, the indicated flow directions are
for E > 0. For E < 0, the directions are reversed.

(IV) Pure shearing deformation (only F nonzero). The veloc-
ity components are given by

u = 1
2F y , v = 1

2F x

The streamlines are given now by dy/dx = x/y, or d(y2 −
x2) = 0, so that y2 − x2 = constant. Thus the streamlines
are again rectangular hyperbolae, but with their axes of
dilatation and contraction at 45◦ to the coordinate axes.
The flow directions indicated are for F > 0.
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Schematic diagram of the components of flow in the neighbourhood of

a point: (a) pure divergence/convergence; (b) pure rotation; (c) pure

stretching deformation; and (d) pure shearing deformation.
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Total deformation. We assume that ζ = D = 0 and that
E and F are nonzero). Then

δu = 1
2(+Ex + Fy)

δv = 1
2(−Ey + Fx)
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We can show, by rotating the axes (x, y) to (x′, y′), that we
can choose the rotation angle φ so that the two deformation
fields together reduce to a single field with the axis of di-
latation at angle φ to the x-axis.
[For details, see Roger Smith’s notes, pp. 176–177].
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Total deformation. We assume that ζ = D = 0 and that
E and F are nonzero). Then

δu = 1
2(+Ex + Fy)

δv = 1
2(−Ey + Fx)

We can show, by rotating the axes (x, y) to (x′, y′), that we
can choose the rotation angle φ so that the two deformation
fields together reduce to a single field with the axis of di-
latation at angle φ to the x-axis.
[For details, see Roger Smith’s notes, pp. 176–177].

In other words, the stretching and shearing deformation
fields may be combined to give a single total deformation
field. The strength of this field is given by

E′ = (E2 + F 2)1/2

and the axis of dilatation is inclined at an angle φ to the
x-axis given by

tan 2φ = F/E

The total deformation field is illustrated below.
15
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The Frontogenesis Function
The frontogenetic or frontolytic tendency in a flow can be
measured by the quantity d|∇hθ|/dt, which is called the fron-
togenesis function.
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=

θ

cp
Q̇ ≡ q̇

where q̇ represents diabatic heat sources and sinks.
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The frontogenetic or frontolytic tendency in a flow can be
measured by the quantity d|∇hθ|/dt, which is called the fron-
togenesis function.

This is the rate of change of horizontal potential-temperature
gradient |∇h| following a fluid parcel.

An expression for the frontogenesis function is obtained by
differentiation of the thermodynamic equation

dθ

dt
=

θ

cp
Q̇ ≡ q̇

where q̇ represents diabatic heat sources and sinks.

Differentiating with respect to x and y in turn gives

d

dt

(
∂θ

∂x

)
+

∂u

∂x

∂θ

∂x
+

∂v

∂x

∂θ

∂y
+

∂w

∂x

∂θ

∂z
=

∂q̇

∂x
d

dt

(
∂θ

∂y

)
+

∂u

∂y

∂θ

∂x
+

∂v

∂y

∂θ

∂y
+

∂w

∂y

∂θ

∂z
=

∂q̇

∂y
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But we have

d

dt
|∇θ|2 = 2∇θ· d

dt
∇θ = 2

(
∂θ

∂x
,
∂θ

∂y

)
·
[

d

dt

(
∂θ

∂x

)
,
d

dt

(
∂θ

∂y

)]
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But we have

d

dt
|∇θ|2 = 2∇θ· d

dt
∇θ = 2

(
∂θ

∂x
,
∂θ

∂y

)
·
[

d

dt

(
∂θ

∂x

)
,
d

dt

(
∂θ

∂y

)]
Substituting from above we get

d

dt
|∇θ|2 = 2

[
(θxq̇x+θyq̇y)−(θxwx+θywy)θz−(uxθ

2
x+vyθ

2
y)−(vx+uy)θxθy

]
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We now recall the formulae:

ux = 1
2(D+E) , uy = 1

2(F −ζ) , vx = 1
2(F +ζ) , vy = 1

2(D−E) .
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We now recall the formulae:

ux = 1
2(D+E) , uy = 1

2(F −ζ) , vx = 1
2(F +ζ) , vy = 1

2(D−E) .

Substituting from these, we obtain

d

dt
|∇θ|2 = 2(θxq̇x + θyq̇y) − 2(θxwx + θywy)θz

−D|∇θ|2 − [Eθ2
x + 2Fθxθy − Eθ2
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(
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x+vyθ

2
y)−(vx+uy)θxθy

]
We now recall the formulae:

ux = 1
2(D+E) , uy = 1

2(F −ζ) , vx = 1
2(F +ζ) , vy = 1

2(D−E) .

Substituting from these, we obtain

d

dt
|∇θ|2 = 2(θxq̇x + θyq̇y) − 2(θxwx + θywy)θz

−D|∇θ|2 − [Eθ2
x + 2Fθxθy − Eθ2

y]

Note that the vorticity ζ does not appear in this equation.
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There are four separate effects contributing to frontogenesis.
Let us write

d

dt
|∇θ| = T1 + T2 + T3 + T4

where

T1 = (θxq̇x + θyq̇y)/|∇θ|
T2 = −(θxwx + θywy)θz/|∇θ|
T3 = −1

2D|∇θ|2/|∇θ|
T4 = −1

2[Eθ2
x + 2Fθxθy − Eθ2

y]/|∇θ|
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T3 = −1

2D|∇θ|2/|∇θ|
T4 = −1

2[Eθ2
x + 2Fθxθy − Eθ2

y]/|∇θ|

Defining n̂ to be the unit vector in the direction of |∇θ|, we
can write

T1 = n̂ · ∇q̇

T2 = −θzn̂ · ∇w

T3 = −1
2D|∇θ|

T4 = −1
2[Eθ2

x + 2Fθxθy − Eθ2
y]/|∇θ|
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ent to horizontal gradient by a component of differential
vertical motion (vertical shear) in the direction of the
existing temperature gradient.

T3: represents the rate of increase of horizontal temperature
gradient due to horizontal convergence (i.e., negative di-
vergence) in the presence of an existing gradient.

T4: represents the frontogenetic effect of a (total) horizontal
deformation field.
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T1: T1 = n̂ · ∇q̇

The rate of frontogenesis due to a gradient of diabatic heat-
ing in the direction of the existing temperature gradient.
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T2: T2 = −θzn̂ · ∇w

The conversion of vertical temperature gradient to horizon-
tal gradient by a component of differential vertical motion
(vertical shear) in the direction of the existing temperature
gradient.
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T3: T3 = −1
2D|∇θ|

The rate of increase of horizontal temperature gradient due
to horizontal convergence (i.e., negative divergence) in the
presence of an existing gradient.
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T4: T4 = −1
2[Eθ2

x + 2Fθxθy − Eθ2
y]/|∇θ|

The frontogenetic effect of a (total) horizontal deformation
field.
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Further insight into the term T4 may be obtained by a rota-
tion of axes to those of the deformation field. We can show
that

T4 = 1
2E

′|∇θ| cos 2β

(see figure above, and Roger Smith’s notes for proof).
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Further insight into the term T4 may be obtained by a rota-
tion of axes to those of the deformation field. We can show
that

T4 = 1
2E

′|∇θ| cos 2β

(see figure above, and Roger Smith’s notes for proof).

This shows that the frontogenetic effect of deformation is a
maximum when the isentropes are parallel with the dilata-
tion axis (β = 0).

It reduces to zero as the angle between the isentropes and
the dilatation axis increases to 45◦.

When the angle β is between 45◦ and 90◦, deformation has
a frontolytic effect, i.e., T4 is negative.
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A number of observational studies have sought to deter-
mine the relative importance of the contributions Tn to the
frontogenesis function.
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A number of observational studies have sought to deter-
mine the relative importance of the contributions Tn to the
frontogenesis function.

Unfortunately, observational estimates of T2 are “noisy”,
since estimates for w tend to be noisy, let alone the gradient
of w. Moreover, T4 is extremely difficult to estimate from
observational data currently available.

A case study by Ogura and Portis (1982) shows that T2, T3
and T4 are all important in the immediate vicinity of the
front, whereas this and other investigations suggest that
horizontal deformation (including horizontal shear) plays a
primary role on the synoptic scale.

Clearly, on a large scale, term T1 must be dominant. Why?
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This Figure shows a mean-sea-level isobaric analysis for the
Australian region with a cold front over south-eastern Aus-
tralia sandwiched between two anticyclones.
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This situation is frontogenetic with warm air advection in
the hot northerlies ahead of the front and strong cold air
advection in the maritime southwesterlies behind it.
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In an early study of many fronts over the British Isles,
Sawyer (1956) found that active fronts are associated with
a deformation field which leads to an intensification of the
horizontal temperature gradient.
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In an early study of many fronts over the British Isles,
Sawyer (1956) found that active fronts are associated with
a deformation field which leads to an intensification of the
horizontal temperature gradient.

He found also that the effect is most clearly defined at the
700 mb level, at which the rate of contraction of fluid ele-
ments in the direction of the temperature gradient usually
has a well-defined maximum near the front.
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A graphic illustration
of the way in which
flow deformation act-
ing on an advected pas-
sive scalar quantity pro-
duces locally large gra-
dients of the scalar
was given by Welander
(1955).
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