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also occur also in the ocean, but we will not discuss them.]

The primary example is the polar front, a zone of relatively
large horizontal temperature gradient in the mid-latitudes
that separates air masses of more uniform temperatures
that lie polewards and equatorwards of the zone.

This is associated with the midlatitude westerlies, having
their maximum at the jetstream in the upper troposphere.
This is the Polar Front Jet.

Regionally, where the polar front is particularly pronounced,
we have cold and warm fronts associated with extra-tropical
cyclones.

Sharp temperature differences can occur across a frontal
surface: several degrees over a few kilometres.
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The following Figure shows the passage of a cold front.
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Composite meridional cross-section at 80◦W of mean temperature and

the zonal component of geostrophic wind computed from 12 individual

cross-sections. The means were computed with respect to the position

of the polar front in individual cases (from Palmén and Newton, 1948).

4



Analysed surface pressure, storm in October, 2000.
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Margules’ Model
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Margules’ Model

Max Margules (1856–1920)

The simplest model repre-
senting a frontal discontinu-
ity is Margules’ model.

In this model, the front is ide-
alized as a sharp, plane, tem-
perature discontinuity sepa-
rating two inviscid, homoge-
neous, geostrophic flows.
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Configuration of Margules’ frontal model.
Subscripts 1 and 2 refer to the warm and cold air masses.
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We take the x-direction to be normal to the surface front
and the y-direction parallel to it.
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and the y-direction parallel to it.

Further, we assume:

1. The Boussinesq approximation: neglect variations in den-
sity except where they are coupled with gravity.

2. The flow is everywhere parallel to the front and there are
no along-front variations in it; i.e., ∂v/∂y = 0.

3. Diffusion effects are absent so that the frontal disconti-
nuity remains sharp.

We assume that the temperature difference between the air
masses is small in the sense that (T1 − T2)/T̄ � 1, where
T̄ = (T1+T2)/2 is the mean temperature of the two air masses,
T1 the temperature of the warm air and T2 the temperature
of the cold air.
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We assume the temperature and density are such that

T = T̄ + T ′

ρ = ρ̄ + ρ′
where

T ′ � T̄

ρ′ � ρ̄
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1

ρ̄
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The continuity equation:

∂u

∂x
+
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∂z
= 0
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In general, the temperature decreases with height in the
atmosphere.
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In general, the temperature decreases with height in the
atmosphere.

In Margules’ model the vertical temperature gradient in
each air mass is assumed to be zero.

In fact, the temperature in each airmass is constant, varying
neither in the horizontal nor in the vertical direction.

We consider this to be the limiting case of the situation
in which the temperature gradients are very small except
across the frontal zone, where they are very large.
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Vertical cross-section through a (smeared-out) front.
The coloured lines indicate isotherms.

In the frontal zone T = T (x, z). Otherwise, T is constant.
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On any isotherm the temperature is constant, so that

δT = 0 =
∂T

∂x
δx +

∂T

∂z
δz
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This is simply the thermal wind equation relating the ver-
tical shear across the front to the horizontal temperature
contrast across it.
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Solving for the slope, we get

tan ε =
fT̄ ∂v/∂z
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Integrating across the frontal zone, we get

tan ε =
fT̄

g

δv

δT
where δv and δT are the changes in along-front wind and
temperature across the front.

This is Margules’ formula and relates the slope of the frontal
surface to the change in geostrophic wind speed across it and
to the temperature difference across it.
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Note that, with 0 < ε < π/2, as drawn in the figures:

1. δT = T1 − T2 > 0, otherwise the flow is gravitationally
unstable
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Note that, with 0 < ε < π/2, as drawn in the figures:

1. δT = T1 − T2 > 0, otherwise the flow is gravitationally
unstable

2. δv > 0 if f > 0 i.e., there is always a cyclonic change in v
across the frontal surface.

Note, however, that it is not necessary that v1 > 0 and v2 < 0
separately; only the change in v is important.

There are three possible configurations as illustrated below.
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Surface isobars in Margules’ stationary front model hemisphere
showing the three possible cases with the cold air to the left:

(left) v1 > 0, v2 < 0; (centre) 0 < v2 < v1; (right) v2 < v1 < 0;

The surface pressure variation along the line AB is also shown.
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Margules’ solution is an exact solution of the Euler equa-
tions of motion in a rotating frame, as the nonlinear and
time dependent terms vanish identically.
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Margules’ formula is a diagnostic one for a stationary, or
quasi-stationary front; it tells us nothing about the forma-
tion (frontogenesis) or decay (frontolysis) of fronts.

It is of little practical use in forecasting, since active fronts,
which are responsible for a good deal of the ‘significant
weather’ in middle latitudes, are much more dynamic.

Real fronts are always associated with rising vertical mo-
tion and are normally accompanied by precipitation.

Moreover, real cold and warm fronts are generally not sta-
tionary, but may have speeds comparable to the horizontal
wind itself. We illustrate fronts in motion in the following
figure.
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Schematic representation of (left) a translating cold front and (right) a

translating warm front as they might be drawn on a mean sea level

synoptic chart for the northern hemisphere. Note the sharp cyclonic

change in wind direction and the discontinuous slope of the isobars.
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The above figure shows the typical pressure pattern associ-
ated with midlatitude cold and warm fronts. It is essentially
Margules’ model with a superimposed westerly flow.
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The above figure shows the typical pressure pattern associ-
ated with midlatitude cold and warm fronts. It is essentially
Margules’ model with a superimposed westerly flow.

However, there are technical difficulties in constructing a
dynamical extension of Margules’ model to fronts that trans-
late with a uniform eostrophic flow.

Nevertheless, fronts analyzed on weather charts are drawn
on the assumption that this is possible, and Margules’ model
is found to provide a valuable if highly simplified conceptual
framework.

It is interesting that Margules developed his model of an at-
mospheric discontinuity some fifteen years before the emer-
gence of the frontal models of the Norwegian School. There
were other precursors of frontal theory in Germany and in
Britain.
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Exercise: Check the dimensional consistency of Margules’
Formula.

Calculate the frontal slope using Margules’ Formula, assum-
ing that the mean temperature is T̄ = 280K, the Coriolis
parameter f = 10−4 s−1, g = 10ms−2, the difference in wind-
speed across the front is δv = 12ms−1 and the difference in
temperature is δt = 4K.
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Exercise: Check the dimensional consistency of Margules’
Formula.

Calculate the frontal slope using Margules’ Formula, assum-
ing that the mean temperature is T̄ = 280K, the Coriolis
parameter f = 10−4 s−1, g = 10ms−2, the difference in wind-
speed across the front is δv = 12ms−1 and the difference in
temperature is δt = 4K.

Solution: . . .
Answer: ε ≈ 1/120.
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