The QG Vorticity Equation

The QG Vorticity Equation

The quasi-geostrophic vorticity is

$$
\zeta_{g}=\mathbf{k} \cdot \nabla \times \mathbf{V}_{g}=\frac{1}{f_{0}} \nabla^{2} \Phi
$$

This enables ζ_{g} to be computed immediately once the geopotential is known.

The QG Vorticity Equation

The quasi-geostrophic vorticity is

$$
\zeta_{g}=\mathbf{k} \cdot \nabla \times \mathbf{V}_{g}=\frac{1}{f_{0}} \nabla^{2} \Phi
$$

This enables ζ_{g} to be computed immediately once the geopotential is known.

It also means that the geopotential can be deduced from the vorticity by inverting the Laplacian operator.

The QG Vorticity Equation

The quasi-geostrophic vorticity is

$$
\zeta_{g}=\mathbf{k} \cdot \nabla \times \mathbf{V}_{g}=\frac{1}{f_{0}} \nabla^{2} \Phi
$$

This enables ζ_{g} to be computed immediately once the geopotential is known.

It also means that the geopotential can be deduced from the vorticity by inverting the Laplacian operator.
This invertibility principle holds in a much more general context and is a central tenet of the theory of balanced flows.

The QG Vorticity Equation

The quasi-geostrophic vorticity is

$$
\zeta_{g}=\mathbf{k} \cdot \nabla \times \mathbf{V}_{g}=\frac{1}{f_{0}} \nabla^{2} \Phi
$$

This enables ζ_{g} to be computed immediately once the geopotential is known.

It also means that the geopotential can be deduced from the vorticity by inverting the Laplacian operator.

This invertibility principle holds in a much more general context and is a central tenet of the theory of balanced flows. Since the Laplacian of a function tends to have a minimum where the function has a maximum, and vice-versa,

Positive Vorticity is associated with Low Pressure that is, low values of the geopotential, and

Negative Vorticity is associated with High Pressure

We write the quasi-geostrophic momentum equation in component form

$$
\begin{aligned}
& \frac{d_{g} u_{g}}{d t}-f_{0} v_{a}-\beta y v_{g}=0 \\
& \frac{d_{g} v_{g}}{d t}+f_{0} u_{a}+\beta y u_{g}=0
\end{aligned}
$$

We write the quasi-geostrophic momentum equation in component form

$$
\begin{aligned}
& \frac{d_{g} u_{g}}{d t}-f_{0} v_{a}-\beta y v_{g}=0 \\
& \frac{d_{g} v_{g}}{d t}+f_{0} u_{a}+\beta y u_{g}=0
\end{aligned}
$$

Subtracting the y-derivative of the first equation from the x-derivative of the first, we get the vorticity equation

$$
\frac{d_{g} \zeta_{g}}{d t}=-f_{0} \nabla \cdot \mathbf{V}_{\mathbf{a}}-\beta v_{g}
$$

We write the quasi-geostrophic momentum equation in component form

$$
\begin{aligned}
& \frac{d_{g} u_{g}}{d t}-f_{0} v_{a}-\beta y v_{g}=0 \\
& \frac{d_{g} v_{g}}{d t}+f_{0} u_{a}+\beta y u_{g}=0
\end{aligned}
$$

Subtracting the y-derivative of the first equation from the x-derivative of the first, we get the vorticity equation

$$
\frac{d_{g} \zeta_{g}}{d t}=-f_{0} \nabla \cdot \mathbf{V}_{\mathbf{a}}-\beta v_{g}
$$

Note that a term $\delta_{g} \zeta_{g}$ arising from the total time derivative vanishes.

We write the quasi-geostrophic momentum equation in component form

$$
\begin{aligned}
& \frac{d_{g} u_{g}}{d t}-f_{0} v_{a}-\beta y v_{g}=0 \\
& \frac{d_{g} v_{g}}{d t}+f_{0} u_{a}+\beta y u_{g}=0
\end{aligned}
$$

Subtracting the y-derivative of the first equation from the x-derivative of the first, we get the vorticity equation

$$
\frac{d_{g} \zeta_{g}}{d t}=-f_{0} \nabla \cdot \mathbf{V}_{\mathbf{a}}-\beta v_{g}
$$

Note that a term $\delta_{g} \zeta_{g}$ arising from the total time derivative vanishes.

Exercise: Verify the derivation of the vorticity equation. Expand $d / d t$ and proceed as indicated above.

The β-term may be written

$$
-\beta v_{g}=-\mathbf{V}_{\mathbf{g}} \cdot \nabla f
$$

The β-term may be written

$$
-\beta v_{g}=-\mathbf{V}_{\mathbf{g}} \cdot \nabla f
$$

The divergence of the ageostrophic wind may be replaced by the vertical gradient of vertical velocity using the continuity equation.

The β-term may be written

$$
-\beta v_{g}=-\mathbf{V}_{\mathbf{g}} \cdot \nabla f
$$

The divergence of the ageostrophic wind may be replaced by the vertical gradient of vertical velocity using the continuity equation.

Then

$$
\frac{\partial \zeta_{g}}{\partial t}=-\mathbf{V}_{\mathbf{g}} \cdot \nabla\left(\zeta_{g}+f\right)+f_{0} \frac{\partial \omega}{\partial p}
$$

The β-term may be written

$$
-\beta v_{g}=-\mathbf{V}_{\mathbf{g}} \cdot \nabla f
$$

The divergence of the ageostrophic wind may be replaced by the vertical gradient of vertical velocity using the continuity equation.

Then

$$
\frac{\partial \zeta_{g}}{\partial t}=-\mathbf{V}_{\mathbf{g}} \cdot \nabla\left(\zeta_{g}+f\right)+f_{0} \frac{\partial \omega}{\partial p}
$$

This equation means that the local rate of change of geostrophic vorticity is determined by the sum of two terms:

The β-term may be written

$$
-\beta v_{g}=-\mathbf{V}_{\mathbf{g}} \cdot \nabla f
$$

The divergence of the ageostrophic wind may be replaced by the vertical gradient of vertical velocity using the continuity equation.

Then

$$
\frac{\partial \zeta_{g}}{\partial t}=-\mathbf{V}_{\mathbf{g}} \cdot \nabla\left(\zeta_{g}+f\right)+f_{0} \frac{\partial \omega}{\partial p}
$$

This equation means that the local rate of change of geostrophic vorticity is determined by the sum of two terms:

- The advection of the absolute vorticity by the geostrophic wind

The β-term may be written

$$
-\beta v_{g}=-\mathbf{V}_{\mathbf{g}} \cdot \nabla f
$$

The divergence of the ageostrophic wind may be replaced by the vertical gradient of vertical velocity using the continuity equation.

Then

$$
\frac{\partial \zeta_{g}}{\partial t}=-\mathbf{V}_{\mathbf{g}} \cdot \nabla\left(\zeta_{g}+f\right)+f_{0} \frac{\partial \omega}{\partial p}
$$

This equation means that the local rate of change of geostrophic vorticity is determined by the sum of two terms:

- The advection of the absolute vorticity by the geostrophic wind
- The stretching or shrinking of fluid columns (divergence effect).

The advection itself is the sum of two terms

$$
-\mathbf{V}_{\mathbf{g}} \cdot \nabla\left(\zeta_{g}+f\right)=-\mathbf{V}_{\mathbf{g}} \cdot \nabla \zeta_{g}-\beta v_{g}
$$

the advection of relative vorticity and the advection of planetary vorticity respectively.

The advection itself is the sum of two terms

$$
-\mathbf{V}_{\mathbf{g}} \cdot \nabla\left(\zeta_{g}+f\right)=-\mathbf{V}_{\mathbf{g}} \cdot \nabla \zeta_{g}-\beta v_{g}
$$

the advection of relative vorticity and the advection of planetary vorticity respectively.

For wave-like disturbances in the mid-latitude westerlies, these two terms tend to be of opposite sign so that they counteract each other.

The advection itself is the sum of two terms

$$
-\mathbf{V}_{\mathbf{g}} \cdot \nabla\left(\zeta_{g}+f\right)=-\mathbf{V}_{\mathbf{g}} \cdot \nabla \zeta_{g}-\beta v_{g}
$$

the advection of relative vorticity and the advection of planetary vorticity respectively.

For wave-like disturbances in the mid-latitude westerlies, these two terms tend to be of opposite sign so that they counteract each other.

We can estimate their relative sizes:

$$
\left|\frac{\mathbf{V g}_{\mathbf{g}} \cdot \nabla \zeta_{g}}{\beta v_{g}}\right| \sim \frac{V a}{L^{2} f}=\frac{\mathbf{R o}}{L / a} \sim 1
$$

so the two terms are of comparable size.

Let us consider a wave-like disturbance, as shown above.

Let us consider a wave-like disturbance, as shown above.
In Region I - upstream of the 500 hPa trough - the geostrophic wind is flowing from the relative vorticity minimum (at the ridge) towards the relative vorticity maximum (at the trough) so that $-V_{g} \cdot \nabla \zeta_{g}<0$.

Let us consider a wave-like disturbance, as shown above. In Region I - upstream of the 500 hPa trough - the geostrophic wind is flowing from the relative vorticity minimum (at the ridge) towards the relative vorticity maximum (at the trough) so that $-\mathbf{V}_{\mathbf{g}} \cdot \nabla \zeta_{g}<0$.
However, since $v_{g}<0$ the flow is from higher planetary vorticity values to lower values, so $-\beta v_{g}>0$.

Let us consider a wave-like disturbance, as shown above. In Region I - upstream of the 500 hPa trough - the geostrophic wind is flowing from the relative vorticity minimum (at the ridge) towards the relative vorticity maximum (at the trough) so that $-\mathbf{V}_{\mathbf{g}} \cdot \nabla \zeta_{g}<0$.
However, since $v_{g}<0$ the flow is from higher planetary vorticity values to lower values, so $-\beta v_{g}>0$.
Hence, in Region 1

Let us consider a wave-like disturbance, as shown above. In Region I - upstream of the 500 hPa trough - the geostrophic wind is flowing from the relative vorticity minimum (at the ridge) towards the relative vorticity maximum (at the trough) so that $-\mathbf{V}_{\mathbf{g}} \cdot \nabla \zeta_{g}<0$.
However, since $v_{g}<0$ the flow is from higher planetary vorticity values to lower values, so $-\beta v_{g}>0$.
Hence, in Region 1

- The advection of relative vorticity decreases ζ_{g}

Let us consider a wave-like disturbance, as shown above. In Region I - upstream of the 500 hPa trough - the geostrophic wind is flowing from the relative vorticity minimum (at the ridge) towards the relative vorticity maximum (at the trough) so that $-\mathbf{V}_{\mathbf{g}} \cdot \nabla \zeta_{g}<0$.
However, since $v_{g}<0$ the flow is from higher planetary vorticity values to lower values, so $-\beta v_{g}>0$.
Hence, in Region 1

- The advection of relative vorticity decreases ζ_{g}
- The advection of planetary vorticity increases ζ_{g}

Similar arguments, with signs reversed, apply in Region II.

Similar arguments, with signs reversed, apply in Region II. Therefore, the relative vorticity advection tends to move the vorticity pattern, and hence the troughs and ridges, downstream or eastward.

Similar arguments, with signs reversed, apply in Region II. Therefore, the relative vorticity advection tends to move the vorticity pattern, and hence the troughs and ridges, downstream or eastward.

On the other hand, the planetary vorticity advection tends to move the vorticity pattern upstream or westward, causing the wave to regress.

Similar arguments, with signs reversed, apply in Region II. Therefore, the relative vorticity advection tends to move the vorticity pattern, and hence the troughs and ridges, downstream or eastward.

On the other hand, the planetary vorticity advection tends to move the vorticity pattern upstream or westward, causing the wave to regress.

Since the two terms are of comparable magnitude, either may dominate, depending on the particular case.

Let us consider an idealized streamfunction on a midlatitude β-plane comprising a zonally averaged part and a wave disturbance

$$
\Phi=\Phi_{0}-f_{0} \bar{u} y+f_{0} A \sin k x \cos \ell y
$$

Let us consider an idealized streamfunction on a midlatitude β-plane comprising a zonally averaged part and a wave disturbance

$$
\Phi=\Phi_{0}-f_{0} \bar{u} y+f_{0} A \sin k x \cos \ell y
$$

The parameters Φ_{0}, \bar{u} and A depend only on pressure and the wavenumbers are $k=2 \pi / L_{x}$ and $\ell=2 \pi / L_{y}$.

Let us consider an idealized streamfunction on a midlatitude β-plane comprising a zonally averaged part and a wave disturbance

$$
\Phi=\Phi_{0}-f_{0} \bar{u} y+f_{0} A \sin k x \cos \ell y
$$

The parameters Φ_{0}, \bar{u} and A depend only on pressure and the wavenumbers are $k=2 \pi / L_{x}$ and $\ell=2 \pi / L_{y}$.
The geostrophic winds are

$$
\begin{aligned}
& u_{g}=-\frac{1}{f_{0}} \frac{\partial \Phi}{\partial y}=\bar{u}+u_{g}^{\prime}=\bar{u}+\ell A \sin k x \sin \ell y \\
& v_{g}=+\frac{1}{f_{0}} \frac{\partial \Phi}{\partial x}=+v_{g}^{\prime}=+k A \cos k x \cos \ell y
\end{aligned}
$$

Let us consider an idealized streamfunction on a midlatitude β-plane comprising a zonally averaged part and a wave disturbance

$$
\Phi=\Phi_{0}-f_{0} \bar{u} y+f_{0} A \sin k x \cos \ell y
$$

The parameters Φ_{0}, \bar{u} and A depend only on pressure and the wavenumbers are $k=2 \pi / L_{x}$ and $\ell=2 \pi / L_{y}$.
The geostrophic winds are

$$
\begin{aligned}
& u_{g}=-\frac{1}{f_{0}} \frac{\partial \Phi}{\partial y}=\bar{u}+u_{g}^{\prime}=\bar{u}+\ell A \sin k x \sin \ell y \\
& v_{g}=+\frac{1}{f_{0}} \frac{\partial \Phi}{\partial x}=+v_{g}^{\prime}=+k A \cos k x \cos \ell y
\end{aligned}
$$

The geostrophic vorticity is

$$
\zeta_{g}=\frac{1}{f_{0}} \nabla^{2} \Phi=-\left(k^{2}+\ell^{2}\right) A \sin k x \cos \ell y
$$

It is easily shown that the advection of relative vorticity by the wave component vanishes,

$$
u_{g}^{\prime} \frac{\partial \zeta_{g}}{\partial x}+v_{g}^{\prime} \frac{\partial \zeta_{g}}{\partial y}=0
$$

It is easily shown that the advection of relative vorticity by the wave component vanishes,

$$
u_{g}^{\prime} \frac{\partial \zeta_{g}}{\partial x}+v_{g}^{\prime} \frac{\partial \zeta_{g}}{\partial y}=0
$$

Thus, the advection of relative vorticity reduces to

$$
-\mathbf{V}_{\mathbf{g}} \cdot \nabla \zeta_{g}=-\bar{u} \frac{\partial \zeta_{g}}{\partial x}=k \bar{u}\left(k^{2}+\ell^{2}\right) A \cos k x \cos \ell y
$$

It is easily shown that the advection of relative vorticity by the wave component vanishes,

$$
u_{g}^{\prime} \frac{\partial \zeta_{g}}{\partial x}+v_{g}^{\prime} \frac{\partial \zeta_{g}}{\partial y}=0
$$

Thus, the advection of relative vorticity reduces to

$$
-\mathbf{V}_{\mathbf{g}} \cdot \nabla \zeta_{g}=-\bar{u} \frac{\partial \zeta_{g}}{\partial x}=k \bar{u}\left(k^{2}+\ell^{2}\right) A \cos k x \cos \ell y
$$

The advection of planetary vorticity is

$$
-\beta v_{g}=-\beta k A \cos k x \cos \ell y
$$

It is easily shown that the advection of relative vorticity by the wave component vanishes,

$$
u_{g}^{\prime} \frac{\partial \zeta_{g}}{\partial x}+v_{g}^{\prime} \frac{\partial \zeta_{g}}{\partial y}=0
$$

Thus, the advection of relative vorticity reduces to

$$
-\mathbf{V}_{\mathbf{g}} \cdot \nabla \zeta_{g}=-\bar{u} \frac{\partial \zeta_{g}}{\partial x}=k \bar{u}\left(k^{2}+\ell^{2}\right) A \cos k x \cos \ell y
$$

The advection of planetary vorticity is

$$
-\beta v_{g}=-\beta k A \cos k x \cos \ell y
$$

The total vorticity advection is

$$
-\mathbf{V}_{\mathbf{g}} \cdot \nabla\left(\zeta_{g}+f\right)=\left[\bar{u}\left(k^{2}+\ell^{2}\right)-\beta\right] k A \cos k x \cos \ell y
$$

Repeat: The total vorticity advection is

$$
-\mathbf{V}_{\mathbf{g}} \cdot \nabla\left(\zeta_{g}+f\right)=\left[\bar{u}\left(k^{2}+\ell^{2}\right)-\beta\right] k A \cos k x \cos \ell y
$$

Repeat: The total vorticity advection is

$$
-\mathbf{V}_{\mathbf{g}} \cdot \nabla\left(\zeta_{g}+f\right)=\left[\bar{u}\left(k^{2}+\ell^{2}\right)-\beta\right] k A \cos k x \cos \ell y
$$

For relatively short wavelengths ($L \ll 3,000 \mathrm{~km}$) the advection of relative vorticity dominates. For planetary-scale waves ($L \sim 10,000 \mathrm{~km}$) the β-term dominates and the waves regress.

Repeat: The total vorticity advection is

$$
-\mathbf{V}_{\mathbf{g}} \cdot \nabla\left(\zeta_{g}+f\right)=\left[\bar{u}\left(k^{2}+\ell^{2}\right)-\beta\right] k A \cos k x \cos \ell y
$$

For relatively short wavelengths ($L \ll 3,000 \mathrm{~km}$) the advection of relative vorticity dominates. For planetary-scale waves ($L \sim 10,000 \mathrm{~km}$) the β-term dominates and the waves regress.

Thus, as a general rule, short-wavelength synoptic-scale disturbances should move eastward in a westerly flow. Long planetary waves regress or remain stationary.

The Tendency Equation

The Tendency Equation

Although the vertical velocity plays an essential role in the dynamics, the evolution of the geostrophic circulation can be determined without explicitly determining the distribution of ω.

The Tendency Equation

Although the vertical velocity plays an essential role in the dynamics, the evolution of the geostrophic circulation can be determined without explicitly determining the distribution of ω.

The vorticity equation is

$$
\frac{\partial \zeta_{g}}{\partial t}=-\mathbf{V}_{\mathbf{g}} \cdot \nabla\left(\zeta_{g}+f\right)+f_{0} \frac{\partial \omega}{\partial p}
$$

The Tendency Equation

Although the vertical velocity plays an essential role in the dynamics, the evolution of the geostrophic circulation can be determined without explicitly determining the distribution of ω.

The vorticity equation is

$$
\frac{\partial \zeta_{g}}{\partial t}=-\mathbf{V}_{\mathbf{g}} \cdot \nabla\left(\zeta_{g}+f\right)+f_{0} \frac{\partial \omega}{\partial p}
$$

Recalling that the vorticity and geopotential are related by $\zeta_{g}=\left(1 / f_{0}\right) \nabla^{2} \Phi$ and reversing the order of differentiation, we get

$$
\frac{1}{f_{0}} \nabla^{2} \Phi_{t}=-\mathbf{V}_{\mathbf{g}} \cdot \nabla\left(\frac{1}{f_{0}} \nabla^{2} \Phi+f\right)+f_{0} \frac{\partial \omega}{\partial p}
$$

Note: $\Phi_{t} \equiv \partial \Phi / \partial t$. Holton uses χ.

The thermodynamic equation is

$$
\left(\frac{\partial}{\partial t}+\mathbf{V}_{\mathbf{g}} \cdot \nabla\right)\left(\frac{\partial \Phi}{\partial p}\right)+\sigma \omega=-\frac{\kappa \dot{Q}}{p}
$$

The thermodynamic equation is

$$
\left(\frac{\partial}{\partial t}+\mathbf{V}_{\mathbf{g}} \cdot \nabla\right)\left(\frac{\partial \Phi}{\partial p}\right)+\sigma \omega=-\frac{\kappa \dot{Q}}{p}
$$

Let us multiply by f_{0} / σ and differentiate with respect to p :

$$
\frac{\partial}{\partial p}\left(\frac{f_{0}}{\sigma} \frac{\partial \Phi_{t}}{\partial p}\right)=-\frac{\partial}{\partial p}\left[\frac{f_{0}}{\sigma} \mathbf{V}_{\mathbf{g}} \cdot \nabla\left(\frac{\partial \Phi}{\partial p}\right)\right]-f_{0} \frac{\partial \omega}{\partial p}-f_{0} \frac{\partial}{\partial p}\left(\frac{\kappa \dot{Q}}{\sigma p}\right)
$$

The thermodynamic equation is

$$
\left(\frac{\partial}{\partial t}+\mathbf{V}_{\mathbf{g}} \cdot \nabla\right)\left(\frac{\partial \Phi}{\partial p}\right)+\sigma \omega=-\frac{\kappa \dot{Q}}{p}
$$

Let us multiply by f_{0} / σ and differentiate with respect to p :

$$
\frac{\partial}{\partial p}\left(\frac{f_{0}}{\sigma} \frac{\partial \Phi_{t}}{\partial p}\right)=-\frac{\partial}{\partial p}\left[\frac{f_{0}}{\sigma} \mathbf{V}_{\mathbf{g}} \cdot \nabla\left(\frac{\partial \Phi}{\partial p}\right)\right]-f_{0} \frac{\partial \omega}{\partial p}-f_{0} \frac{\partial}{\partial p}\left(\frac{\kappa \dot{Q}}{\sigma p}\right)
$$

We now ignore the effects of diabatic heating and set $\dot{Q}=0$.

The thermodynamic equation is

$$
\left(\frac{\partial}{\partial t}+\mathbf{V}_{\mathbf{g}} \cdot \nabla\right)\left(\frac{\partial \Phi}{\partial p}\right)+\sigma \omega=-\frac{\kappa \dot{Q}}{p}
$$

Let us multiply by f_{0} / σ and differentiate with respect to p :

$$
\frac{\partial}{\partial p}\left(\frac{f_{0}}{\sigma} \frac{\partial \Phi_{t}}{\partial p}\right)=-\frac{\partial}{\partial p}\left[\frac{f_{0}}{\sigma} \mathbf{V}_{\mathbf{g}} \cdot \nabla\left(\frac{\partial \Phi}{\partial p}\right)\right]-f_{0} \frac{\partial \omega}{\partial p}-f_{0} \frac{\partial}{\partial p}\left(\frac{\kappa \dot{Q}}{\sigma p}\right)
$$

We now ignore the effects of diabetic heating and set $\dot{Q}=0$. It is simple to eliminate ω by addition of the thermodynamic and vorticity equations as expressed above. We then get

$$
\begin{aligned}
\underbrace{\left[\nabla^{2}+\frac{\partial}{\partial p}\left(\frac{f_{0}^{2}}{\sigma} \frac{\partial}{\partial p}\right)\right] \Phi_{t}}_{A}= & -\underbrace{f_{0} \mathbf{V}_{\mathbf{g}} \cdot \nabla\left(\frac{1}{f_{0}} \nabla^{2} \Phi+f\right)}_{B} \\
& +\underbrace{\frac{\partial}{\partial p}\left[\frac{f_{0}^{2}}{\sigma} \mathbf{V}_{\mathbf{g}} \cdot \nabla\left(-\frac{\partial \Phi}{\partial p}\right)\right]}_{C}
\end{aligned}
$$

Again,

$$
\begin{aligned}
\underbrace{\left[\nabla^{2}+\frac{\partial}{\partial p}\left(\frac{f_{0}^{2}}{\sigma} \frac{\partial}{\partial p}\right)\right] \Phi_{t}}_{A}= & -\underbrace{f_{0} \mathbf{V}_{\mathbf{g}} \cdot \nabla\left(\frac{1}{f_{0}} \nabla^{2} \Phi+f\right)}_{B} \\
& +\underbrace{\frac{\partial}{\partial p}\left[\frac{f_{0}^{2}}{\sigma} \mathbf{V}_{\mathbf{g}} \cdot \nabla\left(-\frac{\partial \Phi}{\partial p}\right)\right]}_{C}
\end{aligned}
$$

Again,

$$
\begin{aligned}
\underbrace{\left[\nabla^{2}+\frac{\partial}{\partial p}\left(\frac{f_{0}^{2}}{\sigma} \frac{\partial}{\partial p}\right)\right] \Phi_{t}}_{A}= & -\underbrace{f_{0} \mathbf{V}_{\mathbf{g}} \cdot \nabla\left(\frac{1}{f_{0}} \nabla^{2} \Phi+f\right)}_{B} \\
& +\underbrace{\frac{\partial}{\partial p}\left[\frac{f_{0}^{2}}{\sigma} \mathbf{V}_{\mathbf{g}} \cdot \nabla\left(-\frac{\partial \Phi}{\partial p}\right)\right]}_{C}
\end{aligned}
$$

This is the geopotential tendency equation. It provides a relationship between

Again,

$$
\begin{aligned}
\underbrace{\left[\nabla^{2}+\frac{\partial}{\partial p}\left(\frac{f_{0}^{2}}{\sigma} \frac{\partial}{\partial p}\right)\right] \Phi_{t}}_{A}= & -\underbrace{f_{0} \mathbf{V}_{\mathbf{g}} \cdot \nabla\left(\frac{1}{f_{0}} \nabla^{2} \Phi+f\right)}_{B} \\
& +\underbrace{\frac{\partial}{\partial p}\left[\frac{f_{0}^{2}}{\sigma} \mathbf{V}_{\mathbf{g}} \cdot \nabla\left(-\frac{\partial \Phi}{\partial p}\right)\right]}_{C}
\end{aligned}
$$

This is the geopotential tendency equation. It provides a relationship between
Term A: The local geopotential tendency Φ_{t}

Again,

$$
\begin{aligned}
\underbrace{\left[\nabla^{2}+\frac{\partial}{\partial p}\left(\frac{f_{0}^{2}}{\sigma} \frac{\partial}{\partial p}\right)\right] \Phi_{t}}_{A}= & -\underbrace{f_{0} \mathbf{V}_{\mathbf{g}} \cdot \nabla\left(\frac{1}{f_{0}} \nabla^{2} \Phi+f\right)}_{B} \\
& +\underbrace{\frac{\partial}{\partial p}\left[\frac{f_{0}^{2}}{\sigma} \mathbf{V}_{\mathbf{g}} \cdot \nabla\left(-\frac{\partial \Phi}{\partial p}\right)\right]}_{C}
\end{aligned}
$$

This is the geopotential tendency equation. It provides a relationship between

Term A: The local geopotential tendency Φ_{t}
Term B: The advection of vorticity

Again,

$$
\begin{aligned}
\underbrace{\left[\nabla^{2}+\frac{\partial}{\partial p}\left(\frac{f_{0}^{2}}{\sigma} \frac{\partial}{\partial p}\right)\right] \Phi_{t}}_{A}= & -\underbrace{f_{0} \mathbf{V}_{\mathbf{g}} \cdot \nabla\left(\frac{1}{f_{0}} \nabla^{2} \Phi+f\right)}_{B} \\
& +\underbrace{\frac{\partial}{\partial p}\left[\frac{f_{0}^{2}}{\sigma} \mathbf{V}_{\mathbf{g}} \cdot \nabla\left(-\frac{\partial \Phi}{\partial p}\right)\right]}_{C}
\end{aligned}
$$

This is the geopotential tendency equation. It provides a relationship between
Term A: The local geopotential tendency Φ_{t}
Term B: The advection of vorticity
Term C: The vertical shear of temperature advection.

Term (A) involves second derivatives with respect to spatial variables of the geopotential tendency Φ_{t}. For sinusoidal variations, this is typically proportional to $-\Phi_{t}$.

Term (A) involves second derivatives with respect to spatial variables of the geopotential tendency Φ_{t}. For sinusoidal variations, this is typically proportional to $-\Phi_{t}$.

Term (B) is proportional to the advection of absolute vorticity. For the upper troposphere it is usually the dominant term.

Term (A) involves second derivatives with respect to spatial variables of the geopotential tendency Φ_{t}. For sinusoidal variations, this is typically proportional to $-\Phi_{t}$.

Term (B) is proportional to the advection of absolute vorticity. For the upper troposphere it is usually the dominant term.

For short waves we have seen that the relative vorticity advection dominates the planetary vorticity advection. With a ridge to the west and a trough to the east, this term is then negative.

Term (A) involves second derivatives with respect to spatial variables of the geopotential tendency Φ_{t}. For sinusoidal variations, this is typically proportional to $-\Phi_{t}$.

Term (B) is proportional to the advection of absolute vorticity. For the upper troposphere it is usually the dominant term.

For short waves we have seen that the relative vorticity advection dominates the planetary vorticity advection. With a ridge to the west and a trough to the east, this term is then negative.

Thus, Term (B) makes Φ_{t} positive, so that a ridge tends to develop and, associated with this, the vorticity becomes negative.

Term (A) involves second derivatives with respect to spatial variables of the geopotential tendency Φ_{t}. For sinusoidal variations, this is typically proportional to $-\Phi_{t}$.

Term (B) is proportional to the advection of absolute vorticity. For the upper troposphere it is usually the dominant term.

For short waves we have seen that the relative vorticity advection dominates the planetary vorticity advection. With a ridge to the west and a trough to the east, this term is then negative.

Thus, Term (B) makes Φ_{t} positive, so that a ridge tends to develop and, associated with this, the vorticity becomes negative.

Term (B) acts to transport the pattern of geopotential. However, since $\mathrm{V}_{\mathrm{g}} \cdot \nabla \zeta=0$ on the trough and ridge axes, this term does not cause the wave to amplify or decay.

The means of amplification or decay of midlatitude waves is contained in Term (C). This term is proportional to minus the rate of change of temperature advection with respect to pressure.

The means of amplification or decay of midlatitude waves is contained in Term (C). This term is proportional to minus the rate of change of temperature advection with respect to pressure.

It is therefore related to plus the rate of change of temperature advection with respect to height. This is called the differential temperature advection.

The means of amplification or decay of midlatitude waves is contained in Term (C). This term is proportional to minus the rate of change of temperature advection with respect to pressure.

It is therefore related to plus the rate of change of temperature advection with respect to height. This is called the differential temperature advection.
The magnitude of the temperature (or thickness) advection tends to be largest in the lower troposphere, beneath the 500 hPa trough and ridge lines in a developing baroclinic wave.

- Below the 500 hPa ridge, there is warm advection associated with the advancing warm front. This increases thickness and builds the upper level ridge.
- Below the 500 hPa ridge, there is warm advection associated with the advancing warm front. This increases thickness and builds the upper level ridge.
- Below the 500 hPa trough, there is cold advection associated with the advancing cold front. This decreases thickness and deepens the upper level trough.
- Below the 500 hPa ridge, there is warm advection associated with the advancing warm front. This increases thickness and builds the upper level ridge.
- Below the 500 hPa trough, there is cold advection associated with the advancing cold front. This decreases thickness and deepens the upper level trough.

Thus in contrast to term (B), term (C) is dominant in the lower troposphere; but its effect is felt at higher levels.

- Below the 500 hPa ridge, there is warm advection associated with the advancing warm front. This increases thickness and builds the upper level ridge.
- Below the 500 hPa trough, there is cold advection associated with the advancing cold front. This decreases thickness and deepens the upper level trough.

Thus in contrast to term (B), term (C) is dominant in the lower troposphere; but its effect is felt at higher levels.

In words, we may write the geopotential tendency equation:

Tendency due to vorticity advection

Tendence due to diff'l temperature advection

The Omega Equation

The Omega Equation

We will now eliminate the geopotential tendency by combining the momentum and thermodynamic equations, and obtain an equation for the vertical velocity ω.

The Omega Equation

We will now eliminate the geopotential tendency by combining the momentum and thermodynamic equations, and obtain an equation for the vertical velocity ω.

The thermodynamic equation for adiabatic flow is

$$
\left(\frac{\partial}{\partial t}+\mathbf{V}_{\mathbf{g}} \cdot \nabla\right)\left(\frac{\partial \Phi}{\partial p}\right)+\sigma \omega=0
$$

The Omega Equation

We will now eliminate the geopotential tendency by combining the momentum and thermodynamic equations, and obtain an equation for the vertical velocity ω.

The thermodynamic equation for adiabatic flow is

$$
\left(\frac{\partial}{\partial t}+\mathbf{V}_{\mathbf{g}} \cdot \nabla\right)\left(\frac{\partial \Phi}{\partial p}\right)+\sigma \omega=0
$$

We now write it as

$$
\frac{\partial \Phi_{t}}{\partial p}=-\mathbf{V}_{\mathbf{g}} \cdot \nabla\left(\frac{\partial \Phi}{\partial p}\right)-\sigma \omega
$$

The Omega Equation

We will now eliminate the geopotential tendency by combining the momentum and thermodynamic equations, and obtain an equation for the vertical velocity ω.

The thermodynamic equation for adiabatic flow is

$$
\left(\frac{\partial}{\partial t}+\mathbf{V}_{\mathbf{g}} \cdot \nabla\right)\left(\frac{\partial \Phi}{\partial p}\right)+\sigma \omega=0
$$

We now write it as

$$
\frac{\partial \Phi_{t}}{\partial p}=-\mathbf{V}_{\mathbf{g}} \cdot \nabla\left(\frac{\partial \Phi}{\partial p}\right)-\sigma \omega
$$

We take the Laplacian of this and obtain

$$
\nabla^{2} \frac{\partial \Phi_{t}}{\partial p}=-\nabla^{2}\left[\mathbf{V}_{\mathbf{g}} \cdot \nabla\left(\frac{\partial \Phi}{\partial p}\right)\right]-\sigma \nabla^{2} \omega
$$

Recall that the vorticity equation may be written

$$
\frac{\partial \zeta_{g}}{\partial t}=-\mathbf{V}_{\mathbf{g}} \cdot \nabla\left(\zeta_{g}+f\right)+f_{0} \frac{\partial \omega}{\partial p}
$$

Recall that the vorticity equation may be written

$$
\frac{\partial \zeta_{g}}{\partial t}=-\mathbf{V}_{\mathbf{g}} \cdot \nabla\left(\zeta_{g}+f\right)+f_{0} \frac{\partial \omega}{\partial p}
$$

Multiply by f_{0} and use $f_{0} \zeta_{g}=\nabla^{2} \Phi$:

$$
\nabla^{2} \Phi_{t}=-f_{0} \mathbf{V}_{\mathbf{g}} \cdot \nabla\left(\frac{1}{f_{0}} \nabla^{2} \Phi+f\right)+f_{0}^{2} \frac{\partial \omega}{\partial p}
$$

Recall that the vorticity equation may be written

$$
\frac{\partial \zeta_{g}}{\partial t}=-\mathbf{V}_{\mathbf{g}} \cdot \nabla\left(\zeta_{g}+f\right)+f_{0} \frac{\partial \omega}{\partial p}
$$

Multiply by f_{0} and use $f_{0} \zeta_{g}=\nabla^{2} \Phi$:

$$
\nabla^{2} \Phi_{t}=-f_{0} \mathbf{V}_{\mathbf{g}} \cdot \nabla\left(\frac{1}{f_{0}} \nabla^{2} \Phi+f\right)+f_{0}^{2} \frac{\partial \omega}{\partial p}
$$

Now differentiate with respect to pressure:

$$
\nabla^{2} \frac{\partial \Phi_{t}}{\partial p}=-f_{0} \frac{\partial}{\partial p}\left[\mathbf{V}_{\mathbf{g}} \cdot \nabla\left(\frac{1}{f_{0}} \nabla^{2} \Phi+f\right)\right]+f_{0}^{2} \frac{\partial^{2} \omega}{\partial p^{2}}
$$

Recall that the vorticity equation may be written

$$
\frac{\partial \zeta_{g}}{\partial t}=-\mathbf{V}_{\mathbf{g}} \cdot \nabla\left(\zeta_{g}+f\right)+f_{0} \frac{\partial \omega}{\partial p}
$$

Multiply by f_{0} and use $f_{0} \zeta_{g}=\nabla^{2} \Phi$:

$$
\nabla^{2} \Phi_{t}=-f_{0} \mathbf{V}_{\mathbf{g}} \cdot \nabla\left(\frac{1}{f_{0}} \nabla^{2} \Phi+f\right)+f_{0}^{2} \frac{\partial \omega}{\partial p}
$$

Now differentiate with respect to pressure:

$$
\nabla^{2} \frac{\partial \Phi_{t}}{\partial p}=-f_{0} \frac{\partial}{\partial p}\left[\mathbf{V}_{\mathbf{g}} \cdot \nabla\left(\frac{1}{f_{0}} \nabla^{2} \Phi+f\right)\right]+f_{0}^{2} \frac{\partial^{2} \omega}{\partial p^{2}}
$$

We now have two equations with identical expressions for the tendency Φ_{t}.
So we can subtract one from the other to obtain a diagnostic equation for the vertical velocity.

$$
\begin{aligned}
\underbrace{\left(\sigma \nabla^{2}+f_{0}^{2} \frac{\partial^{2}}{\partial p^{2}}\right)}_{A} \omega & =-\underbrace{f_{0} \frac{\partial}{\partial p}\left[-\mathbf{V}_{\mathbf{g}} \cdot \nabla\left(\frac{1}{f_{0}} \nabla^{2} \Phi+f\right)\right]}_{C} \\
& +\underbrace{\nabla^{2}\left[\mathbf{V}_{\mathbf{g}} \cdot \nabla\left(-\frac{\partial \Phi}{\partial p}\right)\right]}_{B}
\end{aligned}
$$

$$
\begin{aligned}
\underbrace{\left(\sigma \nabla^{2}+f_{0}^{2} \frac{\partial^{2}}{\partial p^{2}}\right) \omega}_{A}= & -\underbrace{f_{0} \frac{\partial}{\partial p}\left[-\mathbf{V}_{\mathbf{g}} \cdot \nabla\left(\frac{1}{f_{0}} \nabla^{2} \Phi+f\right)\right]}_{B} \\
& +\underbrace{\nabla^{2}\left[\mathbf{V}_{\mathbf{g}} \cdot \nabla\left(-\frac{\partial \Phi}{\partial p}\right)\right]}_{C}
\end{aligned}
$$

This is the omega equation, a diagnostic relationship for the vertical velocity ω.

$$
\begin{aligned}
\underbrace{\left(\sigma \nabla^{2}+f_{0}^{2} \frac{\partial^{2}}{\partial p^{2}}\right) \omega}_{A}= & -\underbrace{f_{0} \frac{\partial}{\partial p}\left[-\mathbf{V}_{\mathbf{g}} \cdot \nabla\left(\frac{1}{f_{0}} \nabla^{2} \Phi+f\right)\right]}_{B} \\
& +\underbrace{\nabla^{2}\left[\mathbf{V}_{\mathbf{g}} \cdot \nabla\left(-\frac{\partial \Phi}{\partial p}\right)\right]}_{C}
\end{aligned}
$$

This is the omega equation, a diagnostic relationship for the vertical velocity ω.

It provides a relationship between

$$
\begin{aligned}
\underbrace{\left(\sigma \nabla^{2}+f_{0}^{2} \frac{\partial^{2}}{\partial p^{2}}\right) \omega}_{A}= & -\underbrace{f_{0} \frac{\partial}{\partial p}\left[-\mathbf{V}_{\mathbf{g}} \cdot \nabla\left(\frac{1}{f_{0}} \nabla^{2} \Phi+f\right)\right]}_{B} \\
& +\underbrace{\nabla^{2}\left[\mathbf{V}_{\mathbf{g}} \cdot \nabla\left(-\frac{\partial \Phi}{\partial p}\right)\right]}_{C}
\end{aligned}
$$

This is the omega equation, a diagnostic relationship for the vertical velocity ω.

It provides a relationship between
Term A: The vertical velocity

$$
\begin{aligned}
\underbrace{\left(\sigma \nabla^{2}+f_{0}^{2} \frac{\partial^{2}}{\partial p^{2}}\right) \omega}_{A}= & -\underbrace{f_{0} \frac{\partial}{\partial p}\left[-\mathbf{V}_{\mathbf{g}} \cdot \nabla\left(\frac{1}{f_{0}} \nabla^{2} \Phi+f\right)\right]}_{B} \\
& +\underbrace{\nabla^{2}\left[\mathbf{V}_{\mathbf{g}} \cdot \nabla\left(-\frac{\partial \Phi}{\partial p}\right)\right]}_{C}
\end{aligned}
$$

This is the omega equation, a diagnostic relationship for the vertical velocity ω.

It provides a relationship between
Term A: The vertical velocity
Term B: The differential advection of vorticity

$$
\begin{aligned}
\underbrace{\left(\sigma \nabla^{2}+f_{0}^{2} \frac{\partial^{2}}{\partial p^{2}}\right) \omega}_{A}= & -\underbrace{f_{0} \frac{\partial}{\partial p}\left[-\mathbf{V}_{\mathbf{g}} \cdot \nabla\left(\frac{1}{f_{0}} \nabla^{2} \Phi+f\right)\right]}_{B} \\
& +\underbrace{\nabla^{2}\left[\mathbf{V}_{\mathbf{g}} \cdot \nabla\left(-\frac{\partial \Phi}{\partial p}\right)\right]}_{C}
\end{aligned}
$$

This is the omega equation, a diagnostic relationship for the vertical velocity ω.

It provides a relationship between
Term A: The vertical velocity
Term B: The differential advection of vorticity
Term C: The temperature advection.

Term (A), the left side of the equation, involves spatial second derivatives of ω.
For sinusoidal variations it is proportional to the negative of ω and is thus related directly to the vertical velocity w.

Term (A), the left side of the equation, involves spatial second derivatives of ω.

For sinusoidal variations it is proportional to the negative of ω and is thus related directly to the vertical velocity w.

Term (B) is the change with pressure of the advection of absolute vorticity, that is, the differential vorticity advection.

Term (A), the left side of the equation, involves spatial second derivatives of ω.
For sinusoidal variations it is proportional to the negative of ω and is thus related directly to the vertical velocity w.
Term (B) is the change with pressure of the advection of absolute vorticity, that is, the differential vorticity advection.

Term (C) is the Laplacian of minus the temperature advection, and is thus proportional to the advection of temperature.

Term (A), the left side of the equation, involves spatial second derivatives of ω.

For sinusoidal variations it is proportional to the negative of ω and is thus related directly to the vertical velocity w.

Term (B) is the change with pressure of the advection of absolute vorticity, that is, the differential vorticity advection.

Term (C) is the Laplacian of minus the temperature advection, and is thus proportional to the advection of temperature.

In words, we may write the omega equation as follows

$$
\left[\begin{array}{c}
\text { Rising } \\
\text { Motion }
\end{array}\right] \propto\left[\begin{array}{c}
\text { Differential } \\
\text { Vorticity Advection }
\end{array}\right]+\left[\begin{array}{c}
\text { Temperature } \\
\text { Advection }
\end{array}\right]
$$

Idealized baroclinic wave. Solid: 500 hPa geopotential contours. Dashed: 1000 hPa contours. Regions of strong vertical motion due to differential vorticity advection are indicated.

Term (B) is

$$
-f_{0} \frac{\partial}{\partial p}\left[-\mathbf{V}_{\mathbf{g}} \cdot \nabla\left(\frac{1}{f_{0}} \nabla^{2} \Phi+f\right)\right] \propto \frac{\partial}{\partial z}\left[-\mathbf{V}_{\mathbf{g}} \cdot \nabla\left(\zeta_{g}+f\right)\right]
$$

so it is proportional to differential vorticity advection.

Term (B) is

$$
-f_{0} \frac{\partial}{\partial p}\left[-\mathbf{V}_{\mathbf{g}} \cdot \nabla\left(\frac{1}{f_{0}} \nabla^{2} \Phi+f\right)\right] \propto \frac{\partial}{\partial z}\left[-\mathbf{V}_{\mathbf{g}} \cdot \nabla\left(\zeta_{g}+f\right)\right]
$$

so it is proportional to differential vorticity advection.

- At the surface Low, the advection of vorticity is small

Term (B) is

$$
-f_{0} \frac{\partial}{\partial p}\left[-\mathbf{V}_{\mathbf{g}} \cdot \nabla\left(\frac{1}{f_{0}} \nabla^{2} \Phi+f\right)\right] \propto \frac{\partial}{\partial z}\left[-\mathbf{V}_{\mathbf{g}} \cdot \nabla\left(\zeta_{g}+f\right)\right]
$$

so it is proportional to differential vorticity advection.

- At the surface Low, the advection of vorticity is small
- Above this, there is strong positive vorticity advection at 500 hPa

Term (B) is

$$
-f_{0} \frac{\partial}{\partial p}\left[-\mathbf{V}_{\mathbf{g}} \cdot \nabla\left(\frac{1}{f_{0}} \nabla^{2} \Phi+f\right)\right] \propto \frac{\partial}{\partial z}\left[-\mathbf{V}_{\mathbf{g}} \cdot \nabla\left(\zeta_{g}+f\right)\right]
$$

so it is proportional to differential vorticity advection.

- At the surface Low, the advection of vorticity is small
- Above this, there is strong positive vorticity advection at 500 hPa
- Therefore, the differential vorticity advection is positive

Term (B) is

$$
-f_{0} \frac{\partial}{\partial p}\left[-\mathbf{V}_{\mathbf{g}} \cdot \nabla\left(\frac{1}{f_{0}} \nabla^{2} \Phi+f\right)\right] \propto \frac{\partial}{\partial z}\left[-\mathbf{V}_{\mathbf{g}} \cdot \nabla\left(\zeta_{g}+f\right)\right]
$$

so it is proportional to differential vorticity advection.

- At the surface Low, the advection of vorticity is small
- Above this, there is strong positive vorticity advection at 500 hPa
- Therefore, the differential vorticity advection is positive
- This indices an upward vertical velocity

Term (B) is

$$
-f_{0} \frac{\partial}{\partial p}\left[-\mathbf{V}_{\mathbf{g}} \cdot \nabla\left(\frac{1}{f_{0}} \nabla^{2} \Phi+f\right)\right] \propto \frac{\partial}{\partial z}\left[-\mathbf{V}_{\mathbf{g}} \cdot \nabla\left(\zeta_{g}+f\right)\right]
$$

so it is proportional to differential vorticity advection.

- At the surface Low, the advection of vorticity is small
- Above this, there is strong positive vorticity advection at 500 hPa
- Therefore, the differential vorticity advection is positive
- This indices an upward vertical velocity
- Correspondingly, $w<0$ above the surface High Pressure

Term (B) is

$$
-f_{0} \frac{\partial}{\partial p}\left[-\mathbf{V}_{\mathbf{g}} \cdot \nabla\left(\frac{1}{f_{0}} \nabla^{2} \Phi+f\right)\right] \propto \frac{\partial}{\partial z}\left[-\mathbf{V}_{\mathbf{g}} \cdot \nabla\left(\zeta_{g}+f\right)\right]
$$

so it is proportional to differential vorticity advection.

- At the surface Low, the advection of vorticity is small
- Above this, there is strong positive vorticity advection at 500 hPa
- Therefore, the differential vorticity advection is positive
- This indices an upward vertical velocity
- Correspondingly, $w<0$ above the surface High Pressure
- We assume the scale is short enough that relative vorticity advection dominates planetary vorticity advection.

Conclusion: Differential vorticity advection implies:
Rising motion above the surface low
Subsidence above the surface High.

Idealized baroclinic wave. Solid: 500 hPa geopotential contours. Dashed: 1000 hPa contours. Regions of strong vertical motion due to temperature advection are indicated.

Term (C) is

$$
+\nabla^{2}\left[\mathbf{V}_{\mathbf{g}} \cdot \nabla\left(-\frac{\partial \Phi}{\partial p}\right)\right] \propto-\mathbf{V}_{\mathbf{g}} \cdot \nabla T
$$

so it is propotrional to the temperature advection.

Term (C) is

$$
+\nabla^{2}\left[\mathbf{V}_{\mathbf{g}} \cdot \nabla\left(-\frac{\partial \Phi}{\partial p}\right)\right] \propto-\mathbf{V}_{\mathbf{g}} \cdot \nabla T
$$

so it is propotrional to the temperature advection.

- Ahead of the surface Low there is warm advection

Term (C) is

$$
+\nabla^{2}\left[\mathbf{V}_{\mathbf{g}} \cdot \nabla\left(-\frac{\partial \Phi}{\partial p}\right)\right] \propto-\mathbf{V}_{\mathbf{g}} \cdot \nabla T
$$

so it is propotrional to the temperature advection.

- Ahead of the surface Low there is warm advection
- Therefore, Term (C) is positive

Term (C) is

$$
+\nabla^{2}\left[\mathbf{V}_{\mathbf{g}} \cdot \nabla\left(-\frac{\partial \Phi}{\partial p}\right)\right] \propto-\mathbf{V}_{\mathbf{g}} \cdot \nabla T
$$

so it is propotrional to the temperature advection.

- Ahead of the surface Low there is warm advection
- Therefore, Term (C) is positive
- So, there is Rising Motion ahead of the Low centre.

Term (C) is

$$
+\nabla^{2}\left[\mathbf{V}_{\mathbf{g}} \cdot \nabla\left(-\frac{\partial \Phi}{\partial p}\right)\right] \propto-\mathbf{V}_{\mathbf{g}} \cdot \nabla T
$$

so it is propotrional to the temperature advection.

- Ahead of the surface Low there is warm advection
- Therefore, Term (C) is positive
- So, there is Rising Motion ahead of the Low centre.
- Behind the Low, the cold front is associated with cold advection

Term (C) is

$$
+\nabla^{2}\left[\mathbf{V}_{\mathbf{g}} \cdot \nabla\left(-\frac{\partial \Phi}{\partial p}\right)\right] \propto-\mathbf{V}_{\mathbf{g}} \cdot \nabla T
$$

so it is propotrional to the temperature advection.

- Ahead of the surface Low there is warm advection
- Therefore, Term (C) is positive
- So, there is Rising Motion ahead of the Low centre.
- Behind the Low, the cold front is associated with cold advection
- Hence, there is subsidence at the 500 hPa trough

Vertical motion due to differential vorticity advection.

Vertical motion due to temperature advection.

Summary

Summary

For synoptic scale motions, the flow is approximately in geostrophic balance.

Summary

For synoptic scale motions, the flow is approximately in geostrophic balance.

For purely geostrophic flow, the horizontal velocity is determined by the geopotential field.

Summary

For synoptic scale motions, the flow is approximately in geostrophic balance.

For purely geostrophic flow, the horizontal velocity is determined by the geopotential field.

The QG system allows us to determine both the geostrophic and ageostrophic components of the flow.

Summary

For synoptic scale motions, the flow is approximately in geostrophic balance.

For purely geostrophic flow, the horizontal velocity is determined by the geopotential field.

The QG system allows us to determine both the geostrophic and ageostrophic components of the flow.

The vertical velocity is also determined by the geopotential field.

Summary

For synoptic scale motions, the flow is approximately in geostrophic balance.

For purely geostrophic flow, the horizontal velocity is determined by the geopotential field.

The QG system allows us to determine both the geostrophic and ageostrophic components of the flow.

The vertical velocity is also determined by the geopotential field.

This vertical velocity is just that required to ensure that the vorticity remains geostrophic and the temperature remains in hydrostatic balance.

Summary

For synoptic scale motions, the flow is approximately in geostrophic balance.

For purely geostrophic flow, the horizontal velocity is determined by the geopotential field.

The QG system allows us to determine both the geostrophic and ageostrophic components of the flow.

The vertical velocity is also determined by the geopotential field.

This vertical velocity is just that required to ensure that the vorticity remains geostrophic and the temperature remains in hydrostatic balance.

The Tendence Equation allows us to predict the evolution of the mass field and the diagnostic relationships then yield all the other fields.

Recap. on Φ_{t} and ω Equations

Recap. on Φ_{t} and ω Equations

The Tendency Equation is
$\left[\begin{array}{c}\text { Falling } \\ \text { Pressure }\end{array}\right] \propto\left[\begin{array}{c}\text { Positive } \\ \text { Vorticity Advection }\end{array}\right]+\left[\begin{array}{c}\text { Differential } \\ \text { Temperature Advec'n }\end{array}\right]$

Recap. on Φ_{t} and ω Equations

The Tendency Equation is
$\left[\begin{array}{c}\text { Falling } \\ \text { Pressure }\end{array}\right] \propto\left[\begin{array}{c}\text { Positive } \\ \text { Vorticity Advection }\end{array}\right]+\left[\begin{array}{c}\text { Differential } \\ \text { Temperature Advec'n }\end{array}\right]$

The Omega Equation is

$$
\left[\begin{array}{c}
\text { Rising } \\
\text { Motion }
\end{array}\right] \propto\left[\begin{array}{c}
\text { Differential } \\
\text { Vorticity Advection }
\end{array}\right]+\left[\begin{array}{c}
\text { Temperature } \\
\text { Advection }
\end{array}\right]
$$

Recap. on Φ_{t} and ω Equations

The Tendency Equation is
$\left[\begin{array}{c}\text { Falling } \\ \text { Pressure }\end{array}\right] \propto\left[\begin{array}{c}\text { Positive } \\ \text { Vorticity Advection }\end{array}\right]+\left[\begin{array}{c}\text { Differential } \\ \text { Temperature Advec'n }\end{array}\right]$

The Omega Equation is

$$
\left[\begin{array}{c}
\text { Rising } \\
\text { Motion }
\end{array}\right] \propto\left[\begin{array}{c}
\text { Differential } \\
\text { Vorticity Advection }
\end{array}\right]+\left[\begin{array}{c}
\text { Temperature } \\
\text { Advection }
\end{array}\right]
$$

Note the complimentarity between these two equations.

Exercise:

Study a chart of the 850 hPa or 700 hPa temperature and geopotential.

Exercise:

Study a chart of the 850 hPa or 700 hPa temperature and geopotential.

- Pick out the areas of maximum baroclinicity.

Exercise:

Study a chart of the 850 hPa or 700 hPa temperature and geopotential.

- Pick out the areas of maximum baroclinicity.
- How are they related to surface Frontal zones?

Exercise:

Study a chart of the 850 hPa or 700 hPa temperature and geopotential.

- Pick out the areas of maximum baroclinicity.
- How are they related to surface Frontal zones?
- Identify where warm and cold advection are taking place.

Exercise:

Study a chart of the 850 hPa or 700 hPa temperature and geopotential.

- Pick out the areas of maximum baroclinicity.
- How are they related to surface Frontal zones?
- Identify where warm and cold advection are taking place.
- Identify regions of vorticity advection.

Exercise:

Study a chart of the 850 hPa or 700 hPa temperature and geopotential.

- Pick out the areas of maximum baroclinicity.
- How are they related to surface Frontal zones?
- Identify where warm and cold advection are taking place.
- Identify regions of vorticity advection.
- Draw deductions about the vertical velocity.

Exercise:

Study a chart of the 850 hPa or 700 hPa temperature and geopotential.

- Pick out the areas of maximum baroclinicity.
- How are they related to surface Frontal zones?
- Identify where warm and cold advection are taking place.
- Identify regions of vorticity advection.
- Draw deductions about the vertical velocity.
- How is the vertical velocity correlated with the geopotential field?

