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The quasi-geostrophic vorticity is

ζg = k · ∇ ×Vg =
1

f0
∇2Φ

This enables ζg to be computed immediately once the geopo-
tential is known.

It also means that the geopotential can be deduced from
the vorticity by inverting the Laplacian operator.

This invertibility principle holds in a much more general
context and is a central tenet of the theory of balanced flows.

Since the Laplacian of a function tends to have a minimum
where the function has a maximum, and vice-versa,

Positive Vorticity is associated with Low Pressure

that is, low values of the geopotential, and

Negative Vorticity is associated with High Pressure
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We write the quasi-geostrophic momentum equation in com-
ponent form

dgug

dt
− f0va − βy vg = 0

dgvg

dt
+ f0ua + βy ug = 0

Subtracting the y-derivative of the first equation from the
x-derivative of the first, we get the vorticity equation

dgζg
dt

= −f0∇·Va − βvg

Note that a term δgζg arising from the total time derivative
vanishes.

Exercise: Verify the derivation of the vorticity equation.
Expand d/dt and proceed as indicated above.
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The β-term may be written

−βvg = −Vg·∇f

The divergence of the ageostrophic wind may be replaced by
the vertical gradient of vertical velocity using the continuity
equation.

Then
∂ζg
∂t

= −Vg·∇(ζg + f ) + f0
∂ω

∂p

This equation means that the local rate of change of geo-
strophic vorticity is determined by the sum of two terms:

• The advection of the absolute vorticity by the geostrophic
wind

• The stretching or shrinking of fluid columns (divergence
effect).
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The advection itself is the sum of two terms

−Vg·∇(ζg + f ) = −Vg·∇ζg − βvg

the advection of relative vorticity and the advection of plan-
etary vorticity respectively.

For wave-like disturbances in the mid-latitude westerlies,
these two terms tend to be of opposite sign so that they
counteract each other.

We can estimate their relative sizes:∣∣∣∣Vg·∇ζg
βvg

∣∣∣∣ ∼ V a

L2f
=

Ro

L/a
∼ 1

so the two terms are of comparable size.

4



5



Let us consider a wave-like disturbance, as shown above.
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In Region I — upstream of the 500 hPa trough — the geo-
strophic wind is flowing from the relative vorticity minimum
(at the ridge) towards the relative vorticity maximum (at
the trough) so that −Vg·∇ζg < 0.

However, since vg < 0 the flow is from higher planetary
vorticity values to lower values, so −βvg > 0.

Hence, in Region 1

• The advection of relative vorticity decreases ζg

• The advection of planetary vorticity increases ζg
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Similar arguments, with signs reversed, apply in Region II.

Therefore, the relative vorticity advection tends to move
the vorticity pattern, and hence the troughs and ridges,
downstream or eastward.

On the other hand, the planetary vorticity advection tends
to move the vorticity pattern upstream or westward, causing
the wave to regress.

Since the two terms are of comparable magnitude, either
may dominate, depending on the particular case.
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Let us consider an idealized streamfunction on a midlati-
tude β-plane comprising a zonally averaged part and a wave
disturbance

Φ = Φ0 − f0ūy + f0A sin kx cos `y
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tude β-plane comprising a zonally averaged part and a wave
disturbance

Φ = Φ0 − f0ūy + f0A sin kx cos `y

The parameters Φ0, ū and A depend only on pressure and
the wavenumbers are k = 2π/Lx and ` = 2π/Ly.

The geostrophic winds are

ug = − 1

f0

∂Φ

∂y
= ū + u′g = ū + `A sin kx sin `y

vg = +
1

f0

∂Φ

∂x
= + v′g = + kA cos kx cos `y

The geostrophic vorticity is

ζg =
1

f0
∇2Φ = −(k2 + `2)A sin kx cos `y
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It is easily shown that the advection of relative vorticity by
the wave component vanishes,
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= kū(k2 + `2)A cos kx cos `y

The advection of planetary vorticity is

−βvg = −βkA cos kx cos `y

10



It is easily shown that the advection of relative vorticity by
the wave component vanishes,

u′g
∂ζg
∂x

+ v′g
∂ζg
∂y

= 0

Thus, the advection of relative vorticity reduces to

−Vg·∇ζg = −ū
∂ζg
∂x

= kū(k2 + `2)A cos kx cos `y

The advection of planetary vorticity is

−βvg = −βkA cos kx cos `y
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Repeat: The total vorticity advection is

−Vg·∇(ζg + f ) = [ū(k2 + `2)− β]kA cos kx cos `y

For relatively short wavelengths (L � 3, 000km) the advec-
tion of relative vorticity dominates. For planetary-scale
waves (L ∼ 10, 000km) the β-term dominates and the waves
regress.

Thus, as a general rule, short-wavelength synoptic-scale dis-
turbances should move eastward in a westerly flow. Long
planetary waves regress or remain stationary.
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Although the vertical velocity plays an essential role in the
dynamics, the evolution of the geostrophic circulation can
be determined without explicitly determining the distribu-
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The Tendency Equation
Although the vertical velocity plays an essential role in the
dynamics, the evolution of the geostrophic circulation can
be determined without explicitly determining the distribu-
tion of ω.

The vorticity equation is

∂ζg
∂t

= −Vg·∇(ζg + f ) + f0
∂ω

∂p

Recalling that the vorticity and geopotential are related by
ζg = (1/f0)∇2Φ and reversing the order of differentiation, we
get

1

f0
∇2Φt = −Vg·∇

(
1

f0
∇2Φ + f

)
+ f0

∂ω

∂p

Note: Φt ≡ ∂Φ/∂t. Holton uses χ.
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The thermodynamic equation is(
∂

∂t
+ Vg · ∇

)(
∂Φ

∂p

)
+ σω = −κQ̇

p
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The thermodynamic equation is(
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+ Vg · ∇

)(
∂Φ
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)
+ σω = −κQ̇

p

Let us multiply by f0/σ and differentiate with respect to p:

∂

∂p

(
f0

σ

∂Φt

∂p

)
= − ∂

∂p

[
f0

σ
Vg · ∇

(
∂Φ

∂p

)]
− f0

∂ω

∂p
− f0

∂

∂p

(
κQ̇

σp

)
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We now ignore the effects of diabatic heating and set Q̇ = 0.
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[
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σ
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(
∂Φ

∂p

)]
− f0

∂ω

∂p
− f0

∂

∂p

(
κQ̇

σp

)
We now ignore the effects of diabatic heating and set Q̇ = 0.

It is simple to eliminate ω by addition of the thermodynamic
and vorticity equations as expressed above. We then get[

∇2 +
∂

∂p

(
f2
0

σ

∂

∂p

)]
Φt︸ ︷︷ ︸

A

= − f0Vg·∇
(

1

f0
∇2Φ + f

)
︸ ︷︷ ︸

B

+
∂

∂p

[
f2
0

σ
Vg · ∇

(
−∂Φ

∂p

)]
︸ ︷︷ ︸

C
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)
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B

+
∂

∂p

[
f2
0

σ
Vg · ∇

(
−∂Φ

∂p

)]
︸ ︷︷ ︸

C

This is the geopotential tendency equation. It provides a
relationship between

Term A: The local geopotential tendency Φt

Term B: The advection of vorticity

Term C: The vertical shear of temperature advection.
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Term (A) involves second derivatives with respect to spatial
variables of the geopotential tendency Φt. For sinusoidal
variations, this is typically proportional to −Φt.
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Term (A) involves second derivatives with respect to spatial
variables of the geopotential tendency Φt. For sinusoidal
variations, this is typically proportional to −Φt.

Term (B) is proportional to the advection of absolute vor-
ticity. For the upper troposphere it is usually the dominant
term.

For short waves we have seen that the relative vorticity ad-
vection dominates the planetary vorticity advection. With
a ridge to the west and a trough to the east, this term is
then negative.

Thus, Term (B) makes Φt positive, so that a ridge tends
to develop and, associated with this, the vorticity becomes
negative.

Term (B) acts to transport the pattern of geopotential.
However, since Vg·∇ζ = 0 on the trough and ridge axes,
this term does not cause the wave to amplify or decay.
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The means of amplification or decay of midlatitude waves is
contained in Term (C). This term is proportional to minus
the rate of change of temperature advection with respect to
pressure.
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The means of amplification or decay of midlatitude waves is
contained in Term (C). This term is proportional to minus
the rate of change of temperature advection with respect to
pressure.

It is therefore related to plus the rate of change of temper-
ature advection with respect to height. This is called the
differential temperature advection.

The magnitude of the temperature (or thickness) advection
tends to be largest in the lower troposphere, beneath the
500 hPa trough and ridge lines in a developing baroclinic
wave.
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• Below the 500 hPa ridge, there is warm advection as-
sociated with the advancing warm front. This increases
thickness and builds the upper level ridge.
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• Below the 500 hPa ridge, there is warm advection as-
sociated with the advancing warm front. This increases
thickness and builds the upper level ridge.

• Below the 500 hPa trough, there is cold advection as-
sociated with the advancing cold front. This decreases
thickness and deepens the upper level trough.

Thus in contrast to term (B), term (C) is dominant in the
lower troposphere; but its effect is felt at higher levels.

In words, we may write the geopotential tendency equation:

[
Falling

Pressure

]
∝
[

Positive

Vorticity Advection

]
+

[
Differential

Temperature Advec’n

]
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Tendency due to vorticity
advection

Tendence due to diff’l
temperature advection

19



The Omega Equation

20



The Omega Equation
We will now eliminate the geopotential tendency by com-
bining the momentum and thermodynamic equations, and
obtain an equation for the vertical velocity ω.
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The Omega Equation
We will now eliminate the geopotential tendency by com-
bining the momentum and thermodynamic equations, and
obtain an equation for the vertical velocity ω.

The thermodynamic equation for adiabatic flow is(
∂

∂t
+ Vg · ∇

)(
∂Φ

∂p

)
+ σω = 0

We now write it as

∂Φt

∂p
= −Vg · ∇

(
∂Φ

∂p

)
− σω

We take the Laplacian of this and obtain

∇2∂Φt

∂p
= −∇2

[
Vg · ∇

(
∂Φ

∂p

)]
− σ∇2ω
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Recall that the vorticity equation may be written

∂ζg
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= −Vg·∇(ζg + f ) + f0
∂ω

∂p
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∂p
= −f0

∂

∂p

[
Vg·∇

(
1

f0
∇2Φ + f

)]
+ f 2

0

∂2ω

∂p2

We now have two equations with identical expressions for
the tendency Φt.

So we can subtract one from the other to obtain a diagnostic
equation for the vertical velocity.
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(
σ∇2 + f2

0
∂2

∂p2

)
ω︸ ︷︷ ︸

A

= − f0
∂

∂p

[
−Vg·∇

(
1

f0
∇2Φ + f

)]
︸ ︷︷ ︸

B

+ ∇2
[
Vg · ∇

(
−∂Φ

∂p

)]
︸ ︷︷ ︸

C
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This is the omega equation, a diagnostic relationship for the
vertical velocity ω.
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This is the omega equation, a diagnostic relationship for the
vertical velocity ω.

It provides a relationship between

Term A: The vertical velocity

Term B: The differential advection of vorticity

Term C: The temperature advection.
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Term (A), the left side of the equation, involves spatial sec-
ond derivatives of ω.

For sinusoidal variations it is proportional to the negative
of ω and is thus related directly to the vertical velocity w.
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Term (A), the left side of the equation, involves spatial sec-
ond derivatives of ω.

For sinusoidal variations it is proportional to the negative
of ω and is thus related directly to the vertical velocity w.

Term (B) is the change with pressure of the advection of
absolute vorticity, that is, the differential vorticity advec-
tion.

Term (C) is the Laplacian of minus the temperature advec-
tion, and is thus proportional to the advection of tempera-
ture.

In words, we may write the omega equation as follows

[
Rising

Motion

]
∝
[

Differential

Vorticity Advection

]
+

[
Temperature

Advection

]
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Idealized baroclinic wave. Solid: 500 hPa geopotential con-
tours. Dashed: 1000 hPa contours. Regions of strong ver-
tical motion due to differential vorticity advection are indi-
cated.
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Term (B) is

−f0
∂

∂p

[
−Vg·∇

(
1

f0
∇2Φ + f

)]
∝ ∂

∂z

[
−Vg·∇

(
ζg + f

)]
so it is proportional to differential vorticity advection.
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Term (B) is

−f0
∂

∂p

[
−Vg·∇

(
1

f0
∇2Φ + f

)]
∝ ∂

∂z

[
−Vg·∇

(
ζg + f

)]
so it is proportional to differential vorticity advection.

• At the surface Low , the advection of vorticity is small

• Above this, there is strong positive vorticity advection at
500 hPa

• Therefore, the differential vorticity advection is positive

• This indices an upward vertical velocity

• Correspondingly, w < 0 above the surface High Pressure

• We assume the scale is short enough that relative vortic-
ity advection dominates planetary vorticity advection.

Conclusion: Differential vorticity advection implies:
Rising motion above the surface low
Subsidence above the surface High.
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Idealized baroclinic wave. Solid: 500 hPa geopotential con-
tours. Dashed: 1000 hPa contours. Regions of strong ver-
tical motion due to temperature advection are indicated.
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Term (C) is

+∇2
[
Vg · ∇

(
−∂Φ

∂p

)]
∝ −Vg · ∇T

so it is propotrional to the temperature advection.
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Term (C) is

+∇2
[
Vg · ∇

(
−∂Φ

∂p

)]
∝ −Vg · ∇T

so it is propotrional to the temperature advection.

• Ahead of the surface Low there is warm advection

• Therefore, Term (C) is positive

• So, there is Rising Motion ahead of the Low centre.

• Behind the Low, the cold front is associated with cold
advection

• Hence, there is subsidence at the 500 hPa trough
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Vertical motion due to differential vorticity advection.

Vertical motion due to temperature advection.
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Summary
For synoptic scale motions, the flow is approximately in geo-
strophic balance.

For purely geostrophic flow, the horizontal velocity is de-
termined by the geopotential field.

The QG system allows us to determine both the geostrophic
and ageostrophic components of the flow.

The vertical velocity is also determined by the geopotential
field.

This vertical velocity is just that required to ensure that the
vorticity remains geostrophic and the temperature remains
in hydrostatic balance.

The Tendence Equation allows us to predict the evolution
of the mass field and the diagnostic relationships then yield
all the other fields.
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Recap. on Φt and ω Equations
The Tendency Equation is

[
Falling

Pressure

]
∝
[

Positive

Vorticity Advection

]
+

[
Differential

Temperature Advec’n

]

The Omega Equation is

[
Rising

Motion

]
∝
[

Differential

Vorticity Advection

]
+

[
Temperature

Advection

]

Note the complimentarity between these two equations.
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Exercise:

Study a chart of the 850 hPa or 700 hPa temperature and
geopotential.
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Exercise:

Study a chart of the 850 hPa or 700 hPa temperature and
geopotential.

• Pick out the areas of maximum baroclinicity.

• How are they related to surface Frontal zones?

• Identify where warm and cold advection are taking place.

• Identify regions of vorticity advection.

• Draw deductions about the vertical velocity.

• How is the vertical velocity correlated with the geopoten-
tial field?
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