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Part 8

The Quasigeostrophic System

These lectures follow closely the text of Holton (Chapter 6).
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We will derive a system of equations suitable for qualitative
analysis of mid-latitude weather systems.
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The Quasi-Geostrophic Equations
We will derive a system of equations suitable for qualitative
analysis of mid-latitude weather systems.

We will assume that the motion is hydrostatically balanced
and approximately in geostrophic balance.

In that case, the three-dimensional flow is de-
termined by the pressure field.

Since meteorological measurements are generally referred
to constant pressure surfaces and since the equations are
simpler in pressure coordinates than in height coordinates,
we will use pressure as the vertical variable.

In that case, the three-dimensional flow is de-
termined by the geopotential field.
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The Primitive Equations
The dynamical equations in pressure coordinates are

dV

dt
+ fk×V +∇Φ = 0

∂Φ

∂p
= −RT

p

∇·V +
∂ω

∂p
= 0(

∂

∂t
+ V · ∇

)
T − Sω =

Q̇

cp
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The Primitive Equations
The dynamical equations in pressure coordinates are

dV

dt
+ fk×V +∇Φ = 0

∂Φ

∂p
= −RT

p

∇·V +
∂ω

∂p
= 0(

∂

∂t
+ V · ∇

)
T − Sω =

Q̇

cp

Here the total time derivative is
d

dt
=

∂

∂t
+ (V · ∇)p + ω

∂

∂p
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S = −T∂ ln θ/∂p is the static stability parameter The typical

scale of S is about 5× 10−4 KPa−1 in mid-troposphere).
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Notation:

The vertical velocity is ω = dp/dt,

S = −T∂ ln θ/∂p is the static stability parameter The typical

scale of S is about 5× 10−4 KPa−1 in mid-troposphere).

The primitive equations will now be simplified based on the
assumption that the flow is close to geostrophic balance and
the vertical velocity is much smaller than the horizontal.
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The Momentum Equation
We first partition the horizontal component of the wind into

geostrophic and ageostrophic parts

V = Vg + Va

with the geostrophic wind defined by

Vg =
1

f0
k×∇Φ
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The Momentum Equation
We first partition the horizontal component of the wind into

geostrophic and ageostrophic parts

V = Vg + Va

with the geostrophic wind defined by

Vg =
1

f0
k×∇Φ

In component form this is

ug = − 1

f0

∂Φ

∂y
, vg = +

1

f0

∂Φ

∂x
.

We take a constant “central” value f0 of the Coriolis param-
eter here. This is consistent with the assumption that the
horizontal scale L of the motion is small compared to the
Earth’s radius, L � a.

6



We note also that the geostrophic divergence vasnishes:

δg = ∇·Vg =
∂

∂x

(
− 1

f0

∂Φ

∂y

)
+

∂

∂y

(
1

f0

∂Φ

∂x

)
= 0
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∂Φ

∂y

)
+

∂

∂y

(
1

f0

∂Φ

∂x

)
= 0

The continuity equation may now be written

∇·Va +
∂ω

∂p
= 0

This implies that ω is determined by the ageostrophic com-
ponent of the wind.

The geostrophic vorticity is given by

ζg = k · ∇×Vg =
∂

∂x

(
1

f0

∂Φ

∂x

)
− ∂

∂y

(
− 1

f0

∂Φ

∂y

)
=

1

f0
∇2Φ

so that ζg is determined once Φ is given.
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We note also that the geostrophic divergence vasnishes:

δg = ∇·Vg =
∂

∂x

(
− 1

f0

∂Φ

∂y

)
+

∂

∂y

(
1

f0

∂Φ

∂x

)
= 0

The continuity equation may now be written

∇·Va +
∂ω

∂p
= 0

This implies that ω is determined by the ageostrophic com-
ponent of the wind.

The geostrophic vorticity is given by

ζg = k · ∇×Vg =
∂

∂x

(
1

f0

∂Φ

∂x

)
− ∂

∂y

(
− 1

f0

∂Φ

∂y

)
=

1

f0
∇2Φ

so that ζg is determined once Φ is given.

Moreover, if ζg is given, the Poisson equation

∇2Φ = f0ζg

may be solved for the geopotential. Then Vg follows imme-
diately.
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We can introduce characteristic scales for the motion. Thus,
L is the typical horizontal scale, H the vertical scale and
T = L/V the advective time scale.
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Scale Analysis
We can introduce characteristic scales for the motion. Thus,
L is the typical horizontal scale, H the vertical scale and
T = L/V the advective time scale.

Then the size of the advection relative to the Coriolis term
is

V · ∇V

fk×V
∼ V

f0L
≡ Ro

where Ro is the Rossby Number.

For the systems of interest |Va| � |Vg| or, more specifically,

|Va|
|Vg|

∼ Ro

We can then replace the velocity by its geostrophic com-
ponent, and ignore the vertical advection in the total time
derivative:

dV

dt
≈

(
d

dt

)
g
Vg =

(
∂

∂t
+ Vg·∇

)
Vg
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Exercise: Using the vector relationship k · ∇ ×V = ∇ ·V × k and the def-

inition Vg = (1/f0)k×∇Φ, derive the above expression for the geostrophic

vorticity.

? ? ?
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Exercise: Using the vector relationship k · ∇ ×V = ∇ ·V × k and the def-

inition Vg = (1/f0)k×∇Φ, derive the above expression for the geostrophic

vorticity.

? ? ?

We wish to retain the variation of the Coriolis parameter
with latitude y = a(φ − φ0) as it has important dynamical
consequences.

Expanding in a Taylor series, we write the first two terms

f = f0 + βy

where β = (df/dy)0 = 2Ω cos φ0/a with y = 0 at φ = φ0.

This is the mid-latitude β-plane approximation.

The ratio of the two terms is
βy

f0
∼ cos φ0L

sin φ0a
∼ L

a
∼ Ro � 1
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We now consider the Coriolis and pressure gradient terms

fk×V +∇Φ

The term omitted is O(Ro).
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We now consider the Coriolis and pressure gradient terms

fk×V +∇Φ

The term omitted is O(Ro).

Expanding in geostrophic and ageostrophic parts, we get

fk×V +∇Φ = (f0 + βy)k× (Vg + Va)− f0k×Vg

≈ f0k×Va + βy k×Vg
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We now consider the Coriolis and pressure gradient terms

fk×V +∇Φ

The term omitted is O(Ro).

Expanding in geostrophic and ageostrophic parts, we get

fk×V +∇Φ = (f0 + βy)k× (Vg + Va)− f0k×Vg

≈ f0k×Va + βy k×Vg

The horizontal momentum equation may now be written(
d

dt

)
g

Vg + f0k×Va + βyk×Vg = 0
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We now consider the Coriolis and pressure gradient terms

fk×V +∇Φ

The term omitted is O(Ro).

Expanding in geostrophic and ageostrophic parts, we get

fk×V +∇Φ = (f0 + βy)k× (Vg + Va)− f0k×Vg

≈ f0k×Va + βy k×Vg

The horizontal momentum equation may now be written(
d

dt

)
g

Vg + f0k×Va + βyk×Vg = 0

All the terms here are O(Ro) and neglected terms are O(Ro2).
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The Thermodynamic Equation
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Recall that the vertical advection of temperature is included
in the Sω term (Holton, Eq. (3.6), p. 59).
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The Thermodynamic Equation
Recall that the vertical advection of temperature is included
in the Sω term (Holton, Eq. (3.6), p. 59).

We can use the geostrophic wind in the expression for hor-
izontal advection.

Moreover, we separate the temperature field into a basic
part varying only in the vertical and a part depending on
all coordinates and time:

T = T0(p) + T ′(x, y, p, t)

We can replace T by T0 and θ by θ0 in evaluating the static
stability:

S ≡ −T
∂ ln θ

∂p
, S0 ≡ −T0

d ln θ0

dp
, S ≈ S0

Note that S0 depends only on pressure p.
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The temperature may be given in terms of the geopotential
by means of the hydrostatic equation

∂Φ

∂p
= −1

ρ
= −RT

p
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The temperature may be given in terms of the geopotential
by means of the hydrostatic equation

∂Φ

∂p
= −1

ρ
= −RT

p

Then the thermodynamic equation becomes(
∂

∂t
+ Vg · ∇

) (
∂Φ

∂p

)
+ σω = −κQ̇

p

where κ = R/cp and σ is another measure of static stability:

σ ≡ R

p
S0 = −RT0

p

d ln θ0

dp
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where κ = R/cp and σ is another measure of static stability:
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d ln θ0
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The scale of σ in the mid-troposphere is ∼ 2.5×10−6 m2Pa−2s−2.
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The temperature may be given in terms of the geopotential
by means of the hydrostatic equation

∂Φ

∂p
= −1

ρ
= −RT

p

Then the thermodynamic equation becomes(
∂

∂t
+ Vg · ∇

) (
∂Φ

∂p

)
+ σω = −κQ̇

p

where κ = R/cp and σ is another measure of static stability:

σ ≡ R

p
S0 = −RT0

p

d ln θ0

dp

The scale of σ in the mid-troposphere is ∼ 2.5×10−6 m2Pa−2s−2.

Although σ varies with height, we will assume that it is a
constant. This simplifies the analysis.
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The Quasigeostrophic Equations
The complete system of Quasigeostrophic Equations is:(

∂

∂t
+ Vg · ∇

)
Vg + f0k×Va + βyk×Vg = 0(

∂

∂t
+ Vg · ∇

) (
∂Φ

∂p

)
+ σω = −κQ̇

p

∇·Va +
∂ω

∂p
= 0

Vg =
1

f0
k×∇Φ

These 4 equations (6 scalar equations) form a complete sys-
tem for the variables Φ, Vg, Va and ω (6 scalar variables).

However, they are not in a form convenient for prediction.
For this purpose, we derive an equation for the geostrophic
vorticity.
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