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In warm clouds, droplets can grow by condensation in a
supersaturated environment and by colliding and coalescing
with other cloud droplets.

We consider these two growth processes to see if they can
explain the formation of rain in warm clouds.

? ? ?

(A) Growth by Condensation

We saw from Kelvin’s Equation that, if the supersaturation
is large enough to activate a droplet, the droplet will con-
tinue to grow. We will now consider the rate at which such
a droplet grows by condensation.



Consider first an isolated droplet, with radius r at time t,
in a supersaturated environment in which the water vapour
density at a large distance from the droplet is ρv(∞) and the
water vapour density adjacent to the droplet is ρv(r).
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Consider first an isolated droplet, with radius r at time t,
in a supersaturated environment in which the water vapour
density at a large distance from the droplet is ρv(∞) and the
water vapour density adjacent to the droplet is ρv(r).

We assume that the system is in equilibrium, i.e., there is
no accumulation of water vapour in the air surrounding the
drop.

Then, the rate of increase in the mass of the droplet at time
t is equal to the flux of water vapour across any spherical
surface of radius R centered on the droplet.

We define the diffusion coefficient D of water vapour in air
as the rate of mass flow of water vapour across a unit area
in the presence of a unit gradient in water vapour density.

Then the rate of increase in the mass M of the droplet is
given by

dM

dt
= 4πR2D

dρv

dR
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dM

dt
= 4πR2D

dρv

dR
Here ρv is the water vapour density at distance R(> r) from
the droplet.
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Since, under steady-state conditions, dM/dt is independent
of R, the above equation can be integrated as follows
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Again,
dM

dt
= 4πR2D

dρv
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Here ρv is the water vapour density at distance R(> r) from
the droplet.

Since, under steady-state conditions, dM/dt is independent
of R, the above equation can be integrated as follows

dM

dt

∫ R=∞

R=r

dR

R2
= 4πD

∫ ρv(∞)

ρv(r)
dρv

This gives
1

r

dM

dt
= 4πD[ρv(∞)− ρv(r)]

Substituting M = 4
3πr3ρ`, where ρ` is the density of liquid

water, into this last expression, we obtain

r
dr

dt
=

D

ρ`
[ρv(∞)− ρv(r)]
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Finally, using the ideal gas equation for water vapour,

r
dr

dt
=

Dρv(∞)

ρ`

e(∞)− e(r)

e(∞)
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Here e(∞) is the water vapour pressure in the ambient air
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= S

where S is the supersaturation of the ambient air (expressed
as a fraction rather than a percentage).
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sure adjacent to the droplet.

If e is not too different from es, then

e(∞)− e(r)

e(∞)
≈ e(∞)− es

es
=

(
e(∞)

es
− 1

)
= S

where S is the supersaturation of the ambient air (expressed
as a fraction rather than a percentage).

Hence, we get

r
dr

dt
= G`S

where G` = Dρv(∞)/ρ`.
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Again,

r
dr

dt
= G`S

where G` = Dρv(∞)/ρ`, which is constant for a given envi-
ronment.

It can be seen from this that, for fixed values of G` and
the supersaturation S, the rate of increase dr/dt is inversely
proportional to the radius r of the droplet.

We write
r dr = G`S dt

which can be integrated immediately to give

r =
√

2G`St so that r ∝ t1/2

Thus, droplets growing by condensation initially increase in
radius very rapidly but their rate of growth diminishes with
time (see following figure).
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Schematic curves of droplet growth (a) by condensation from the vapour

phase (blue curve) and (b) by collection of droplets (red curve).
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Since the rate of growth of a droplet by condensation is
inversely proportional to its radius, the smaller activated
droplets grow faster than the larger droplets.
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Since the rate of growth of a droplet by condensation is
inversely proportional to its radius, the smaller activated
droplets grow faster than the larger droplets.

Consequently, in this simplified model, the sizes of the droplets
in the cloud become increasingly uniform with time (that
is, the droplets approach a monodispersed distribution).

Comparisons of cloud droplet size distributions measured
a few hundred meters above the bases of non-precipitating
warm cumulus clouds with droplet size distributions com-
puted assuming growth by condensation for about 5 min
show good agreement (figure follows).
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Cloud droplet size distribution measured 244 m above the base of a

warm cumulus cloud (red) and the corresponding computed droplet

size distribution assuming growth by condensation only (blue).
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Note that the droplets produced by condensation during
this time period only extend up to about 10 µm in radius.
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growing by condensation decreases with time.

It is clear, therefore, as first noted by Reynolds in 1877, that
growth by condensation alone in warm clouds is much too
slow to produce raindrops with radii of several millimeters.

Yet, rain does form in warm clouds!!!

For a cloud droplet 10µm in radius to grow to a raindrop
1mm in radius, an increase in volume of one millionfold
is required! However, only about one droplet in a million
(about 1 liter−1) in a cloud has to grow by this amount for
the cloud to rain.

The enormous increases in size required to transform cloud
droplets into raindrops is illustrated by the next diagram.
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Relative sizes of cloud droplets and raindrops; r is the radius in mi-

crometers, n the number per liter of air, and v the terminal fall speed

in centimeters per second.
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(B) Growth by Collection

In warm clouds the growth of some droplets from the rel-
atively small sizes achieved by condensation to the sizes of
raindrops is achieved by the collision and coalescence of
droplets.
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(B) Growth by Collection

In warm clouds the growth of some droplets from the rel-
atively small sizes achieved by condensation to the sizes of
raindrops is achieved by the collision and coalescence of
droplets.

Since the terminal fall speed increases with the size of the
droplet, larger droplets have a higher than average terminal
fall speed.

Thus, they will collide with smaller droplets lying in their
paths.
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due to gravity is much greater than the frictional drag on
the body due to the air, and if the density of the body is
much greater than the density of air.

Consider, the more general case of a body of density ρ′ and
volume V falling through still air of density ρ.

The downward force acting on the body due to gravity is
ρ′V g.

The upward buoyancy force on the body, due to the mass of
air displaced by the body, is ρV g (by Archimedes’ Principle).

In addition, the air exerts a drag force Fdrag on the body,
which acts upwards.

12



The body will attain a steady terminal fall speed when these
three forces are in balance:

ρ′V g = ρV g + Fdrag
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If the body is a sphere of radius r then

4

3
πr3g(ρ′ − ρ) = Fdrag

Stokes’ drag force: For spheres with radius ≤ 20 µm,

Fdrag = 6πηrv

where v is the terminal fall speed of the body and η the
viscosity of the air.

From the above equations, it follows that

v =
2

9

g(ρ′ − ρ)r2

η
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If ρ′� ρ, which it is for liquid and solid objects,
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η
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The terminal fall speeds of 10 and 20 µm radius water droplets
in air at 1013 hPa and 20◦C are 0.3 and 1.2 cm s−1 respec-
tively.

The terminal fall speed of a water droplet with radius 40 µm
is 4.7 cm s−1, which is about 10% less than given by the
above equation.

Water drops of radius 100µm, 1mm and 4mm have terminal
fall speeds of 25.6, 403 and 883 cm s−1 respectively, which
are very much less than given by the equation.

This is because as a drop increases in size it becomes in-
creasingly non-spherical and has an increasing wake. This
gives rise to a drag force that is much greater than that
given above.
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Collision and Coalescence
Consider a single drop of radius r1 that is overtaking a
smaller droplet of radius r2.
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Collision and Coalescence
Consider a single drop of radius r1 that is overtaking a
smaller droplet of radius r2.

As the collector drop approaches the droplet, the latter will
tend to follow the streamlines around the collector drop and
thereby might avoid capture.

The collision efficiency E of a droplet of radius r2 with a
drop of radius r1 is defined as

E =
y2

(r1 + r2)2

where y is the distance from the central line for which the
droplet just makes a grazing collision with the large drop
(see Figure).
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Relative motion of a small
droplet (blue) with respect to
a collector drop (red). y is
the maximum impact param-
eter for a droplet (radius r2)
with a collector drop (radius
r1).
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The next issue is whether or not a droplet is captured (i.e.,
does coalescence occur?) when it collides with a larger drop.
Droplets can bounce off one another or off a plane surface
of water, as illustrated below.
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The next issue is whether or not a droplet is captured (i.e.,
does coalescence occur?) when it collides with a larger drop.
Droplets can bounce off one another or off a plane surface
of water, as illustrated below.

This occurs when air becomes trapped between the colliding
surfaces, so that they deform without actually touching. In
effect, the droplet rebounds on a cushion of air.

Left: A stream of water droplets, about 100µm in diameter,

rebounding from a plane surface of water. Right: When the angle

between the stream of droplets and the surface of the water is

increased beyond a critical value, the droplets coalesce with the water.
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The coalescence effciency E′ of a droplet of radius r2 with a
drop of radius r1 is defined as the fraction of collisions that
result in a coalescence.
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The coalescence effciency E′ of a droplet of radius r2 with a
drop of radius r1 is defined as the fraction of collisions that
result in a coalescence.

The collection efficiency Ec is equal to EE′.

? ? ?

Let us now consider a collector drop of radius r1 that has a
terminal fall speed v1.

Let us suppose that this drop is falling in still air through a
cloud of equal sized droplets of radius r2 with terminal fall
speed v2.

We will assume that the droplets are uniformly distributed
in space and that they are collected uniformly at the same
rate by all collector drops of a given size.

This so-called continuous collection model is illustrated in
the following diagram.
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Schematic to illustrate the continuous collection model for
the growth of a cloud drop by collisions and coalescence.
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The rate of increase in mass M of the large drop due to
collisions is given by

dM

dt
= πr2

1(v1 − v2)w`Ec

where w` is the LWC (in kgm−3) of the cloud droplets of
radius r2.
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The rate of increase in mass M of the large drop due to
collisions is given by

dM

dt
= πr2

1(v1 − v2)w`Ec

where w` is the LWC (in kgm−3) of the cloud droplets of
radius r2.

Substituting M = 4
3πr3

1ρ` here, where ρ` is the density of
liquid water, we obtain

dr1

dt
=

(v1 − v2)w`Ec

4ρ`

If v1 � v2 and we assume that the coalescence effciency is
unity, then

dr1

dt
=

v1w`E

4ρ`

Since v1 and E both increase as r1 increases, it follows that
dr1/dt increases with increasing r1; that is, the growth of a
drop by collection is an accelerating process.
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Schematic curves of droplet growth (a) by condensation from the vapour

phase (blue curve) and (b) by collection of droplets (red curve).
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This “accelerating” behavior is illustrated by the red curve
in the figure above, which indicates negligible growth by
collection until the collector drop has reached a radius of
about 20µm.
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This “accelerating” behavior is illustrated by the red curve
in the figure above, which indicates negligible growth by
collection until the collector drop has reached a radius of
about 20µm.

It can be seen from the Figure that for small cloud droplets
growth by condensation is initially dominant but, beyond a
certain radius, growth by collection dominates and rapidly
accelerates.

Eventually, as the drop grows, v1 becomes greater than the
updraft velocity w and the drop begins to fall through the
updraft and will eventually pass through the cloud base and
may reach the ground as a raindrop.

Provided that a few drops are large enough to be reasonably
efficient collectors (i.e., with radius ≥ 20 µm), and the cloud
is deep enough and contains suffcient liquid water, raindrops
should grow within reasonable time periods (∼ 1hour).
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This “accelerating” behavior is illustrated by the red curve
in the figure above, which indicates negligible growth by
collection until the collector drop has reached a radius of
about 20µm.

It can be seen from the Figure that for small cloud droplets
growth by condensation is initially dominant but, beyond a
certain radius, growth by collection dominates and rapidly
accelerates.

Eventually, as the drop grows, v1 becomes greater than the
updraft velocity w and the drop begins to fall through the
updraft and will eventually pass through the cloud base and
may reach the ground as a raindrop.

Provided that a few drops are large enough to be reasonably
efficient collectors (i.e., with radius ≥ 20 µm), and the cloud
is deep enough and contains suffcient liquid water, raindrops
should grow within reasonable time periods (∼ 1hour).

Clearly, deep clouds with strong updrafts should produce
rain quicker than shallower clouds with weak updrafts.
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Computer simulation
Much of what is currently known about both dynamical
and microphysical cloud processes can be incorporated into
computer models and numerical experiments can be carried
out.
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Computer simulation
Much of what is currently known about both dynamical
and microphysical cloud processes can be incorporated into
computer models and numerical experiments can be carried
out.

Numerical predictions of the mass spectrum of drops in
(a) a warm marine cumulus cloud, and
(b) a warm continental cumulus cloud

after about one hour of growth.
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The Figure above illustrates the effects of these differences
in cloud microstructures on the development of larger drops.
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The Figure above illustrates the effects of these differences
in cloud microstructures on the development of larger drops.

The CCN spectra used as input data to the two clouds were
based on measurements, with the continental air having
much higher concentrations of CCN than the marine air
(about 200 versus 45 cm−3 at 0.2% supersaturation).

It can be seen that the cumulus cloud in marine air develops
some drops between 100 and 1000µm in radius (that is,
raindrops), whereas, the continental cloud does not contain
any droplets greater than about 20µm in radius.

These markedly different developments are attributable to
the fact that the marine cloud contains a small number of
drops that are large enough to grow by collection, whereas
the continental cloud does not.

These model results support the observation that a marine
cumulus cloud is more likely to rain than a continental cu-
mulus cloud with similar updraft velocity, LWC and depth.
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Shape and Size of Raindrops
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Shape and Size of Raindrops
Raindrops in free fall are often depicted as tear-shaped.

In fact, as a drop increases in size above about 1mm in
radius it becomes flattened on its underside in free fall, and
it gradually changes in shape from essentially spherical to
increasingly resemble a parachute (or jellyfish).

If the initial radius of the drop exceeds about 2.5mm, the
shape becomes a large inverted bag, with a toroidal ring of
water around its lower rim.

Laboratory and theoretical studies indicate that when the
bag bursts, it produces a fine spray of droplets and the
toroidal ring breaks up into a number of large drops (see
Figure to follow).
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Sequence of high-speed pho-

tographs showing how a

large drop in free fall forms a

parachute-like shape with a

toroidal ring of water around

its lower rim. Time inter-

val between photographs =

1 ms.
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The largest raindrops ever observed have diameters of about
0.8− 1 cm. Drops larger than this must be dynamically un-
stable.
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? ? ?

Zipf’s Law: In the English language, the probability of encountering

the nth most common word is given roughly by P (n) = 0.1/n for n up

to 1000 or so. The law breaks down for less frequent words, since the

harmonic series diverges.
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