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Let us assume the values f = 10−4 s−1 and K = 5m2s−1.

The effective depth is D = π/γ.

With f = 10−4 s−1 and K = 5m2s−1 we have

D =
π

γ
= π

√
2K

f
= π

√
2× 5

10−4
= 993 m ≈ 1 km

Thus, the effective depth of the Ekman boundary layer
is about one kilometre.

Note that D depends on the values of f and K so the par-
ticular value 1 km is more an indication of the scale that a
sharp quantitative estimate.
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Remarks on the Ekman Spiral
• The Ekman theory predicts a cross-isobar flow of 45◦ at

the lower boundary. This is not in agreement with obser-
vations

• Better agreement can be obtained by coupling the Ek-
man layer to a surface layer where the wind direction is
unchanging and the speed varies logarithmically

• This can be done by taking a boundary condition

V ‖ ∂V

∂z
@ z = zB

• The solution is then called a modified Ekman spiral.

The modified Ekman Layer is discussed on Holton (§5.3.6).
We will not discuss it here.
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Vertical Velocity
The Ekman solution implies cross-isobar flow in the
Planetary Boundary Layer (PBL).
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For a steady-state solution, the convergence towards lower
pressure centres and divergence from higher pressure cen-
tres has two implications:

• There must be upward velocity at the top of the PBL in
regions of low pressure.

• There must be downward velocity at the top of the PBL
in regions of high pressure.

These implications follow from consideration of the
conservation of mass.

We will now calculate the vertical velocity at the top of the
Ekman layer.
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The cross-isober mass transport through a column of unit
width extending through the entire PBL is the vertical in-
tegral of ρ0v through the layer z = 0 to z = D = π/γ:

M =

∫ D

0
ρ0v dz (kgm−1s−1)

Now substitute the Ekman solution for v:

v = uge
−γz sin(γz) = uge

−πz/D sin(πz/D)

The result is thus

M =

∫ D

0
ρ0ug exp(−πz/D) sin(πz/D) dz
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Since ρ0 and ug are assumed to be constant, we have

M = ρ0ug

∫ D
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exp(−πz/D) sin(πz/D) dz
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Since ρ0 and ug are assumed to be constant, we have

M = ρ0ug

∫ D

0
exp(−πz/D) sin(πz/D) dz

Defining a new vertical variable Z = πz/D, this is

M = ρ0ug

(
D

π

) ∫ π

0
exp(−Z) sin Z dZ

Using a standard integral, this may be written

M = 1
2

(
D

π

)
ρ0ug

Here we have used the fact that

e−π ≈ 0.0432 � 1
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2(1 + e−π) ≈ 1
2

Solution:
• Evaluate the integral analytically

• Consult a Table of Integrals (e.g., GR2.663)

• Evaluate by numerical integration (MatLab)

• Use Maple to evaluate it.

Note that the analytical evaluation of the integral is straight-
forward.

For example, it can be done by means of integration by
parts (twice), or by expressing the sin-function in terms of
complex exponentials.
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Next, integrate the continuity equation through the PBL:∫ D

0

(
∂u

∂x
+

∂v

∂y
+

∂w

∂z

)
dz =

∫ D

0
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∂x
+

∂v

∂y

)
dz + [w(D)− w(0)] = 0
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We now note that the geostrophic vorticity is given by

ζg =

(
∂vg

∂x
−

∂ug
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)
= −

∂ug
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This is the so-called Ekman Pumping formula:

w(D) =

(
1
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)
Dζg

It shows that the vertical velocity at the top of the Ekman
Layer is proportional to the geostrophic vorticity.

In the vicinity of Low Pressure we have[
Cyclonic

Flow

]
⇐⇒

[
Positive

Vorticity

]
⇐⇒

[
Upward

Velocity

]
In the vicinity of High Pressure we have[

Antiyclonic

Flow

]
⇐⇒

[
Negative

Vorticity

]
⇐⇒

[
Downward

Velocity

]
Note on Dines Mechanism to be added later.
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(
1
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)
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Suppose D = 1km and ζ = 5× 10−5 s−1. Then

w(D) =

(
1

2π

)
× 103 × (5× 10−5) =

5× 10−2

2π
≈ 8 mm s−1 ∼ 1 cm s−1

This is a relatively small value for vertical velocity, but it
is important as it may extend over a large area and persist
for a long time.

If it is sufficient to lift air to its LCL, then latent heat release
allows stronger updrafts within the convective clouds.
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Storms in Teacups

Standing waves in a tea cup, induced by the propeller rotation of an

airoplane.
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Cyclostrophic Balanced Rotation
We consider now another flow configuration. We ignore the
rotation of the earth.

We use cylindrical polar coordinates (r, θ, z) and correspond-
ing velocity components (U, V,W ).

We consider a cyclostrophically balanced vortex spinning in
solid rotation.

That is, the azimuthal velocity depends linearly on the ra-
dial distance:

Ug = 0 , Vg = ω r

where ω = θ̇ is the constant angular velocity.

The centrifugal force is given, as usual, by

V 2

r
= ω2r
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For steady flow, the centrifugal force is balanced by the
pressure gradient force:

1

ρ0

∂p

∂r
= ω2r
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a paraboloid of revolution).
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This can be integrated immediately to give

p = p0 + 1
2ρ0ω

2r2

so the surface has the form of a parabola (or more correctly
a paraboloid of revolution).

Near the bottom boundary, the flow is slowed by the effect
of viscosity. Then, the centrifugal force is insufficient to
balance the pressure gradient force.

As a result, there is radial inflow near the bottom. By
continuity of mass, this must result in upward motion near
the centre.

Furthermore, outflow must occur in the fluid above the
boundary layer.
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This secondary circulation is completed by downward flow
near the edges of the container.

At the bottom surface, the flow must vanish completely.

An analysis similar to the case of zonal flow again gives
a solution in the form of an Ekman spiral. But now the
quantity corresponding to the Coriolis parameter is 2ω, so
we have γ =

√
ω/K.

The boundary layer depth is again D = π/γ.

The vertical velocity at the top of the boundary layer is

w(D) =

(
1

2π

)
D ζg

The geostrophic vorticity is given, in cylindrical
coordinates, by

ζg = K · ∇ ×Vg =
1

r

[
∂(rVg)

∂r
−

∂Ug

∂θ

]
=

1

r

∂(ωr2)

∂r
= 2ω
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Thus, the Ekman pumping is

w(D) =
ωD

π
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to the primary (solid rotation) circulation. But it is dynam-
ically important.
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Thus, the Ekman pumping is

w(D) =
ωD

π

Let us suppose D = 1 cm and ω = 1 c.p.s. Then

w(D) =
2π s−1 × 1 cm

π
= 2 cm s−1

We may compare this to the azimuthal velocity.
At r = 5 cm we have

Vg = ω r = 2π s−1 × 5 cm ≈ 30 cm s−1

Thus, the secondary circulation is relatively weak compared
to the primary (solid rotation) circulation. But it is dynam-
ically important.

Exercise: Create a storm in a teacup:
Stir your tea (no milk) and observe the leaves.
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Exercise:
• Calculate the mass influx through the sides of a cyclone.

• Equate this to the upward flux through the top of the
boundary layer.

• Deduce an expression for the vertical velocity.
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Sketch of Solution:

From the Ekman solution, the mean inward velocity is

V̄inward = 1
2ug

(
D
π

)
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Sketch of Solution:

From the Ekman solution, the mean inward velocity is

V̄inward = 1
2ug

(
D
π

)
The horizontal inward mass transport is

MH = ρ0V̄inward = 1
2ρ0ug

(
D
π

)
× 2πR = ρ0ugDR

The vertical mass transport through the top is

ρ0w(D)× πR2

These must be equal, so

w(D) =
ρ0ugDR

ρ0 × πR2
=

D

πR
ug

For solid body rotation, ug = ωR and the geostrophic vortic-
ity is ζg = 2ω, so

w(D) =
D

2π
ζg

20



Spin-Down
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Spin-Down
We estimate the characteristic spin-down time of the
secondary circulation for a barotropic atmosphere.
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Spin-Down
We estimate the characteristic spin-down time of the
secondary circulation for a barotropic atmosphere.

The barotropic vorticity equation is

dζg

dt
= −f

(
∂u

∂x
+

∂v

∂y

)
= f

∂w

∂z

We integrate this through the free atmopshere, that is, from
z = D to z = H, where H is the height of the tropopause.

The result is

(H −D)
dζg

dt
= f [w(H)−W (D)]

Assuming w(H) = 0 and substituting the Ekman pumping
for W (D) we get

dζg

dt
= − f

(H −D)

(
1

2π

)
Dζg
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Assuming H � D, this is

dζg

dt
= − fD

2πH
ζg
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Assuming H � D, this is

dζg

dt
= − fD

2πH
ζg

If we define the time-scale

τEkman =
2πH

fD

the equation for vorticity may be written

dζg

dt
= − 1

τEkman
ζg
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2πH

fD

the equation for vorticity may be written

dζg

dt
= − 1

τEkman
ζg

The solution for the vorticity is

ζg = ζg(0) exp(−t/τEkman)
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Assuming H � D, this is

dζg

dt
= − fD

2πH
ζg

If we define the time-scale

τEkman =
2πH

fD

the equation for vorticity may be written

dζg

dt
= − 1

τEkman
ζg

The solution for the vorticity is

ζg = ζg(0) exp(−t/τEkman)

The size of τEkman may be estimated for typical values:

τEkman =
2πH

fD
=

2π × 104

10−4 × 103
≈ 6× 105 s

which is about seven days.
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We may compare this to the time-scale for eddy diffusion.
The diffusion equation is

∂u

∂t
= K

∂2u

∂z2
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U
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=
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For the values already assumed (K = 5m2 s−1 and H = 10km)
we get

τDiff =
H2

K
≈ 108

5
= 2× 107 s

which is of the order of 225 days, about 30 times longer
than τEkman.
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We may compare this to the time-scale for eddy diffusion.
The diffusion equation is

∂u

∂t
= K

∂2u

∂z2

If τDiff is the diffusion time-scale and H the vertical scale for
diffusion, we get

U

τDiff
=

KU

H2

For the values already assumed (K = 5m2 s−1 and H = 10km)
we get

τDiff =
H2

K
≈ 108

5
= 2× 107 s

which is of the order of 225 days, about 30 times longer
than τEkman.

Thus, in the absence of convective clouds, Ekman spin-down
is much more effective than eddy diffusion.

However, cumulonumbus convection can produce rapid trans-
port of heat and momentum through the entire troposphere.
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Ekman Layer in the Ocean

Ekman spiral in the ocean.
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Typical La Niña Pattern

Mean sea surface temperature, eastern Pacific Ocean
5 September to 5 October, 1998.
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End of §5.5
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