The Ekman Spiral

We consider now an elegant method of describing the wind in the boundary layer, due originally to V. Walfrid Ekman.

The Ekman Spiral

We consider now an elegant method of describing the wind in the boundary layer, due originally to V. Walfrid Ekman. The momentum equations will be taken in the form

$$
\begin{aligned}
& \frac{d u}{d t}-f v+\frac{1}{\rho_{0}} \frac{\partial p}{\partial x}+\frac{\partial}{\partial z}\left(\overline{w^{\prime} u^{\prime}}\right)=0 \\
& \frac{d v}{d t}+f u+\frac{1}{\rho_{0}} \frac{\partial p}{\partial y}+\frac{\partial}{\partial z}\left(\overline{w^{\prime} v^{\prime}}\right)=0
\end{aligned}
$$

The Ekman Spiral

We consider now an elegant method of describing the wind in the boundary layer, due originally to V. Walfrid Ekman. The momentum equations will be taken in the form

$$
\begin{aligned}
& \frac{d u}{d t}-f v+\frac{1}{\rho_{0}} \frac{\partial p}{\partial x}+\frac{\partial}{\partial z}\left(\overline{w^{\prime} u^{\prime}}\right)=0 \\
& \frac{d v}{d t}+f u+\frac{1}{\rho_{0}} \frac{\partial p}{\partial y}+\frac{\partial}{\partial z}\left(\overline{w^{\prime} v^{\prime}}\right)=0
\end{aligned}
$$

When the eddy fluxes are parameterized in terms of the mean flow, as indicated in the previous lecture, the momentum equations become

$$
\begin{aligned}
& -f v+\frac{1}{\rho} \frac{\partial p}{\partial x}-K \frac{\partial^{2} u}{\partial z^{2}}=0 \\
& +f u+\frac{1}{\rho} \frac{\partial p}{\partial y}-K \frac{\partial^{2} v}{\partial z^{2}}=0
\end{aligned}
$$

Exercise: The Ekman Spiral

Exercise: The Ekman Spiral

For steady, horizontally homogeneous, incompressible flow the momentum equations for the atmospheric boundary layer may be written

$$
\begin{aligned}
& -f v+\frac{1}{\rho} \frac{\partial p}{\partial x}-K \frac{\partial^{2} u}{\partial z^{2}}=0 \\
& +f u+\frac{1}{\rho} \frac{\partial p}{\partial y}-K \frac{\partial^{2} v}{\partial z^{2}}=0
\end{aligned}
$$

where K and f may be assumed to be constant.

Exercise: The Ekman Spiral

For steady, horizontally homogeneous, incompressible flow the momentum equations for the atmospheric boundary layer may be written

$$
\begin{aligned}
& -f v+\frac{1}{\rho} \frac{\partial p}{\partial x}-K \frac{\partial^{2} u}{\partial z^{2}}=0 \\
& +f u+\frac{1}{\rho} \frac{\partial p}{\partial y}-K \frac{\partial^{2} v}{\partial z^{2}}=0
\end{aligned}
$$

where K and f may be assumed to be constant.
Defining $\gamma=\sqrt{f / 2 K}$ and assuming that the motion vanishes at $z=0$ and tends to the zonal geostrophic value $\mathbf{V}=\left(u_{g}, 0\right)$ in the free atmosphere, derive the equations

$$
\begin{aligned}
& u=u_{g}\left(1-e^{-\gamma z} \cos \gamma z\right) \\
& v=u_{g} e^{-\gamma z} \sin \gamma z
\end{aligned}
$$

corresponding to the Ekman spiral.

Solution:

Solution:

There are two alternatives for solving this problem:

Solution:

There are two alternatives for solving this problem:

- Eliminate one of the velocities, say v, in favour of the other. This yields a fourth-order o.d.e. for u.

Solution:

There are two alternatives for solving this problem:

- Eliminate one of the velocities, say v, in favour of the other. This yields a fourth-order o.d.e. for u.
- Introduce a complex velocity $w=u+i v$. This seems curious, but it yields a more convenient second-order o.d.e.

Solution:

There are two alternatives for solving this problem:

- Eliminate one of the velocities, say v, in favour of the other. This yields a fourth-order o.d.e. for u.
- Introduce a complex velocity $w=u+i v$. This seems curious, but it yields a more convenient second-order o.d.e.

We will choose the second alternative.

Solution:

There are two alternatives for solving this problem:

- Eliminate one of the velocities, say v, in favour of the other. This yields a fourth-order o.d.e. for u.
- Introduce a complex velocity $w=u+i v$. This seems curious, but it yields a more convenient second-order o.d.e.

We will choose the second alternative.
Therefore, let us define

$$
w=u+i v
$$

Solution:

There are two alternatives for solving this problem:

- Eliminate one of the velocities, say v, in favour of the other. This yields a fourth-order o.d.e. for u.
- Introduce a complex velocity $w=u+i v$. This seems curious, but it yields a more convenient second-order o.d.e.

We will choose the second alternative.
Therefore, let us define

$$
w=u+i v
$$

We define the components of the geostrophic velocity as

$$
u_{G}=-\frac{1}{f \rho} \frac{\partial p}{\partial y} \quad v_{G}=+\frac{1}{f \rho} \frac{\partial p}{\partial x}
$$

and the corresponding complex geostrophic velocity as

$$
w_{G}=u_{G}+i v_{G}
$$

Now we may write the equations of motion as

$$
\begin{aligned}
& -f v+f v_{G}-K \frac{\partial^{2} u}{\partial z^{2}}=0 \\
& +f u-f u_{G}-K \frac{\partial^{2} v}{\partial z^{2}}=0
\end{aligned}
$$

Now we may write the equations of motion as

$$
\begin{aligned}
& -f v+f v_{G}-K \frac{\partial^{2} u}{\partial z^{2}}=0 \\
& +f u-f u_{G}-K \frac{\partial^{2} v}{\partial z^{2}}=0
\end{aligned}
$$

Now multiply the first equation by i and subtract it from the second:

$$
+i f v-i f v_{G}+i K \frac{\partial^{2} u}{\partial z^{2}}+f u-f u_{G}-K \frac{\partial^{2} v}{\partial z^{2}}=0
$$

Now we may write the equations of motion as

$$
\begin{aligned}
& -f v+f v_{G}-K \frac{\partial^{2} u}{\partial z^{2}}=0 \\
& +f u-f u_{G}-K \frac{\partial^{2} v}{\partial z^{2}}=0
\end{aligned}
$$

Now multiply the first equation by i and subtract it from the second:

$$
+i f v-i f v_{G}+i K \frac{\partial^{2} u}{\partial z^{2}}+f u-f u_{G}-K \frac{\partial^{2} v}{\partial z^{2}}=0
$$

Rearranging terms we get

$$
f w-f w_{G}+i K \frac{\partial^{2} w}{\partial z^{2}}=0
$$

Now we may write the equations of motion as

$$
\begin{aligned}
& -f v+f v_{G}-K \frac{\partial^{2} u}{\partial z^{2}}=0 \\
& +f u-f u_{G}-K \frac{\partial^{2} v}{\partial z^{2}}=0
\end{aligned}
$$

Now multiply the first equation by i and subtract it from the second:

$$
+i f v-i f v_{G}+i K \frac{\partial^{2} u}{\partial z^{2}}+f u-f u_{G}-K \frac{\partial^{2} v}{\partial z^{2}}=0
$$

Rearranging terms we get

$$
f w-f w_{G}+i K \frac{\partial^{2} w}{\partial z^{2}}=0
$$

We re-write this as

$$
\frac{\partial^{2} w}{\partial z^{2}}-\left(\frac{i f}{K}\right) w=-\left(\frac{i f}{K}\right) w_{G}
$$

Again:

$$
\frac{\partial^{2} w}{\partial z^{2}}-\left(\frac{i f}{K}\right) w=-\left(\frac{i f}{K}\right) w_{G}
$$

Again:

$$
\frac{\partial^{2} w}{\partial z^{2}}-\left(\frac{i f}{K}\right) w=-\left(\frac{i f}{K}\right) w_{G}
$$

As usual, we solve this inhomogeneous equation in two steps

Again:

$$
\frac{\partial^{2} w}{\partial z^{2}}-\left(\frac{i f}{K}\right) w=-\left(\frac{i f}{K}\right) w_{G}
$$

As usual, we solve this inhomogeneous equation in two steps

1. Find a Particular Integral (PI) of the inhomogeneous equation.

Again:

$$
\frac{\partial^{2} w}{\partial z^{2}}-\left(\frac{i f}{K}\right) w=-\left(\frac{i f}{K}\right) w_{G}
$$

As usual, we solve this inhomogeneous equation in two steps

1. Find a Particular Integral (PI) of the inhomogeneous equation.
2. Find a Complementary Function (CF), a general solution of the homogeneous part of the equation.

Again:

$$
\frac{\partial^{2} w}{\partial z^{2}}-\left(\frac{i f}{K}\right) w=-\left(\frac{i f}{K}\right) w_{G}
$$

As usual, we solve this inhomogeneous equation in two steps 1. Find a Particular Integral (PI) of the inhomogeneous equation.
2. Find a Complementary Function (CF), a general solution of the homogeneous part of the equation.

Particular Integral: Clearly, one solution of the inhomogeneous equation is obtained by assuming that w is independent of z. This reduces the equation to

$$
-\left(\frac{i f}{K}\right) w=-\left(\frac{i f}{K}\right) w_{G}
$$

with the solution $w=w_{G}$.

Complementary Function: The homogeneous version of the equation is

$$
\frac{\partial^{2} w}{\partial z^{2}}-\left(\frac{i f}{K}\right) w=0
$$

Complementary Function: The homogeneous version of the equation is

$$
\frac{\partial^{2} w}{\partial z^{2}}-\left(\frac{i f}{K}\right) w=0
$$

If we seek a solution of the form $w=A \exp (\lambda z)$, we get

$$
\lambda^{2}=\frac{i f}{K}
$$

Complementary Function: The homogeneous version of the equation is

$$
\frac{\partial^{2} w}{\partial z^{2}}-\left(\frac{i f}{K}\right) w=0
$$

If we seek a solution of the form $w=A \exp (\lambda z)$, we get

$$
\lambda^{2}=\frac{i f}{K}
$$

Thus, there are two possible values of λ :

$$
\lambda_{+}=\frac{1+i}{\sqrt{2}} \sqrt{\frac{f}{K}} \quad \text { and } \quad \lambda_{-}=\frac{-1-i}{\sqrt{2}} \sqrt{\frac{f}{K}}
$$

Complementary Function: The homogeneous version of the equation is

$$
\frac{\partial^{2} w}{\partial z^{2}}-\left(\frac{i f}{K}\right) w=0
$$

If we seek a solution of the form $w=A \exp (\lambda z)$, we get

$$
\lambda^{2}=\frac{i f}{K}
$$

Thus, there are two possible values of λ :

$$
\lambda_{+}=\frac{1+i}{\sqrt{2}} \sqrt{\frac{f}{K}} \quad \text { and } \quad \lambda_{-}=\frac{-1-i}{\sqrt{2}} \sqrt{\frac{f}{K}}
$$

We define the quantity γ as

$$
\gamma=\sqrt{\frac{f}{2 K}}
$$

(Check that γ has the dimensions of an inverse length L^{-1}.)

Complementary Function: The homogeneous version of the equation is

$$
\frac{\partial^{2} w}{\partial z^{2}}-\left(\frac{i f}{K}\right) w=0
$$

If we seek a solution of the form $w=A \exp (\lambda z)$, we get

$$
\lambda^{2}=\frac{i f}{K}
$$

Thus, there are two possible values of λ :

$$
\lambda_{+}=\frac{1+i}{\sqrt{2}} \sqrt{\frac{f}{K}} \quad \text { and } \quad \lambda_{-}=\frac{-1-i}{\sqrt{2}} \sqrt{\frac{f}{K}}
$$

We define the quantity γ as

$$
\gamma=\sqrt{\frac{f}{2 K}}
$$

(Check that γ has the dimensions of an inverse length L^{-1}.)
Now we have

$$
\lambda_{+}=(1+i) \gamma \quad \text { and } \quad \lambda_{-}=(-1-i) \gamma
$$

The general solution of the homogeneous equation is

$$
\begin{aligned}
w & =A \exp \lambda_{+} z+B \exp \lambda_{-} z \\
& =A \exp (1+i)(\gamma z)+B \exp (-1-i)(\gamma z) \\
& =A \exp (\gamma z) \exp (i \gamma z)+B \exp (-\gamma z) \exp (-i \gamma z)
\end{aligned}
$$

where A and B are arbitrary constants, which must be determined by imposing boundary conditions.

The general solution of the homogeneous equation is

$$
\begin{aligned}
w & =A \exp \lambda_{+} z+B \exp \lambda_{-} z \\
& =A \exp (1+i)(\gamma z)+B \exp (-1-i)(\gamma z) \\
& =A \exp (\gamma z) \exp (i \gamma z)+B \exp (-\gamma z) \exp (-i \gamma z)
\end{aligned}
$$

where A and B are arbitrary constants, which must be determined by imposing boundary conditions.

The boundary conditions are as follows:

The general solution of the homogeneous equation is

$$
\begin{aligned}
w & =A \exp \lambda_{+} z+B \exp \lambda_{-} z \\
& =A \exp (1+i)(\gamma z)+B \exp (-1-i)(\gamma z) \\
& =A \exp (\gamma z) \exp (i \gamma z)+B \exp (-\gamma z) \exp (-i \gamma z)
\end{aligned}
$$

where A and B are arbitrary constants, which must be determined by imposing boundary conditions.

The boundary conditions are as follows:

- $w \rightarrow w_{G}$ as $z \rightarrow \infty$; thus, the solution must remain finite as $z \rightarrow \infty$

The general solution of the homogeneous equation is

$$
\begin{aligned}
w & =A \exp \lambda_{+} z+B \exp \lambda_{-} z \\
& =A \exp (1+i)(\gamma z)+B \exp (-1-i)(\gamma z) \\
& =A \exp (\gamma z) \exp (i \gamma z)+B \exp (-\gamma z) \exp (-i \gamma z)
\end{aligned}
$$

where A and B are arbitrary constants, which must be determined by imposing boundary conditions.

The boundary conditions are as follows:

- $w \rightarrow w_{G}$ as $z \rightarrow \infty$; thus, the solution must remain finite as $z \rightarrow \infty$
- The velocity must be zero at the earth's surface. That is, $w=0$ at $z=0$.

The general solution of the homogeneous equation is

$$
\begin{aligned}
w & =A \exp \lambda_{+} z+B \exp \lambda_{-} z \\
& =A \exp (1+i)(\gamma z)+B \exp (-1-i)(\gamma z) \\
& =A \exp (\gamma z) \exp (i \gamma z)+B \exp (-\gamma z) \exp (-i \gamma z)
\end{aligned}
$$

where A and B are arbitrary constants, which must be determined by imposing boundary conditions.

The boundary conditions are as follows:

- $w \rightarrow w_{G}$ as $z \rightarrow \infty$; thus, the solution must remain finite as $z \rightarrow \infty$
- The velocity must be zero at the earth's surface. That is, $w=0$ at $z=0$.

The term multiplied by A grows exponentially with z and so must be rejected. The physically acceptable solution is thus

$$
w=B \exp (-\gamma z) \exp (-i \gamma z)
$$

So, the complete solution $(P I+C F)$ is

$$
w=w_{G}+B \exp (-\gamma z) \exp (-i \gamma z)
$$

So, the complete solution $(P I+C F)$ is

$$
w=w_{G}+B \exp (-\gamma z) \exp (-i \gamma z)
$$

Setting $z=0$ this gives

$$
0=w_{G}+B
$$

So, the complete solution $(P I+C F)$ is

$$
w=w_{G}+B \exp (-\gamma z) \exp (-i \gamma z)
$$

Setting $z=0$ this gives

$$
0=w_{G}+B
$$

Thus, $B=-w_{G}$ and the complete solution is

$$
w=w_{G}[1-\exp (-\gamma z) \exp (-i \gamma z)]
$$

So, the complete solution $(P I+C F)$ is

$$
w=w_{G}+B \exp (-\gamma z) \exp (-i \gamma z)
$$

Setting $z=0$ this gives

$$
0=w_{G}+B
$$

Thus, $B=-w_{G}$ and the complete solution is

$$
w=w_{G}[1-\exp (-\gamma z) \exp (-i \gamma z)]
$$

Expanding this into real and imaginary parts, we have

$$
u+i v=\left(u_{G}+i v_{G}\right)[1-\exp (-\gamma z) \cos (\gamma z)+i \exp (-\gamma z) \sin (\gamma z)]
$$

So, the complete solution $(P I+C F)$ is

$$
w=w_{G}+B \exp (-\gamma z) \exp (-i \gamma z)
$$

Setting $z=0$ this gives

$$
0=w_{G}+B
$$

Thus, $B=-w_{G}$ and the complete solution is

$$
w=w_{G}[1-\exp (-\gamma z) \exp (-i \gamma z)]
$$

Expanding this into real and imaginary parts, we have

$$
u+i v=\left(u_{G}+i v_{G}\right)[1-\exp (-\gamma z) \cos (\gamma z)+i \exp (-\gamma z) \sin (\gamma z)]
$$

For simplicity, we now assume that the geostrophic wind is purely zonal, so that $v_{G}=0$. Then, separating the real and imaginary components of w, we have

$$
\begin{aligned}
& u=u_{G}[1-\exp (-\gamma z) \cos (\gamma z)] \\
& v=u_{G}[+\exp (-\gamma z) \sin (\gamma z)]
\end{aligned}
$$

Horizontal axis: u. Vertical axis: v. Geostrophic wind: $u_{G}=10 \mathrm{~m} \mathrm{~s}^{-1}$.

Description of the solution in qualitative terms.

Description of the solution in qualitative terms.

- There is cross-isobar flow towards low pressure.

Description of the solution in qualitative terms.

- There is cross-isobar flow towards low pressure.
- The velocity vanishes at the lower boundary.

Description of the solution in qualitative terms.

- There is cross-isobar flow towards low pressure.
- The velocity vanishes at the lower boundary.
- The velocity tends to the geostrophic flow at high levels.

Description of the solution in qualitative terms.

- There is cross-isobar flow towards low pressure.
- The velocity vanishes at the lower boundary.
- The velocity tends to the geostrophic flow at high levels.
- For small z, we have $u \approx u_{G}(\gamma z)$ and $v \approx u_{G}(\gamma z)$. Thus, the flow near the surface is 45° to the left of the limiting geostrophic flow (purely zonal).

Description of the solution in qualitative terms.

- There is cross-isobar flow towards low pressure.
- The velocity vanishes at the lower boundary.
- The velocity tends to the geostrophic flow at high levels.
- For small z, we have $u \approx u_{G}(\gamma z)$ and $v \approx u_{G}(\gamma z)$. Thus, the flow near the surface is 45° to the left of the limiting geostrophic flow (purely zonal).
- The hodograph of the velocity against height is a clockwise spiral converging to $\left(u_{G}, 0\right)$.

Description of the solution in qualitative terms.

- There is cross-isobar flow towards low pressure.
- The velocity vanishes at the lower boundary.
- The velocity tends to the geostrophic flow at high levels.
- For small z, we have $u \approx u_{G}(\gamma z)$ and $v \approx u_{G}(\gamma z)$. Thus, the flow near the surface is 45° to the left of the limiting geostrophic flow (purely zonal).
- The hodograph of the velocity against height is a clockwise spiral converging to $\left(u_{G}, 0\right)$.
- The velocity reaches a maximum at the first zero of v, which is at $\gamma z=\pi$.

Description of the solution in qualitative terms.

- There is cross-isobar flow towards low pressure.
- The velocity vanishes at the lower boundary.
- The velocity tends to the geostrophic flow at high levels.
- For small z, we have $u \approx u_{G}(\gamma z)$ and $v \approx u_{G}(\gamma z)$. Thus, the flow near the surface is 45° to the left of the limiting geostrophic flow (purely zonal).
- The hodograph of the velocity against height is a clockwise spiral converging to $\left(u_{G}, 0\right)$.
- The velocity reaches a maximum at the first zero of v, which is at $\gamma z=\pi$.
- The flow is super-geostrophic at this point.

Description of the solution in qualitative terms.

- There is cross-isobar flow towards low pressure.
- The velocity vanishes at the lower boundary.
- The velocity tends to the geostrophic flow at high levels.
- For small z, we have $u \approx u_{G}(\gamma z)$ and $v \approx u_{G}(\gamma z)$. Thus, the flow near the surface is 45° to the left of the limiting geostrophic flow (purely zonal).
- The hodograph of the velocity against height is a clockwise spiral converging to $\left(u_{G}, 0\right)$.
- The velocity reaches a maximum at the first zero of v, which is at $\gamma z=\pi$.
- The flow is super-geostrophic at this point.
- The height where this occurs may be taken as the effective height of the Ekman layer. The wind is close to geostrophic above this height.

Effective depth of the boundary layer.

Effective depth of the boundary layer.

We assume the values $f=10^{-4} \mathbf{s}^{-1}$ and $K=10 \mathrm{~m}^{2} \mathbf{s}^{-1}$.

Effective depth of the boundary layer.

We assume the values $f=10^{-4} \mathrm{~s}^{-1}$ and $K=10 \mathrm{~m}^{2} \mathbf{s}^{-1}$.
The effective height is $z_{0}=\pi / \gamma$. With $f=10^{-4} \mathbf{s}^{-1}$ and $K=10 \mathrm{~m}^{2} \mathrm{~s}^{-1}$ we have

$$
z_{0}=\frac{\pi}{\gamma}=\pi \sqrt{\frac{2 K}{f}}=\pi \sqrt{\frac{2 \times 10}{10^{-4}}} \approx 1400 \mathrm{~m}
$$

Thus, the effective depth of the Ekman boundary layer is about 1.4 km .

Remarks on the Ekman Spiral

Remarks on the Ekman Spiral

- The Ekman theory predicts a cross-isobar flow of 45° at the lower boundary. This is not in agreement with observations

Remarks on the Ekman Spiral

- The Ekman theory predicts a cross-isobar flow of 45° at the lower boundary. This is not in agreement with observations
- Better agreement can be obtained by coupling the Ekman layer to a surface layer where the wind direction is unchanging and the speed varies logarithmicaly

Remarks on the Ekman Spiral

- The Ekman theory predicts a cross-isobar flow of 45° at the lower boundary. This is not in agreement with observations
- Better agreement can be obtained by coupling the Ekman layer to a surface layer where the wind direction is unchanging and the speed varies logarithmicaly
- This can be done by taking a boundary condition

$$
\mathbf{V} \| \frac{\partial \mathbf{V}}{\partial \mathbf{z}} \quad @ \quad z=z_{B}
$$

Remarks on the Ekman Spiral

- The Ekman theory predicts a cross-isobar flow of 45° at the lower boundary. This is not in agreement with observations
- Better agreement can be obtained by coupling the Ekman layer to a surface layer where the wind direction is unchanging and the speed varies logarithmicaly
- This can be done by taking a boundary condition

$$
\mathbf{V} \| \frac{\partial \mathbf{V}}{\partial \mathbf{z}} \quad @ \quad z=z_{B}
$$

- The solution is then called a modified Ekman spiral.

MatLab Exercise:

Write a program to calculate the wind speed as a function of altitude. Assume the values $f=10^{-4} \mathbf{s}^{-1}$ and $K=10 \mathrm{~m}^{2} \mathbf{s}^{-1}$.

End of $\S 5.4$

