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When the eddy fluxes are parameterized in terms of the
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For steady, horizontally homogeneous, incompressible flow
the momentum equations for the atmospheric boundary layer
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where K and f may be assumed to be constant.
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Exercise: The Ekman Spiral

For steady, horizontally homogeneous, incompressible flow
the momentum equations for the atmospheric boundary layer
may be written

−fv +
1

ρ

∂p

∂x
−K

∂2u

∂z2
= 0

+fu +
1

ρ

∂p

∂y
−K

∂2v

∂z2
= 0

where K and f may be assumed to be constant.

Defining γ =
√

f/2K and assuming that the motion vanishes
at z = 0 and tends to the zonal geostrophic value V = (ug, 0)
in the free atmosphere, derive the equations

u = ug(1− e−γz cos γz)

v = uge
−γz sin γz

corresponding to the Ekman spiral.
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Solution:

There are two alternatives for solving this problem:

• Eliminate one of the velocities, say v, in favour of the
other. This yields a fourth-order o.d.e. for u.

• Introduce a complex velocity w = u + iv. This seems curi-
ous, but it yields a more convenient second-order o.d.e.

We will choose the second alternative.

Therefore, let us define

w = u + iv

We define the components of the geostrophic velocity as

uG = − 1

fρ

∂p

∂y
vG = +

1

fρ

∂p

∂x

and the corresponding complex geostrophic velocity as

wG = uG + ivG
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Now we may write the equations of motion as
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Now we may write the equations of motion as

−fv + fvG −K
∂2u

∂z2
= 0

+fu− fuG −K
∂2v

∂z2
= 0

Now multiply the first equation by i and subtract it from
the second:

+ifv − ifvG + iK
∂2u

∂z2
+ fu− fuG −K

∂2v

∂z2
= 0

Rearranging terms we get

fw − fwG + iK
∂2w

∂z2
= 0

We re-write this as
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Again:
∂2w

∂z2
−

(
if

K

)
w = −

(
if

K

)
wG

As usual, we solve this inhomogeneous equation in two steps

1. Find a Particular Integral (PI) of the inhomogeneous
equation.

2. Find a Complementary Function (CF), a general solution
of the homogeneous part of the equation.

Particular Integral: Clearly, one solution of the inhomoge-
neous equation is obtained by assuming that w is indepen-
dent of z. This reduces the equation to

−
(

if

K

)
w = −

(
if

K

)
wG

with the solution w = wG.

5



Complementary Function: The homogeneous version of the
equation is

∂2w

∂z2
−

(
if

K

)
w = 0

6



Complementary Function: The homogeneous version of the
equation is

∂2w

∂z2
−

(
if

K

)
w = 0

If we seek a solution of the form w = A exp(λz), we get

λ2 =
if

K

6



Complementary Function: The homogeneous version of the
equation is

∂2w

∂z2
−

(
if

K

)
w = 0

If we seek a solution of the form w = A exp(λz), we get

λ2 =
if

K

Thus, there are two possible values of λ:

λ+ =
1 + i√

2

√
f

K
and λ− =

−1− i√
2

√
f

K

6



Complementary Function: The homogeneous version of the
equation is

∂2w

∂z2
−

(
if

K

)
w = 0

If we seek a solution of the form w = A exp(λz), we get

λ2 =
if

K

Thus, there are two possible values of λ:

λ+ =
1 + i√

2

√
f

K
and λ− =

−1− i√
2

√
f

K

We define the quantity γ as

γ =

√
f

2K

(Check that γ has the dimensions of an inverse length L−1.)

6



Complementary Function: The homogeneous version of the
equation is

∂2w

∂z2
−

(
if

K

)
w = 0

If we seek a solution of the form w = A exp(λz), we get

λ2 =
if

K

Thus, there are two possible values of λ:

λ+ =
1 + i√

2

√
f

K
and λ− =

−1− i√
2

√
f

K

We define the quantity γ as

γ =

√
f

2K

(Check that γ has the dimensions of an inverse length L−1.)

Now we have

λ+ = (1 + i)γ and λ− = (−1− i)γ
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The general solution of the homogeneous equation is

w = A exp λ+z + B exp λ−z

= A exp(1 + i)(γz) + B exp(−1− i)(γz)

= A exp(γz) exp(iγz) + B exp(−γz) exp(−iγz)

where A and B are arbitrary constants, which must be
determined by imposing boundary conditions.
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The general solution of the homogeneous equation is

w = A exp λ+z + B exp λ−z

= A exp(1 + i)(γz) + B exp(−1− i)(γz)

= A exp(γz) exp(iγz) + B exp(−γz) exp(−iγz)

where A and B are arbitrary constants, which must be
determined by imposing boundary conditions.

The boundary conditions are as follows:

• w → wG as z →∞; thus, the solution must remain
finite as z →∞

• The velocity must be zero at the earth’s surface.
That is, w = 0 at z = 0.

The term multiplied by A grows exponentially with z and
so must be rejected. The physically acceptable solution is
thus

w = B exp(−γz) exp(−iγz)
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So, the complete solution (PI + CF) is
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So, the complete solution (PI + CF) is

w = wG + B exp(−γz) exp(−iγz)

Setting z = 0 this gives

0 = wG + B

Thus, B = −wG and the complete solution is

w = wG [1− exp(−γz) exp(−iγz)]

Expanding this into real and imaginary parts, we have

u + iv = (uG + ivG) [1− exp(−γz) cos(γz) + i exp(−γz) sin(γz)]

For simplicity, we now assume that the geostrophic wind is

purely zonal, so that vG = 0. Then, separating the real and

imaginary components of w, we have

u = uG [1− exp(−γz) cos(γz)]

v = uG [ + exp(−γz) sin(γz)]

8



Horizontal axis: u. Vertical axis: v. Geostrophic wind: uG = 10m s−1.

9



Description of the solution in qualitative terms.

10



Description of the solution in qualitative terms.

• There is cross-isobar flow towards low pressure.

10



Description of the solution in qualitative terms.

• There is cross-isobar flow towards low pressure.

• The velocity vanishes at the lower boundary.

10



Description of the solution in qualitative terms.

• There is cross-isobar flow towards low pressure.

• The velocity vanishes at the lower boundary.

• The velocity tends to the geostrophic flow at high levels.

10



Description of the solution in qualitative terms.

• There is cross-isobar flow towards low pressure.

• The velocity vanishes at the lower boundary.

• The velocity tends to the geostrophic flow at high levels.

• For small z, we have u ≈ uG(γz) and v ≈ uG(γz). Thus,
the flow near the surface is 45◦ to the left of the limiting
geostrophic flow (purely zonal).

10



Description of the solution in qualitative terms.

• There is cross-isobar flow towards low pressure.

• The velocity vanishes at the lower boundary.

• The velocity tends to the geostrophic flow at high levels.

• For small z, we have u ≈ uG(γz) and v ≈ uG(γz). Thus,
the flow near the surface is 45◦ to the left of the limiting
geostrophic flow (purely zonal).

• The hodograph of the velocity against height is a clock-
wise spiral converging to (uG, 0).

10



Description of the solution in qualitative terms.

• There is cross-isobar flow towards low pressure.

• The velocity vanishes at the lower boundary.

• The velocity tends to the geostrophic flow at high levels.

• For small z, we have u ≈ uG(γz) and v ≈ uG(γz). Thus,
the flow near the surface is 45◦ to the left of the limiting
geostrophic flow (purely zonal).

• The hodograph of the velocity against height is a clock-
wise spiral converging to (uG, 0).

• The velocity reaches a maximum at the first zero of v,
which is at γz = π.

10



Description of the solution in qualitative terms.

• There is cross-isobar flow towards low pressure.

• The velocity vanishes at the lower boundary.

• The velocity tends to the geostrophic flow at high levels.

• For small z, we have u ≈ uG(γz) and v ≈ uG(γz). Thus,
the flow near the surface is 45◦ to the left of the limiting
geostrophic flow (purely zonal).

• The hodograph of the velocity against height is a clock-
wise spiral converging to (uG, 0).

• The velocity reaches a maximum at the first zero of v,
which is at γz = π.

• The flow is super-geostrophic at this point.

10



Description of the solution in qualitative terms.

• There is cross-isobar flow towards low pressure.

• The velocity vanishes at the lower boundary.

• The velocity tends to the geostrophic flow at high levels.

• For small z, we have u ≈ uG(γz) and v ≈ uG(γz). Thus,
the flow near the surface is 45◦ to the left of the limiting
geostrophic flow (purely zonal).

• The hodograph of the velocity against height is a clock-
wise spiral converging to (uG, 0).

• The velocity reaches a maximum at the first zero of v,
which is at γz = π.

• The flow is super-geostrophic at this point.

• The height where this occurs may be taken as the ef-
fective height of the Ekman layer. The wind is close to
geostrophic above this height.
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Effective depth of the boundary layer.

We assume the values f = 10−4 s−1 and K = 10m2s−1.

The effective height is z0 = π/γ. With f = 10−4 s−1 and
K = 10m2s−1 we have

z0 =
π

γ
= π

√
2K

f
= π

√
2× 10

10−4
≈ 1400 m

Thus, the effective depth of the Ekman boundary layer is
about 1.4 km.
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Remarks on the Ekman Spiral
• The Ekman theory predicts a cross-isobar flow of 45◦ at

the lower boundary. This is not in agreement with obser-
vations

• Better agreement can be obtained by coupling the Ek-
man layer to a surface layer where the wind direction is
unchanging and the speed varies logarithmicaly

• This can be done by taking a boundary condition

V ‖ ∂V

∂z
@ z = zB

• The solution is then called a modified Ekman spiral.
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MatLab Exercise:

Write a program to calculate the wind speed as a function of
altitude. Assume the values f = 10−4 s−1 and K = 10m2s−1.
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End of §5.4
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