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fields and rapidly varying turbulent components.

For example
θ = θ + θ′

We assume the mean variable is constant over the period
of averaging. By definition, the mean of the perturbation
vanishes:

θ′ = 0 θ = θ θθ′ = θ

Thus, the mean of a product has two components:

wθ = (w + w′)(θ + θ′)

= (wθ + wθ′ + w′θ + w′θ′)

= wθ + wθ′ + w′θ + w′θ′

= wθ + w′θ′
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Now we can write the momentum equations as
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The terms in square brackets are the turbulent fluxes.

For example, u′w′ is the vertical turbulent flux of zonal mo-
mentum, and w′θ′ is the vertical turbulent heat flux.

In the free atmosphere, the terms in square brackets are
sufficiently small that they can be neglected.

Within the boundary layer, the turbulent flux terms are
comparable in magnitude to the remaining terms, and must
be included in the analysis.
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In the boundary layer, vertical gradients are generally or-
ders of magnitude larger than variations in the horizontal.
Thus, it is possible to omit the x and y derivative terms in
the square brackets.
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In the boundary layer, vertical gradients are generally or-
ders of magnitude larger than variations in the horizontal.
Thus, it is possible to omit the x and y derivative terms in
the square brackets.

Then the complete system of equations becomes
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We note that this system of five equations, for the variables
(u, v, w, p, θ), also contains the variables (u′, v′, w′, θ′) in the
turbulent fluxes.
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We note that this system of five equations, for the variables
(u, v, w, p, θ), also contains the variables (u′, v′, w′, θ′) in the
turbulent fluxes.

Thus, the system is not self contained. To make it soluble,
we must make some closure assumption, in which the fluxes
are parameterized in terms of the mean fields.

Atmospheric modellers make various closure assumptions in
designing parameterization schemes for numerical models.

Next, we will consider a simple parameterization of the ver-
tical momentum flux, ∂(w′u′)/∂z.
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+

∂

∂z

(
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We have dropped the overbars on the mean quantities.

In the free atmosphere, scale analysis shows that the inertial
terms and turbulent flux terms are small compared to the
Coriolis term and pressure gradient terms.

This leads us to the relation for geostrophic balance:

u ≈ uG ≡ − 1

fρ0

∂p

∂y
, v ≈ vG ≡ +

1

fρ0

∂p

∂x
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In the boundary layer, it is no longer appropriate to neglect
the turbulent flux terms. However, the inertial terms may
still be assumed to be relatively small.
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Using the definition of the geostrophic winds, we write the
momentum equations as

−f (v − vG) +
∂

∂z

(
w′u′

)
= 0

+f (u− uG) +
∂

∂z

(
w′v′
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= 0
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Using the definition of the geostrophic winds, we write the
momentum equations as

−f (v − vG) +
∂

∂z

(
w′u′

)
= 0

+f (u− uG) +
∂

∂z

(
w′v′

)
= 0

To progress, we need some means of representing the tur-
bulent fluxes in terms of the mean variables.

The traditional approach to this closure problem is to as-
sume that the turbulent eddies act in a manner analogous
to molecular diffusion.

Thus, the flux of momentum is assumed to be proportional
to the vertical gradient of the mean momentum. Then we
can write

u′w′ = −K

(
∂u

∂z

)
where K is called the eddy viscosity coefficient.
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The negative sign ensures that a positive vertical shear
yields downward momentum flux.
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The negative sign ensures that a positive vertical shear
yields downward momentum flux.

This closure scheme is often referred to as K-theory. Alter-
natively, we may call it the Flux-gradient theory.

We will assume that K is constant. Thus, for example,

∂

∂z

(
w′u′

)
= − ∂

∂z

(
K

∂u

∂z

)
= −K

∂2u

∂z2

The momentum equations then become

−f (v − vG)−K
∂2u

∂z2
= 0

+f (u− uG)−K
∂2v

∂z2
= 0

In the following lecture, we will use these equations to model
the Ekman Layer.
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End of §5.3
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