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To gain an understanding of this, we consider a very simple
case, with a flow confined between two solid plates:



The lower plate is stationary, and the upper plate is moving
in the x-direction with speed u0.

The plates are separated by a distance `.
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The lower plate is stationary, and the upper plate is moving
in the x-direction with speed u0.

The plates are separated by a distance `.

We assume that the lower plate is fixed rigidly and cannot
move.

Viscosity forces the fluid in contact with the lower plate to
remain stationary.

Similarly, viscosity forces the fluid in contact with the upper
plate to move with speed u0.

A force is required to keep the upper plate in motion. Ex-
periments show that this force is:

• proportional to the area A of the plates

• proportional to the velocity u0

• inversely proportional to the distance ` between the plates.
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Thus, we may write

F = µ
A u0

`
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Thus, we may write

F = µ
A u0

`

The constant of proportionality µ is called the
dynamic viscosity coefficient.

This force F must be equal to the force exeted by the plate
on the fluid just below it.

As the plate is unaccelerated, the fluid just below it must
exert an opposite force of the same magnitude on the plate.

For a steady state (unaccelerated motion) each layer of fluid
of depth δz must exert the same force on the fluid below,
and the fluid below must exert a contrary force of the same
magnitude.

We may assume the speed u of the fluid varies linearly across
the layer from z = 0 to z = `.
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Thus, we may write the force as

F = µ
A u0

`
= µA

(
u(`)− u(0)

`

)
= µA

∂u

∂z
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The viscous force per unit area, of shearing stress, can then

be written
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Thus, we may write the force as

F = µ
A u0

`
= µA

(
u(`)− u(0)

`

)
= µA

∂u

∂z

The viscous force per unit area, of shearing stress, can then

be written

τzx = µ
∂u

∂z

The subscripts of τzx denote that it is the component in the
x-direction due to velocity shear in the z-direction.

? ? ?
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For the simple case of linear shear considered above, there
is no net viscous force on an element of fluid.
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For the simple case of linear shear considered above, there
is no net viscous force on an element of fluid.

This is because the shearing force on the upper surface is
counteracted by an opposite force on the bottom surface.

In a more general case of unsteady (accelerated) flow, we
may calculate the viscous force by considering an element
of fluid with sides δx, δy and δz.

Let us assume the shearing stress at the centre of the ele-
ment is τzx.
Then, the stress at the upper surface may be written[

τzx +
∂τzx
∂z

δz

2

]
The stress at the lower surface may be written

−
[
τzx −

∂τzx
∂z

δz

2

]
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The net force is the sum of viscous forces on the upper and
lower faces of the element:[

τzx +
∂τzx
∂z

δz

2

]
δxδy −

[
τzx −

∂τzx
∂z

δz

2

]
δxδy =

[
∂τzx
∂z

]
δxδyδz
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To obtain the force per unit mass, we divide by the mass
ρδxδyδz of the element:

F =
1

ρ

∂τzx
∂z

=
1

ρ

∂

∂z

(
µ

∂u

∂z

)
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F =
1

ρ
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=
1

ρ

∂

∂z

(
µ

∂u
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)
If the dynamic viscosity coefficient µ is constant, we may

simplify this to

F =
µ

ρ

∂

∂z

(
∂u

∂z

)
= ν

(
∂2u

∂z2

)
where ν = µ/ρ is called the kinematic viscosity coefficient.
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µ

ρ

∂

∂z

(
∂u

∂z

)
= ν

(
∂2u

∂z2

)
where ν = µ/ρ is called the kinematic viscosity coefficient.

For standard atmospheric conditions at sea level, the kine-
matic viscosity coefficient has the value ν = 1.5× 10−5 m2 s−1.

? ? ?
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More generally, the wind may vary in all directions, and
the viscous force will have three components, which may be
written

Fx = ν

[
∂2u

∂x2
+

∂2u

∂y2
+

∂2u

∂z2

]
= ν∇2u

Fy = ν

[
∂2v

∂x2
+

∂2v

∂y2
+

∂2v

∂z2

]
= ν∇2v

Fz = ν

[
∂2w

∂x2
+

∂2w

∂y2
+

∂2w

∂z2

]
= ν∇2w
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In the atmosphere, molecular viscosity is negligible except
in a thin layer within a few centimetres of the earth’s surface
where the vertical shear is very large.
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Fz = ν

[
∂2w

∂x2
+

∂2w

∂y2
+

∂2w

∂z2

]
= ν∇2w

In the atmosphere, molecular viscosity is negligible except
in a thin layer within a few centimetres of the earth’s surface
where the vertical shear is very large.

Away from this molecular boundary layer, momentum is
transferred primarily by turbulent eddy motions. These
are considered next.
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End of §5.2
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