We consider climate sensitivity in a very simple context.

• We consider a single-layer isothermal atmosphere.

- We consider a single-layer isothermal atmosphere.
- We assume the system is in radiative balance.

- We consider a single-layer isothermal atmosphere.
- We assume the system is in radiative balance.
- We assume the atmosphere is almost transparent to shortwave radiation.

- We consider a single-layer isothermal atmosphere.
- We assume the system is in radiative balance.
- We assume the atmosphere is almost transparent to shortwave radiation.
- We assume the atmosphere is relatively opaque to longwave radiation.

- We consider a single-layer isothermal atmosphere.
- We assume the system is in radiative balance.
- We assume the atmosphere is almost transparent to shortwave radiation.
- We assume the atmosphere is relatively opaque to longwave radiation.
- We assume the Earth radiates like a blackbody.

We consider climate sensitivity in a very simple context.

- We consider a single-layer isothermal atmosphere.
- We assume the system is in radiative balance.
- We assume the atmosphere is almost transparent to shortwave radiation.
- We assume the atmosphere is relatively opaque to longwave radiation.
- We assume the Earth radiates like a blackbody.

Problems:

• Compute the equilibrium temperature of the surface and of the atmosphere.

We consider climate sensitivity in a very simple context.

- We consider a single-layer isothermal atmosphere.
- We assume the system is in radiative balance.
- We assume the atmosphere is almost transparent to shortwave radiation.
- We assume the atmosphere is relatively opaque to longwave radiation.
- We assume the Earth radiates like a blackbody.

Problems:

- Compute the equilibrium temperature of the surface and of the atmosphere.
- Investigate the effects of *changing parameters* on the temperature.

Exercise:

Exercise:

Assume that the atmosphere can be regarded as a thin layer with an absorbtivity of $a_S = 0.1$ for shortwave (solar) radiation and $a_L = 0.8$ for longwave (terrestrial) radiation.

Assume the Earth's *albedo* is A = 0.3 and the *solar constant* is $F_{\text{solar}} = 1370 \text{ W m}^{-2}$.

Assume that the earth's surface radiates as a blackbody at all wavelengths.

Exercise:

Assume that the atmosphere can be regarded as a thin layer with an absorbtivity of $a_S = 0.1$ for shortwave (solar) radiation and $a_L = 0.8$ for longwave (terrestrial) radiation.

Assume the Earth's *albedo* is A = 0.3 and the *solar constant* is $F_{solar} = 1370 \text{ W m}^{-2}$.

Assume that the earth's surface radiates as a blackbody at all wavelengths.

Calculate the radiative equilibrium temperature T_E of the surface and the *sensitivity of* T_E *to changes* in the following parameters:

- Absorbtivity of the atmosphere to shortwave radiation
- Absorbtivity of the atmosphere to longwave radiation
- Planetary albedo
- Solar constant

The net solar irradiance F_S absorbed by the earth-atmosphere system is equal to the solar constant *reduced by* the albedo and by the areal factor of four:

$$F_S = \left(\frac{1-A}{4}\right) F_{\text{solar}} = \frac{0.7}{4} \times 1370 = 240 \,\mathrm{W \, m^{-2}}$$

The net solar irradiance F_S absorbed by the earth-atmosphere system is equal to the solar constant *reduced by* the albedo and by the areal factor of four:

$$F_S = \left(\frac{1-A}{4}\right) F_{\text{solar}} = \frac{0.7}{4} \times 1370 = 240 \,\mathrm{W \, m^{-2}}$$

Therefore, the incoming flux of solar radiation at the top of the atmosphere, averaged over the whole Earth, is $F_S = 240 \text{ W m}^{-2}$.

The net solar irradiance F_S absorbed by the earth-atmosphere system is equal to the solar constant *reduced by* the albedo and by the areal factor of four:

$$F_S = \left(\frac{1-A}{4}\right) F_{\text{solar}} = \frac{0.7}{4} \times 1370 = 240 \,\mathrm{W \, m^{-2}}$$

Therefore, the incoming flux of solar radiation at the top of the atmosphere, averaged over the whole Earth, is $F_S = 240 \text{ W m}^{-2}$.

The *absorbtivity* for solar radiation is $a_S = 0.1$. We define the *transmissivity* as $\tau_S = 1 - a_S$.

The net solar irradiance F_S absorbed by the earth-atmosphere system is equal to the solar constant *reduced by* the albedo and by the areal factor of four:

$$F_S = \left(\frac{1-A}{4}\right) F_{\text{solar}} = \frac{0.7}{4} \times 1370 = 240 \,\mathrm{W \, m^{-2}}$$

Therefore, the incoming flux of solar radiation at the top of the atmosphere, averaged over the whole Earth, is $F_S = 240 \text{ W m}^{-2}$.

The *absorbtivity* for solar radiation is $a_S = 0.1$. We define the *transmissivity* as $\tau_S = 1 - a_S$.

The downward flux of short wave radiation at the surface is the incoming flux multiplied by the transmissivity, $\tau_S F_S$.

The net solar irradiance F_S absorbed by the earth-atmosphere system is equal to the solar constant *reduced by* the albedo and by the areal factor of four:

$$F_S = \left(\frac{1-A}{4}\right) F_{\text{solar}} = \frac{0.7}{4} \times 1370 = 240 \,\mathrm{W \, m^{-2}}$$

Therefore, the incoming flux of solar radiation at the top of the atmosphere, averaged over the whole Earth, is $F_S = 240 \text{ W m}^{-2}$.

The *absorbtivity* for solar radiation is $a_S = 0.1$. We define the *transmissivity* as $\tau_S = 1 - a_S$.

The downward flux of short wave radiation at the surface is the incoming flux multiplied by the transmissivity, $\tau_S F_S$.

Let F_E be the longwave flux emitted upwards by the surface.

The net solar irradiance F_S absorbed by the earth-atmosphere system is equal to the solar constant *reduced by* the albedo and by the areal factor of four:

$$F_S = \left(\frac{1-A}{4}\right) F_{\text{solar}} = \frac{0.7}{4} \times 1370 = 240 \,\mathrm{W \, m^{-2}}$$

Therefore, the incoming flux of solar radiation at the top of the atmosphere, averaged over the whole Earth, is $F_S = 240 \text{ W m}^{-2}$.

The *absorbtivity* for solar radiation is $a_S = 0.1$. We define the *transmissivity* as $\tau_S = 1 - a_S$.

The downward flux of short wave radiation at the surface is the incoming flux multiplied by the transmissivity, $\tau_S F_S$.

Let F_E be the longwave flux emitted upwards by the surface. Since the absorbtivity for terrestrial radiation is $a_L = 0.8$, the longwave transmissivity is $\tau_L = 1 - a_L = 0.2$.

Let F_L be the long wave flux emitted upwards by the atmosphere; this is also the long wave flux emitted *downwards*.

Let F_L be the long wave flux emitted upwards by the atmosphere; this is also the long wave flux emitted *downwards*.

Thus, the total downward flux at the surface is $\tau_S F_S + F_L$

Let F_L be the long wave flux emitted upwards by the atmosphere; this is also the long wave flux emitted *downwards*.

Thus, the total downward flux at the surface is $\tau_S F_S + F_L$

Radiative balance at the surface (upward flux equal to downward flux) gives:

 $F_E = \tau_S F_S + F_L$

Let F_L be the long wave flux emitted upwards by the atmosphere; this is also the long wave flux emitted *downwards*.

Thus, the total downward flux at the surface is $\tau_S F_S + F_L$

Radiative balance at the surface (upward flux equal to downward flux) gives:

$$F_E = \tau_S F_S + F_L$$

The upward and downward fluxes at the top of the atmosphere must also be in balance, which gives us the relation

 $F_S = \tau_L F_E + F_L$

Let F_L be the long wave flux emitted upwards by the atmosphere; this is also the long wave flux emitted *downwards*.

Thus, the total downward flux at the surface is $\tau_S F_S + F_L$

Radiative balance at the surface (upward flux equal to downward flux) gives:

$$F_E = \tau_S F_S + F_L$$

The upward and downward fluxes at the top of the atmosphere must also be in balance, which gives us the relation

$$F_S = \tau_L F_E + F_L$$

To find F_E and F_L , we solve the simultaneous equations

$$F_E - F_L = \tau_S F_S$$
$$\tau_L F_E + F_L = F_S$$

$$F_E - F_L = \tau_S F_S$$
$$\tau_L F_E + F_L = F_S$$

$$F_E - F_L = \tau_S F_S$$
$$\tau_L F_E + F_L = F_S$$

This gives the values

$$F_E = \left(\frac{1+\tau_S}{1+\tau_L}\right) F_S \qquad F_L = \left(\frac{1-\tau_S \tau_L}{1+\tau_L}\right) F_S$$

$$\star \quad \star \quad \star$$

$$F_E - F_L = \tau_S F_S$$
$$\tau_L F_E + F_L = F_S$$

This gives the values

$$F_E = \left(\frac{1+\tau_S}{1+\tau_L}\right) F_S \qquad F_L = \left(\frac{1-\tau_S\tau_L}{1+\tau_L}\right) F_S$$

Assuming that the Earth radiates like a blackbody, the Stefan-Boltzman Law gives

$$\sigma T_{\text{surface}}^4 = F_E$$

$$F_E - F_L = \tau_S F_S$$
$$\tau_L F_E + F_L = F_S$$

This gives the values

$$F_E = \left(\frac{1+\tau_S}{1+\tau_L}\right) F_S \qquad F_L = \left(\frac{1-\tau_S\tau_L}{1+\tau_L}\right) F_S$$

$$\star \quad \star \quad \star$$

Assuming that the Earth radiates like a blackbody, the Stefan-Boltzman Law gives

$$\sigma T_{\text{surface}}^4 = F_E$$

using the expressions derived for F_S and F_E , this is

$$\sigma T_{\text{surface}}^4 = \frac{1 + \tau_S}{1 + \tau_L} \left(\frac{1 - A}{4}\right) F_{\text{solar}}$$

$$\sigma T_{\text{surface}}^4 = \frac{1 + \tau_S}{1 + \tau_L} \left(\frac{1 - A}{4}\right) F_{\text{solar}}$$

$$\sigma T_{\text{surface}}^4 = \frac{1 + \tau_S}{1 + \tau_L} \left(\frac{1 - A}{4}\right) F_{\text{solar}}$$

Taking logarithms, we have

 $\log \sigma + 4\log T_{\text{surface}} = \log(1+\tau_S) - \log(1+\tau_L) + \log(1-A) - \log 4 + \log F_{\text{solar}}$

$$\sigma T_{\text{surface}}^4 = \frac{1 + \tau_S}{1 + \tau_L} \left(\frac{1 - A}{4}\right) F_{\text{solar}}$$

Taking logarithms, we have

 $\log \sigma + 4\log T_{\text{surface}} = \log(1+\tau_S) - \log(1+\tau_L) + \log(1-A) - \log 4 + \log F_{\text{solar}}$

Now differentiate:

$$\sigma T_{\text{surface}}^4 = \frac{1 + \tau_S}{1 + \tau_L} \left(\frac{1 - A}{4}\right) F_{\text{solar}}$$

Taking logarithms, we have

 $\log \sigma + 4\log T_{\text{surface}} = \log(1+\tau_S) - \log(1+\tau_L) + \log(1-A) - \log 4 + \log F_{\text{solar}}$

Now differentiate:

$$4\frac{dT_{\text{surface}}}{T_{\text{surface}}} = \frac{d\tau_S}{1+\tau_S} - \frac{d\tau_L}{1+\tau_L} - \frac{dA}{1-A} + \frac{dF_{\text{solar}}}{F_{\text{solar}}}$$

This equation enables us to investigate the sensitivity of the surface temperature to changes in various parameters.

$$\sigma T_{\text{surface}}^4 = \frac{1 + \tau_S}{1 + \tau_L} \left(\frac{1 - A}{4}\right) F_{\text{solar}}$$

Taking logarithms, we have

 $\log \sigma + 4\log T_{\text{surface}} = \log(1+\tau_S) - \log(1+\tau_L) + \log(1-A) - \log 4 + \log F_{\text{solar}}$

Now differentiate:

$$4\frac{dT_{\text{surface}}}{T_{\text{surface}}} = \frac{d\tau_S}{1+\tau_S} - \frac{d\tau_L}{1+\tau_L} - \frac{dA}{1-A} + \frac{dF_{\text{solar}}}{F_{\text{solar}}}$$

This equation enables us to investigate the sensitivity of the surface temperature to changes in various parameters.

For reference, let's call this the Blue Equation.

Sensitivity to Shortwave Absorbtion

Sensitivity to Shortwave Absorbtion

Suppose that some change causes an *increase in the absorbtion* of *solar radiation* by the atmosphere.

Sensitivity to Shortwave Absorbtion

Suppose that some change causes an *increase in the absorbtion* of *solar radiation* by the atmosphere.

For example, an increase in ozone concentration in the stratosphere would result in greater absorbtion of incoming solar radiation.
Sensitivity to Shortwave Absorbtion

Suppose that some change causes an *increase in the absorbtion* of *solar radiation* by the atmosphere.

For example, an increase in ozone concentration in the stratosphere would result in greater absorbtion of incoming solar radiation.

So,

 $a_S \Rightarrow a_S + d \, a_S$ $\tau_S \Rightarrow \tau_S + d \, \tau_S$

Clearly, if $da_S > 0$ then $d\tau_S = -da_S < 0$.

Sensitivity to Shortwave Absorbtion

Suppose that some change causes an *increase in the absorbtion* of *solar radiation* by the atmosphere.

For example, an increase in ozone concentration in the stratosphere would result in greater absorbtion of incoming solar radiation.

So,

$$a_S \Rightarrow a_S + d \, a_S$$

$$\tau_S \Rightarrow \tau_S + d \, \tau_S$$

Clearly, if $da_S > 0$ then $d\tau_S = -da_S < 0$.

The Blue Equation reduces to

$$4 \frac{dT_{\text{surface}}}{T_{\text{surface}}} = \frac{d\tau_S}{1 + \tau_S}$$

 $4 \frac{dT_{\text{surface}}}{T_{\text{surface}}} = \frac{d\tau_S}{1 + \tau_S}$

Suppose the transmissivity decreases from 0.9 to 0.8. Then $\tau_S = 0.9$ and $d\tau_S = -0.1$.

$$4 \frac{dT_{\text{surface}}}{T_{\text{surface}}} = \frac{d\tau_S}{1 + \tau_S}$$

Suppose the transmissivity decreases from 0.9 to 0.8. Then $\tau_S = 0.9$ and $d\tau_S = -0.1$.

Suppose also that the equilibrium temperature of the Earth with $\tau_S = 0.9$ is 288 K (as we found above).

$$4 \frac{dT_{\text{surface}}}{T_{\text{surface}}} = \frac{d\tau_S}{1 + \tau_S}$$

Suppose the transmissivity decreases from 0.9 to 0.8. Then $\tau_S = 0.9$ and $d\tau_S = -0.1$.

Suppose also that the equilibrium temperature of the Earth with $\tau_S = 0.9$ is 288 K (as we found above).

Then

$$4\frac{dT_{\text{surface}}}{288} = \left(\frac{-0.1}{1.9}\right) \quad \text{or} \quad dT_{\text{surface}} = \left(\frac{-0.1}{1.9}\right)\frac{288}{4} = -3.8 \, K$$

$$4 \frac{dT_{\text{surface}}}{T_{\text{surface}}} = \frac{d\tau_S}{1 + \tau_S}$$

Suppose the transmissivity decreases from 0.9 to 0.8. Then $\tau_S = 0.9$ and $d\tau_S = -0.1$.

Suppose also that the equilibrium temperature of the Earth with $\tau_S = 0.9$ is 288 K (as we found above).

Then

$$4\frac{dT_{\text{surface}}}{288} = \left(\frac{-0.1}{1.9}\right) \quad \text{or} \quad dT_{\text{surface}} = \left(\frac{-0.1}{1.9}\right)\frac{288}{4} = -3.8 \, K$$

Thus, the assumed increase in shortwave absorbtivity has resulted in a decrease in surface temperature of about 4° C.

Suppose next that some change causes an *increase in the absorbtion of terrestrial radiation* by the atmosphere.

Suppose next that some change causes an *increase in the absorbtion of terrestrial radiation* by the atmosphere.

For example, a pall of ash in the stratosphere, following a major volcanic eruption, could absorb or scatter a significant proportion of outgoing longwave radiation.

Suppose next that some change causes an *increase in the absorbtion of terrestrial radiation* by the atmosphere.

For example, a pall of ash in the stratosphere, following a major volcanic eruption, could absorb or scatter a significant proportion of outgoing longwave radiation.

So,

 $a_L \Rightarrow a_L + d \, a_L$ $\tau_L \Rightarrow \tau_L + d \, \tau_L$

Clearly, if $d a_L > 0$ then $d \tau_L = -d a_L < 0$.

Suppose next that some change causes an *increase in the absorbtion of terrestrial radiation* by the atmosphere.

For example, a pall of ash in the stratosphere, following a major volcanic eruption, could absorb or scatter a significant proportion of outgoing longwave radiation.

So,

$$a_L \Rightarrow a_L + d a_L$$

$$\tau_L \Rightarrow \tau_L + d \tau_L$$

Clearly, if $d a_L > 0$ then $d \tau_L = -d a_L < 0$.

The Blue Equation reduces to

$$4\frac{dT_{\text{surface}}}{T_{\text{surface}}} = -\frac{d\tau_L}{1+\tau_L}$$

 $4 \frac{dT_{\text{surface}}}{T_{\text{surface}}} = -\frac{d\tau_L}{1 + \tau_L}$

Suppose the longwave transmissivity decreases from 0.2 to 0.1. Then $\tau_L = 0.2$ and $d\tau_S = -0.1$.

Suppose the longwave transmissivity decreases from 0.2 to 0.1. Then $\tau_L = 0.2$ and $d\tau_S = -0.1$.

Suppose once more that the equilibrium temperature of the Earth with $\tau_L = 0.2$ is 288 K.

Suppose the longwave transmissivity decreases from 0.2 to 0.1. Then $\tau_L = 0.2$ and $d\tau_S = -0.1$.

Suppose once more that the equilibrium temperature of the Earth with $\tau_L = 0.2$ is 288 K.

Then

$$4\frac{dT_{\text{surface}}}{288} = -\left(\frac{-0.1}{1.2}\right) \quad \text{or} \quad dT_{\text{surface}} = \left(\frac{0.1}{1.2}\right)\frac{288}{4} = 6.0 \, K$$

Suppose the longwave transmissivity decreases from 0.2 to 0.1. Then $\tau_L = 0.2$ and $d\tau_S = -0.1$.

Suppose once more that the equilibrium temperature of the Earth with $\tau_L = 0.2$ is 288 K.

Then

$$4\frac{dT_{\text{surface}}}{288} = -\left(\frac{-0.1}{1.2}\right) \quad \text{or} \quad dT_{\text{surface}} = \left(\frac{0.1}{1.2}\right)\frac{288}{4} = 6.0 \, K$$

Thus, the assumed increase in longwave absorbtivity has resulted in an increase in surface temperature of about $6^{\circ}C$.

Suppose next that some change causes an *increase in the albedo or reflectivity* of the atmosphere.

Suppose next that some change causes an *increase in the albedo or reflectivity* of the atmosphere.

For example, an increase in condensation nuclei might result in a greater coverage of high-level cirrus cloud, which could reflect a higher proportion of incoming solar radiation.

Suppose next that some change causes an *increase in the albedo or reflectivity* of the atmosphere.

For example, an increase in condensation nuclei might result in a greater coverage of high-level cirrus cloud, which could reflect a higher proportion of incoming solar radiation.

So,

 $A \Rightarrow A + dA$

Suppose next that some change causes an *increase in the albedo or reflectivity* of the atmosphere.

For example, an increase in condensation nuclei might result in a greater coverage of high-level cirrus cloud, which could reflect a higher proportion of incoming solar radiation.

So,

$$A \Rightarrow A + dA$$

The Blue Equation reduces to

$$4\frac{dT_{\text{surface}}}{T_{\text{surface}}} = -\frac{dA}{1-A}$$

 $4\frac{dT_{\rm surface}}{T_{\rm surface}} = -\frac{dA}{1-A}$

Suppose the albedo increases from 0.3 to 0.4. Then A = 0.3and dA = 0.1.

Suppose the albedo increases from 0.3 to 0.4. Then A = 0.3and dA = 0.1.

Suppose once more that the equilibrium temperature of the Earth with A = 0.3 is 288 K.

Suppose the albedo increases from 0.3 to 0.4. Then A = 0.3and dA = 0.1.

Suppose once more that the equilibrium temperature of the Earth with A = 0.3 is 288 K.

Then

$$4\frac{dT_{\text{surface}}}{288} = -\left(\frac{0.1}{0.7}\right) \quad \text{or} \quad dT_{\text{surface}} = -\left(\frac{0.1}{0.7}\right)\frac{288}{4} = -10.3\,K$$

Suppose the albedo increases from 0.3 to 0.4. Then A = 0.3and dA = 0.1.

Suppose once more that the equilibrium temperature of the Earth with A = 0.3 is 288 K.

Then

$$4\frac{dT_{\text{surface}}}{288} = -\left(\frac{0.1}{0.7}\right) \quad \text{or} \quad dT_{\text{surface}} = -\left(\frac{0.1}{0.7}\right)\frac{288}{4} = -10.3 \, K$$

Thus, the assumed increase in albedo has resulted in an decrease in surface temperature of about 10° C.

Suppose next that the *solar energy flux varies*.

Suppose next that the *solar energy flux varies*.

This could be the result of a major solar anomaly, or due to a secular or cyclic variation associated, for example, with the sun-spot cycle.

Suppose next that the *solar energy flux varies*.

This could be the result of a major solar anomaly, or due to a secular or cyclic variation associated, for example, with the sun-spot cycle.

So,

 $F_{\text{solar}} \Rightarrow F_{\text{solar}} + d F_{\text{solar}}$

Suppose next that the *solar energy flux varies*.

This could be the result of a major solar anomaly, or due to a secular or cyclic variation associated, for example, with the sun-spot cycle.

So,

$$F_{\text{solar}} \Rightarrow F_{\text{solar}} + d F_{\text{solar}}$$

The Blue Equation reduces to

$$4 \frac{dT_{\text{surface}}}{T_{\text{surface}}} = \frac{dF_{\text{solar}}}{F_{\text{solar}}}$$

 $4 \frac{dT_{\text{surface}}}{T_{\text{surface}}} = \frac{dF_{\text{solar}}}{F_{\text{solar}}}$

Suppose the solar output increases by 1%. Then $dF_{\text{solar}}/F_{\text{solar}} = 0.01$.

Suppose the solar output increases by 1%. Then $dF_{\text{solar}}/F_{\text{solar}} = 0.01$.

Suppose once more that the equilibrium temperature of the Earth is 288 K.

Suppose the solar output increases by 1%. Then $dF_{\text{solar}}/F_{\text{solar}} = 0.01$.

Suppose once more that the equilibrium temperature of the Earth is $288 \,\mathrm{K}$.

Then

$$4\frac{dT_{\text{surface}}}{288} = \left(\frac{0.01\,F_{\text{solar}}}{F_{\text{solar}}}\right) \qquad \text{or} \qquad dT_{\text{surface}} = 0.01 \times \frac{288}{4} = 0.7\,K$$
Again,

Suppose the solar output increases by 1%. Then $dF_{\text{solar}}/F_{\text{solar}} = 0.01$.

Suppose once more that the equilibrium temperature of the Earth is $288 \,\mathrm{K}$.

Then

$$4\frac{dT_{\text{surface}}}{288} = \left(\frac{0.01\,F_{\text{solar}}}{F_{\text{solar}}}\right) \qquad \text{or} \qquad dT_{\text{surface}} = 0.01 \times \frac{288}{4} = 0.7\,K$$

Thus, the assumed 1% increase in solar flux has resulted in an increase in surface temperature of less than $1^{\circ}C$.

• An increase in shortwave absorbtivity of 0.1 resulted in a decrease in surface temperature of about $4^{\circ}C$.

- An increase in shortwave absorbtivity of 0.1 resulted in a decrease in surface temperature of about $4^{\circ}C$.
- An increase in longwave absorbtivity of 0.1 resulted in an increase in surface temperature of about $6^{\circ}C$.

- An increase in shortwave absorbtivity of 0.1 resulted in a decrease in surface temperature of about $4^{\circ}C$.
- An increase in longwave absorbtivity of 0.1 resulted in an increase in surface temperature of about $6^{\circ}C$.
- An increase in albedo of 0.1 resulted in an decrease in surface temperature of about 10° C.

- An increase in shortwave absorbtivity of 0.1 resulted in a decrease in surface temperature of about $4^{\circ}C$.
- An increase in longwave absorbtivity of 0.1 resulted in an increase in surface temperature of about $6^{\circ}C$.
- An increase in albedo of 0.1 resulted in an decrease in surface temperature of about 10° C.
- A 1% increase in solar flux has resulted in an increase in surface temperature of less than 1°C.

- An increase in shortwave absorbtivity of 0.1 resulted in a decrease in surface temperature of about $4^{\circ}C$.
- An increase in longwave absorbtivity of 0.1 resulted in an increase in surface temperature of about $6^{\circ}C$.
- An increase in albedo of 0.1 resulted in an decrease in surface temperature of about 10° C.
- A 1% increase in solar flux has resulted in an increase in surface temperature of less than 1°C.

In general, all parameters undergo small changes. Moreover, we have completely neglected the effects of water vapour and liquid water.

- An increase in shortwave absorbtivity of 0.1 resulted in a decrease in surface temperature of about $4^{\circ}C$.
- An increase in longwave absorbtivity of 0.1 resulted in an increase in surface temperature of about $6^{\circ}C$.
- An increase in albedo of 0.1 resulted in an decrease in surface temperature of about 10° C.
- A 1% increase in solar flux has resulted in an increase in surface temperature of less than 1°C.

In general, all parameters undergo small changes. Moreover, we have completely neglected the effects of water vapour and liquid water.

The results give an indication of <u>how difficult it</u> is to gauge the consequences for climate of any changes which may occur.

End of §4.5