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Blackbody Radiation
A blackbody is a surface that

• completely absorbs all incident radiation

• emits radiation at the maximum possible monochromatic
intensity in all directions and at all wavelengths.

The theory of the energy distribution of blackbody radiation
was developed by Planck and first appeared in 1901.

Planck postulated that energy can be absorbed or emitted

only in discrete units or photons with energy

E = hν = ~ω

The constant of proportionality is h = 6.626× 10−34J s.



Planck showed that the intensity of radiation emitted by a

black body is given by

Bλ =
c1λ

−5

exp(c2/λT )− 1
where c1 and c2 are constants

c1 = 2πhc2 = 3.74×10−16 W m−2 and c2 =
hc

k
= 1.44×10−2 m K .

The function Bλ is called the Planck function.
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Planck showed that the intensity of radiation emitted by a

black body is given by

Bλ =
c1λ

−5

exp(c2/λT )− 1
where c1 and c2 are constants

c1 = 2πhc2 = 3.74×10−16 W m−2 and c2 =
hc

k
= 1.44×10−2 m K .

The function Bλ is called the Planck function.

For a derivation of the Planck function, see for example the
text of Fleagle and Businger, Atmospheric Physics.

Blackbody radiation is isotropic.

When Bλ(T ) is plotted as a function of wavelength on a lin-
ear scale the resulting spectrum of monochromatic intensity
exhibits the shape illustrated as shown next.
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Blackbody emission (the Planck function) for absolute temperatures

as indicated, plotted as a function of wavelength on a linear scale.
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Wien’s Displacement Law
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Wien’s Displacement Law
Differentiating Planck’s function and setting the derivative
equal to zero yields the wavelength of peak emission for a
blackbody at temperature T

λm ≈ 2900

T
where λm is expressed in microns and T in degrees kelvin.
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Wien’s Displacement Law
Differentiating Planck’s function and setting the derivative
equal to zero yields the wavelength of peak emission for a
blackbody at temperature T

λm ≈ 2900

T
where λm is expressed in microns and T in degrees kelvin.

This equation is known as Wien’s Displacement Law.

On the basis of this equation, it is possible to estimate the
temperature of a radiation source from a knowledge of its
emission spectrum, as illustrated in an example below.
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Exercise: Prove Wien’s Displacement Law.
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Exercise: Prove Wien’s Displacement Law.

Solution: Planck’s function is

Bλ =
c1λ

−5

exp(c2/λT )− 1

For values of interest in atmospheric and solar science, the
exponential term is much larger than unity. Assuming this,
we may write

Bλ =
c1λ

−5

exp(c2/λT )
= c1 × λ−5 × exp(−c2/λT )

Then, taking logarithms,

log Bλ = log c1 − 5 log λ− c2

λT

At the maximum, we have

dBλ

dλ
= 0 or

d log Bλ

dλ
= 0
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We differentiate

log Bλ = log c1 − 5 log λ− c2

λT
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MatLab Exercise:
• Plot Bλ as a function of λ for T = 300 and T = 6000.

Use the range λ ∈ (0.1 µm, 100 µm).
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Then
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Since c2 = 1.44× 10−2 m K, we have c2/5 ≈ 0.0029, so

λ =
0.0029

T
(metres) or λ =

2900

T
(µm)

MatLab Exercise:
• Plot Bλ as a function of λ for T = 300 and T = 6000.

Use the range λ ∈ (0.1 µm, 100 µm).

• Plot Bλ for T = 300 and also the approximation obtained
by assuming exp(c2/λT ) � 1 (as used above).
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Exercise: Use Wien’s displacement to compute the “colour
temperature” of the sun.
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Exercise: Use Wien’s displacement to compute the “colour
temperature” of the sun.

Solution: The wavelength of maximum solar emission is
observed to be approximately 0.475 µm.

Hence

T =
2900

λm
=

2900

0.475
= 6100 K

Wien’s displacement law explains why solar radiation is con-
centrated in the UV, visible and near infrared regions of the
spectrum, while radiation emitted by planets and their at-
mospheres is largely confined to the infrared, as shown in
the following figure.
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Key to above figure

• (a) Blackbody spectra representative of the sun (left) and
the earth (right). The wavelength scale is logarithmic
rather than linear, and the ordinate has been multiplied
by wavelength in order to make area under the curve
proportional to intensity. The intensity scale for the right
hand curve has been stretched to make the areas under
the two curves the same.
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• (a) Blackbody spectra representative of the sun (left) and
the earth (right). The wavelength scale is logarithmic
rather than linear, and the ordinate has been multiplied
by wavelength in order to make area under the curve
proportional to intensity. The intensity scale for the right
hand curve has been stretched to make the areas under
the two curves the same.

• (c) the atmospheric absorptivity(for flux density) for par-
allel mean solar (λ < 4 µm) radiation for a solar zenith an-
gle of 50◦ and isotropic terrestrial ((λ > 4 µm) radiation.

• (b) as in (c) but for the upper atmosphere defined as
levels above 10km.
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The blackbody flux density obtained by integrating the Planck
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where σ is a constant equal to 5.67× 10−8 W m−2K−4.
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The Stefan-Boltzmann Law
The blackbody flux density obtained by integrating the Planck
function Bλ over all wavelengths, is given by

F = σT 4

where σ is a constant equal to 5.67× 10−8 W m−2K−4.

If a surface emits radiation with a known flux density, this
equation can be solved for its equivalent blackbody temper-
ature, that is, the temperature a blackbody would need to
have in order to emit the same flux density of radiation.

If the surface emits as a blackbody, its actual temperature
and its equivalent blackbody temperature will be the same.

Applications of the Stefan Boltzmann Law and the concept
of equivalent blackbody temperature are illustrated in the
following problems.
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Exercise. Calculate the equivalent blackbody tempera-
ture of the solar photosphere, the outermost visible layer of
the sun, based on the following information.
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7.0× 108

)2

= 6.28× 107 W m−2

11



Exercise. Calculate the equivalent blackbody tempera-
ture of the solar photosphere, the outermost visible layer of
the sun, based on the following information.

• The flux density of solar radiation reaching the earth is
1370 Wm−2.

The Earth-Sun distance is d = 1.50× 1011m

• The radius of the solar photosphere is 7.00× 108m.

Solution: We first calculate the flux density at the top of
the layer, making use of the inverse square law:

Fphotosphere = Fearth ×
(

Rsun

d

)2

Therefore

Fphotosphere = 1.370× 103 ×

(
1.5× 1011

7.0× 108

)2

= 6.28× 107 W m−2

From the Stefan-Boltzmann Law, we get

σT 4
E = 6.28× 107 W m−2
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)1/4
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Again, from the Stefan-Boltzmann Law, we get

σT 4
E = 6.28× 107 W m−2

So, the equivalent temperature is

TE =

(
6.28× 107

5.67× 10−8

)1/4

= 4
√

(1108× 1012) = 5770 K

That this value is slighly lower than the sun’s colour tem-
perature estimated in the previous exercise is evidence that
the spectrum of the sun’s emission differs slighly from the
blackbody spectrum prescribed by Planck’s law.
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Exercise: Calculate the equivalent blackbody tempera-
ture of the earth assuming a planetary albedo of 0.30.

Assume that the earth is in radiative equilibrium with the
sun: i.e., that there is no net energy gain or loss due to
radiative transfer.
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Exercise: Calculate the equivalent blackbody tempera-
ture of the earth assuming a planetary albedo of 0.30.

Assume that the earth is in radiative equilibrium with the
sun: i.e., that there is no net energy gain or loss due to
radiative transfer.

Solution: Let

• FS be the flux density of solar radiation incident upon the
earth (1370W m−2);

• FE the flux density of longwave radiation emitted by the
earth,

• RE the radius of the earth,

and

• A the planetary albedo of the earth.
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Calculate the earth’s equivalent blackbody temperature TE:

FE = σT 4
E =

(1− A)FS

4
=

0.7× 1370

4
= 240 W m−2
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Calculate the earth’s equivalent blackbody temperature TE:

FE = σT 4
E =

(1− A)FS

4
=

0.7× 1370

4
= 240 W m−2

Solving for TE, we obtain

TE = 4
√

FE/σ = 255 K = −18◦C
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Equivalent blackbody temperature of some of the planets,
based on the assumption that they are in radiative equilib-
rium with the sun.

Planet Dist. from sun Albedo TE (K)

Mercury 0.39 AU 0.06 442

Venus 0.72 AU 0.78 227

Earth 1.00 AU 0.30 255

Mars 1.52 AU 0.17 216

Jupiter 5.18 AU 0.45 105
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Kirchhoff’s Law
Gaseous media are not blackbodies, but their behavior can
nonetheless be understood byapplying the radiation laws
derived for blackbodies.

For this purpose it is useful to define the emissivity and the
absorptivity of a body
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Gaseous media are not blackbodies, but their behavior can
nonetheless be understood byapplying the radiation laws
derived for blackbodies.

For this purpose it is useful to define the emissivity and the
absorptivity of a body

The emissivity is the ratio of the monochromatic intensity
of the radiation emitted by the body to the corresponding
blackbody radiation

ελ =
Iλ(emitted)

Bλ(T )

The absorptivity is the fraction of the incident monochro-
matic intensity that is absorbed

Aλ =
Iλ(absorbed)

Iλ(incident)
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Kirchhoff’s Law states that under conditions of thermody-
namic equilibrium

ελ = Aλ
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Kirchhoff’s Law states that under conditions of thermody-
namic equilibrium

ελ = Aλ

Kirchhoff’s Law implied that a body which is a good ab-
sorber of energy at a particular wavelength is also a good
emitter at that wavelength.

Likewise, a body which is a poor absorber at a given wave-
length is also a poor emitter at that wavelength.
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End of §4.2
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