M.Sc. in Meteorology

Physical Meteorology Prof Peter Lynch

Mathematical Computation Laboratory Dept. of Maths. Physics, UCD, Belfield.

Part 3

Radiative Transfer

in the Atmopshere

Outline of Material

Headings follow Wallace & Hobbs. We will not cover everything!

Outline of Material

Headings follow Wallace & Hobbs. We will not cover everything!

- 0. Introduction
- 1. The Spectrum of Radiation
- 2. Quantitative Description of Radiation
- 3. Blackbody Radiation
- 4. Scattering and Absorption
- 5. Radiative transfer in planetary atmospheres
- 6. Radiation balance at the top of the atmosphere

Piet Hein

Piet Hein

Sun, that givest all things birth, shine on everything on Earth.

Sun, that givest all things birth, shine on everything on Earth. But if that's too much to demand, shine, at least, on this our land.

5

Sun, that givest all things birth, shine on everything on Earth. But if that's too much to demand, shine, at least, on this our land. If even that's too much for thee, shine, at any rate, on me.

Earth receives energy from the Sun in the form of radiant energy.

Earth receives energy from the Sun in the form of radiant energy.

Solar energy has wavelengths between $0.2 \,\mu m$ and $4 \,\mu m$, with a maximum at about $0.5 \,\mu m$.

Earth receives energy from the Sun in the form of radiant energy.

Solar energy has wavelengths between $0.2 \,\mu m$ and $4 \,\mu m$, with a maximum at about $0.5 \,\mu m$.

We call this solar radiation or short-wave radiation.

- Earth receives energy from the Sun in the form of radiant energy.
- Solar energy has wavelengths between $0.2 \,\mu m$ and $4 \,\mu m$, with a maximum at about $0.5 \,\mu m$.
- We call this solar radiation or short-wave radiation.
- The Earth also radiates energy, with wavelengths between $4 \,\mu m$ and $100 \,\mu m$, with a maximum at about $10 \,\mu m$.

- Earth receives energy from the Sun in the form of radiant energy.
- Solar energy has wavelengths between $0.2 \,\mu m$ and $4 \,\mu m$, with a maximum at about $0.5 \,\mu m$.
- We call this solar radiation or short-wave radiation.
- The Earth also radiates energy, with wavelengths between $4 \,\mu m$ and $100 \,\mu m$, with a maximum at about $10 \,\mu m$.
- We call this terrestrial radiation or long-wave radiation.

- Earth receives energy from the Sun in the form of radiant energy.
- Solar energy has wavelengths between $0.2 \,\mu m$ and $4 \,\mu m$, with a maximum at about $0.5 \,\mu m$.
- We call this solar radiation or short-wave radiation.
- The Earth also radiates energy, with wavelengths between $4 \,\mu m$ and $100 \,\mu m$, with a maximum at about $10 \,\mu m$.
- We call this terrestrial radiation or long-wave radiation.
- It is extremely convenient that <u>the overlap</u> between solar radiation and terrestrial radiation <u>is very small</u>, so that we can consider them separately.

Review of the parameters describing a wave

Radiation and Matter

Review of the fundamentals of

- Wave-particle duality
- Energy levels in atoms
- Absorbtion and emission
- Atomic spectra
- Molecular vibrations
- QED

Electromagnetic energy spans a vast spectrum of wavelengths:

• gamma rays: Wavelengths below 10^{-12} m

- gamma rays: Wavelengths below 10^{-12} m
- X rays: Wavelengths about 10^{-10} m

- gamma rays: Wavelengths below 10^{-12} m
- X rays: Wavelengths about 10^{-10} m
- Ultraviolet rays: Wavelengths about 10^{-8} m

- gamma rays: Wavelengths below 10^{-12} m
- X rays: Wavelengths about 10^{-10} m
- Ultraviolet rays: Wavelengths about 10^{-8} m
- Visible light: Wavelengths about 0.5×10^{-6} m

- gamma rays: Wavelengths below 10^{-12} m
- X rays: Wavelengths about 10^{-10} m
- Ultraviolet rays: Wavelengths about 10^{-8} m
- Visible light: Wavelengths about 0.5×10^{-6} m
- Infrared rays: Wavelengths about 10^{-5} m

- gamma rays: Wavelengths below 10^{-12} m
- X rays: Wavelengths about 10^{-10} m
- Ultraviolet rays: Wavelengths about 10^{-8} m
- Visible light: Wavelengths about 0.5×10^{-6} m
- Infrared rays: Wavelengths about 10^{-5} m
- Microwave radiation: Wavelengths about 10^{-2} m

- gamma rays: Wavelengths below 10^{-12} m
- X rays: Wavelengths about 10^{-10} m
- Ultraviolet rays: Wavelengths about 10^{-8} m
- Visible light: Wavelengths about 0.5×10^{-6} m
- Infrared rays: Wavelengths about 10^{-5} m
- Microwave radiation: Wavelengths about 10^{-2} m
- Radio waves: Wavelengths about 10^{-2} - 10^4 m

source: Christopherson (2000) Geosystems

THE ELECTROMAGNETIC SPECTRUM

All objects emit radiation.

All objects emit radiation.

The amount of energy emited depends on the temperature.

All objects emit radiation.

The amount of energy emited depends on the temperature.

The Stefan-Boltzmann Law states that the energy emitted is proportional to the fourth power of the temperature.

All objects emit radiation.

The amount of energy emited depends on the temperature.

The Stefan-Boltzmann Law states that the energy emitted is proportional to the fourth power of the temperature.

Therefore, a warm object emits much more radiation than a cold one.

All objects emit radiation.

The amount of energy emited depends on the temperature.

The Stefan-Boltzmann Law states that the energy emitted is proportional to the fourth power of the temperature.

Therefore, a warm object emits much more radiation than a cold one.

For example, the Sun is about 5800 K. The Earth about 290 K. So, the radiation *per unit area* for the Sun is about

$$\left(\frac{5800}{290}\right)^4 = 20^4 = 160,000$$

times greater than fof the Earth.

All objects emit radiation.

The amount of energy emited depends on the temperature.

The Stefan-Boltzmann Law states that the energy emitted is proportional to the fourth power of the temperature.

Therefore, a warm object emits much more radiation than a cold one.

For example, the Sun is about 5800 K. The Earth about 290 K. So, the radiation *per unit area* for the Sun is about

$$\left(\frac{5800}{290}\right)^4 = 20^4 = 160,000$$

times greater than fof the Earth.

The *area* of the Sun is about 10,000 times larger than that of the Earth, so the ratio of the total radiation emitted is about $160,000 \times 10,000 = 1.6 \times 10^9$, or more than one billion.

The wavelength or frequency of maximum radiated energy depends on the temperature.

The wavelength or frequency of maximum radiated energy depends on the temperature.

This is described by Wien's Law:

 $\begin{bmatrix} Wavelength of maximum \\ emitted radiation (\mu m) \end{bmatrix} = \frac{2900}{\text{Temperature (K)}}$

The wavelength or frequency of maximum radiated energy depends on the temperature.

This is described by Wien's Law:

 $\begin{bmatrix} Wavelength of maximum \\ emitted radiation (\mu m) \end{bmatrix} = \frac{2900}{\text{Temperature (K)}}$

For example, the Earth's temperature is (about) 290 K, so the wavelength of maximum emitted radiation is about $10 \,\mu m$.

The wavelength or frequency of maximum radiated energy depends on the temperature.

This is described by Wien's Law:

 $\begin{bmatrix} Wavelength of maximum \\ emitted radiation (\mu m) \end{bmatrix} = \frac{2900}{\text{Temperature (K)}}$

For example, the Earth's temperature is (about) 290 K, so the wavelength of maximum emitted radiation is about $10 \,\mu\text{m}$.

The temperature of the Sun is (about) 5800 K, so the wavelength of maximum emitted radiation is about $0.5 \,\mu\text{m}$.

Infra-red photograph of a man holding a burning match

Infra-red photograph of a man holding a burning match It's true: shades make you cool!

Images from Ackerman & Knox

Meteorology:

Understanding the Atmosphere

North Pole

Equator

Northern Hemisphere Summer

Solar energy reaching the top of the atmosphere at four latitudes

Absorbtion of Solar and Terrestrial Radiation.

Energy budget as a function of latitude

Energy budget of the atmosphere

End of Introduction.