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That is,

∆u = q − w
where ∆u is the change in internal energy of the system.
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Again, let ∆u be the change in internal energy of the system:

∆u = q − w

In differential form this becomes

du = dq − dw

where dq is the differential increment of heat added to the
system, dw the differential element of work done by the
system, and du the differential increase in internal energy
of the system.

This is a statement of the First Law of Thermodynamics.
In fact, it provides a definition of du.

The change in internal energy du depends only on the initial
and final states of the system, and is therefore independent
of the manner by which the system is transferred between
these two states. Such parameters are referred to as func-
tions of state
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Consider a substance, the working substance, contained in
a cylinder of fixed cross-sectional area that is fitted with a
movable, frictionless piston.
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Consider a substance, the working substance, contained in
a cylinder of fixed cross-sectional area that is fitted with a
movable, frictionless piston.

The volume of the substance is proportional to the distance
from the base of the cylinder to the face of the piston, and
can be represented on the horizontal axis of the graph shown
in the following figure. The pressure of the substance in
the cylinder can be represented on the vertical axis of this
graph.

Therefore, every state of the substance, corresponding to a
given position of the piston, is represented by a point on
this pressure-volume (p–V ) diagram.
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Figure 3.4: Representation of the state of a working substance in a

cylinder on a p–V diagram.
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If the piston moves outwards through an incremental dis-
tance dx, the work dW done by the substance in pushing the
external force F through the distance dx is

dW = F dx
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external force F through the distance dx is

dW = F dx

Since F = pA, where A is the cross-sectional area,

dW = pAdx = p dV

In other words, the work done is equal to the pressure of
the substance multiplied by its increase in volume. Note
that dW = p dV is equal to the shaded area in the graph, the
area under the curve PQ.

When the substance passes from state A with volume V1 to
state B with volume V2, the work W done by the material
is equal to the area under the curve AB. That is,

W =

∫ V2

V1

p dV
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Again,

W =

∫ V2

V1

p dV

If V2 > V1, then W is positive, indicating that the substance
does work on its environment. If V2 < V1, then W is neg-
ative, which indicates that the environment does work on
the substance.
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Again,

W =

∫ V2

V1

p dV

If V2 > V1, then W is positive, indicating that the substance
does work on its environment. If V2 < V1, then W is neg-
ative, which indicates that the environment does work on
the substance.

The p–V diagram is an example of a thermodynamic dia-
gram, in which the physical state of a substance is repre-
sented by two thermodynamic variables. Such diagrams are
very useful in meteorology; we will discuss other examples
later, in particular, the tephigram.
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If we are dealing with a unit mass of a substance, the volume
V is replaced by the specific volume α and the work w that
is done when the specific volume increases by dw is

dw = p dα
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If we are dealing with a unit mass of a substance, the volume
V is replaced by the specific volume α and the work w that
is done when the specific volume increases by dw is

dw = p dα

The thermodynamic equation may be written

dq = du + dw

Using this with the equation above, we get

dq = du + p dα

which is an alternative statement of the
First Law of Thermodynamics.
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Joule’s Law
When a gas expands without doing external work, into a
chamber that has been evacuated, and without taking in or
giving out heat, the temperature of the gas does not change.
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chamber that has been evacuated, and without taking in or
giving out heat, the temperature of the gas does not change.

This statement is strictly true only for an ideal gas, but air
behaves very similarly to an ideal gas over a wide range of
conditions.

Joule’s Law leads to an important conclusion concerning the
internal energy of an ideal gas. If a gas neither does external
work nor takes in or gives out heat, dq = 0 and dw = 0, so
that, by the First Law of Thermodynamics, du = 0.

According to Joule’s law, under these conditions the tem-
perature of the gas does not change, which implies that the
kinetic energy of the molecules remains constant.

8



Therefore, since the total internal energy of the gas is con-
stant, that part of the internal energy due to the potential
energy must also remain unchanged, even though the vol-
ume of the gas changes.
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Therefore, since the total internal energy of the gas is con-
stant, that part of the internal energy due to the potential
energy must also remain unchanged, even though the vol-
ume of the gas changes.

In other words, the internal energy of an ideal gas is inde-
pendent of its volume if the temperature is kept constant.

This can be the case only if the molecules of an ideal gas do
not exert forces on each other.

In this case, the internal energy of an ideal gas will depend
only on its temperature:

u = u(T )
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Specific Heats
Suppose a small quantity of heat dq is given to a unit mass
of a material and, as a consequence, the temperature of the
material increases from T to T + dT without any changes in
phase occurring within the material.
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Specific Heats
Suppose a small quantity of heat dq is given to a unit mass
of a material and, as a consequence, the temperature of the
material increases from T to T + dT without any changes in
phase occurring within the material.

The ratio dq/dT is called the specific heat of the mate-
rial. However, the specific heat defined in this way could
have any number of values, depending on how the material
changes as it receives the heat.

If the volume of the material is kept constant, a specific
heat at constant volume, cv, is defined

cv =

(
dq

dT

)
V

But if the volume of the material is constant, the thermo-
dynamic equation gives dq = du.
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Again, cv = (dq/Dt)V . But V constant implies dq = du. There-
fore

cv =

(
du

dT

)
V
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cv =

(
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)
V

For an ideal gas, Joule’s law applies and therefore u depends
only on temperature. Therefore, regardless of whether the
volume of a gas changes, we may write

cv =
du

dT
.
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)
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For an ideal gas, Joule’s law applies and therefore u depends
only on temperature. Therefore, regardless of whether the
volume of a gas changes, we may write

cv =
du

dT
.

Since u is a function of state, no matter how the material
changes from state 1 to state 2, the change in its internal
energy is

u2 − u1 =

∫ T2

T1

cv dT
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fore
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(
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dT

)
V

For an ideal gas, Joule’s law applies and therefore u depends
only on temperature. Therefore, regardless of whether the
volume of a gas changes, we may write

cv =
du

dT
.

Since u is a function of state, no matter how the material
changes from state 1 to state 2, the change in its internal
energy is

u2 − u1 =

∫ T2

T1

cv dT

In differential form, we have:

du = cv dT .
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The First Law of Thermodynamics for an ideal gas can now

be written in the form

dq = cv dT + p dα
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The First Law of Thermodynamics for an ideal gas can now

be written in the form

dq = cv dT + p dα

We can also define a specific heat at constant pressure

cp =

(
dq

dT

)
p

where the material is allowed to expand as heat is added
to it and its temperature rises, but its pressure remains
constant.

In this case, some of the heat added to the material will have
to be expended to do work as the system expands against
the constant pressure of its environment.

Therefore, a larger quantity of heat must be added to the
material to raise its temperature by a given amount than if
the volume of the material were kept constant.
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Therefore
cp > cv
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For the case of an ideal gas, this inequality can be seen
mathematically as follows. We write the thermodynamic
equation as

dq = cv dT + p dα = cv dT + d(pα)− α dp
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Therefore
cp > cv

For the case of an ideal gas, this inequality can be seen
mathematically as follows. We write the thermodynamic
equation as

dq = cv dT + p dα = cv dT + d(pα)− α dp

From the equation of state, d(pα) = d(RT ) = R dT .

Therefore,
dq = (cv + R)dT − α dp

At constant pressure, the last term vanishes; therefore,

cp =

(
dq

dT

)
p

= cv + R

Using this in the equation above it, we obtain an alternative

form of the First Law of Thermodynamics:

dq = cp dT − α dp .
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The specific heats at constant volume and at constant pres-
sure for dry air are 717 and 1004JK−1kg−1, respectively, and
the difference between them is 287JK−1kg−1, which is the
gas constant for dry air.
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The specific heats at constant volume and at constant pres-
sure for dry air are 717 and 1004JK−1kg−1, respectively, and
the difference between them is 287JK−1kg−1, which is the
gas constant for dry air.

Again,
cv = 717 cp = 1004 R = 287

(all in units 1004JK−1kg−1).

For an ideal monatomic gas cp : cv : R = 5 : 3 : 2, and for an
ideal diatomic gas cp : cv : R = 7 : 5 : 2.

Since the atmosphere is comprised primarily of diatomic
gases (N2 and O2), we have

γ =
cp
cv
≈ 7

5
= 1.4 , κ =

R

cp
≈ 2

7
= 0.286 .
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Suppose heat is added to a unit mass of material at con-
stant pressure. Suppose the resulting expansion causes the
(specific) volume to increase from α1 to α2.
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= (u2 + pα2)− (u1 + pα1)

where u1 and u2 are the initial and final internal energies for
unit mass.
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Enthalpy
Suppose heat is added to a unit mass of material at con-
stant pressure. Suppose the resulting expansion causes the
(specific) volume to increase from α1 to α2.

Then the work done by a unit mass of the material is∫ α2

α1

p dα = p(α2 − α1)

Therefore, the finite quantity of heat ∆q added is given by

∆q = (u2 − u1) + p(α2 − α1)

= (u2 + pα2)− (u1 + pα1)

where u1 and u2 are the initial and final internal energies for
unit mass.

We define the enthalpy of a unit mass of the material by

h = u + pα .
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Again, the specific enthalpy is defined as:

h = u + pα

Since u, p, and α are functions of state, h is also a function
of state.
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Again, the specific enthalpy is defined as:

h = u + pα

Since u, p, and α are functions of state, h is also a function
of state.

From above it follows that, at constant pressure,

∆q = (h2 − h1)

or, in other words,
∆q = ∆h .

Differentiating the defining equation, h = u + pα, we obtain

dh = du + d(pα)

= du + p dα + α dp

= dq + α dp

Transferring terms to the other side, we get:

dq = dh− α dp .
This is another form of the First Law of Thermodynamics.
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Repeating,
dq = dh− α dp .

But we already had the equation

dq = cp dT − α dp .
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Comparing these last two equations, we conclude that
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or, in integrated form,

h = cpT

where h is taken as zero when T = 0.
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Repeating,
dq = dh− α dp .

But we already had the equation

dq = cp dT − α dp .

Comparing these last two equations, we conclude that

dh = cp dT

or, in integrated form,

h = cpT

where h is taken as zero when T = 0.

In view of this, h is sometimes called the heat at constant
pressure, because it corresponds to the heat given to a mate-
rial to raise its temperature from 0 to T Kelvins at constant
pressure.
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Dry Static Energy
The hydrostatic equation gives

dp

dz
= −gρ , or α dp = −g dz
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Using this in the thermodynamic equation, we have

dq = cp dT − α dp

= cp dT + g dz

= d(h + Φ)

Hence, if the material is a parcel of air with a fixed mass that
is moving about in an hydrostatic atmosphere, the quantity

(h + Φ)

which is called the dry static energy, is constant provided
the parcel neither gains nor loses heat (that is, dq = 0).
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Dry Static Energy
The hydrostatic equation gives

dp

dz
= −gρ , or α dp = −g dz

Using this in the thermodynamic equation, we have

dq = cp dT − α dp

= cp dT + g dz

= d(h + Φ)

Hence, if the material is a parcel of air with a fixed mass that
is moving about in an hydrostatic atmosphere, the quantity

(h + Φ)

which is called the dry static energy, is constant provided
the parcel neither gains nor loses heat (that is, dq = 0).

For adiabatic changes, the dry static energy is constant.

19



Exercises:
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