The First Law of Thermodynamics

The First Law of Thermodynamics

A mass of gas possesses internal energy due to the kinetic and potential energy of its molecules or atoms. Changes in internal energy are manifested as changes in the temperature of the system.

The First Law of Thermodynamics

A mass of gas possesses internal energy due to the kinetic and potential energy of its molecules or atoms. Changes in internal energy are manifested as changes in the temperature of the system.

Suppose that a closed system of unit mass takes in a certain quantity of thermal energy q, which it can receive by thermal conduction and/or radiation. As a result the system may do a certain amount of external work w.

The First Law of Thermodynamics

A mass of gas possesses internal energy due to the kinetic and potential energy of its molecules or atoms. Changes in internal energy are manifested as changes in the temperature of the system.

Suppose that a closed system of unit mass takes in a certain quantity of thermal energy q, which it can receive by thermal conduction and/or radiation. As a result the system may do a certain amount of external work w.

The excess of the energy supplied to the body over and above the external work done by the body is $q-w$. It follows from the principle of conservation of energy that the internal energy of the system must increase by $q-w$.

The First Law of Thermodynamics

A mass of gas possesses internal energy due to the kinetic and potential energy of its molecules or atoms. Changes in internal energy are manifested as changes in the temperature of the system.

Suppose that a closed system of unit mass takes in a certain quantity of thermal energy q, which it can receive by thermal conduction and/or radiation. As a result the system may do a certain amount of external work w.

The excess of the energy supplied to the body over and above the external work done by the body is $q-w$. It follows from the principle of conservation of energy that the internal energy of the system must increase by $q-w$.

That is,

$$
\Delta u=q-w
$$

where Δu is the change in internal energy of the system.

Again, let Δu be the change in internal energy of the system:

$$
\Delta u=q-w
$$

Again, let Δu be the change in internal energy of the system:

$$
\Delta u=q-w
$$

In differential form this becomes

$$
d u=d q-d w
$$

where $d q$ is the differential increment of heat added to the system, $d w$ the differential element of work done by the system, and $d u$ the differential increase in internal energy of the system.

Again, let Δu be the change in internal energy of the system:

$$
\Delta u=q-w
$$

In differential form this becomes

$$
d u=d q-d w
$$

where $d q$ is the differential increment of heat added to the system, $d w$ the differential element of work done by the system, and $d u$ the differential increase in internal energy of the system.

This is a statement of the First Law of Thermodynamics. In fact, it provides a definition of $d u$.

Again, let Δu be the change in internal energy of the system:

$$
\Delta u=q-w
$$

In differential form this becomes

$$
d u=d q-d w
$$

where $d q$ is the differential increment of heat added to the system, $d w$ the differential element of work done by the system, and $d u$ the differential increase in internal energy of the system.

This is a statement of the First Law of Thermodynamics. In fact, it provides a definition of $d u$.

The change in internal energy $d u$ depends only on the initial and final states of the system, and is therefore independent of the manner by which the system is transferred between these two states. Such parameters are referred to as functions of state

Consider a substance, the working substance, contained in a cylinder of fixed cross-sectional area that is fitted with a movable, frictionless piston.

Consider a substance, the working substance, contained in a cylinder of fixed cross-sectional area that is fitted with a movable, frictionless piston.

The volume of the substance is proportional to the distance from the base of the cylinder to the face of the piston, and can be represented on the horizontal axis of the graph shown in the following figure. The pressure of the substance in the cylinder can be represented on the vertical axis of this graph.

Consider a substance, the working substance, contained in a cylinder of fixed cross-sectional area that is fitted with a movable, frictionless piston.

The volume of the substance is proportional to the distance from the base of the cylinder to the face of the piston, and can be represented on the horizontal axis of the graph shown in the following figure. The pressure of the substance in the cylinder can be represented on the vertical axis of this graph.

Therefore, every state of the substance, corresponding to a given position of the piston, is represented by a point on this pressure-volume $(p-V)$ diagram.

Figure 3.4: Representation of the state of a working substance in a cylinder on a $p-V$ diagram.

If the piston moves outwards through an incremental distance $d x$, the work $d W$ done by the substance in pushing the external force F through the distance $d x$ is

$$
d W=F d x
$$

If the piston moves outwards through an incremental distance $d x$, the work $d W$ done by the substance in pushing the external force F through the distance $d x$ is

$$
d W=F d x
$$

Since $F=p A$, where A is the cross-sectional area,

$$
d W=p A d x=p d V
$$

If the piston moves outwards through an incremental distance $d x$, the work $d W$ done by the substance in pushing the external force F through the distance $d x$ is

$$
d W=F d x
$$

Since $F=p A$, where A is the cross-sectional area,

$$
d W=p A d x=p d V
$$

In other words, the work done is equal to the pressure of the substance multiplied by its increase in volume. Note that $d W=p d V$ is equal to the shaded area in the graph, the area under the curve PQ .

If the piston moves outwards through an incremental distance $d x$, the work $d W$ done by the substance in pushing the external force F through the distance $d x$ is

$$
d W=F d x
$$

Since $F=p A$, where A is the cross-sectional area,

$$
d W=p A d x=p d V
$$

In other words, the work done is equal to the pressure of the substance multiplied by its increase in volume. Note that $d W=p d V$ is equal to the shaded area in the graph, the area under the curve PQ.

When the substance passes from state A with volume V_{1} to state B with volume V_{2}, the work W done by the material is equal to the area under the curve $A B$. That is,

$$
W=\int_{V_{1}}^{V_{2}} p d V
$$

Again,

$$
W=\int_{V_{1}}^{V_{2}} p d V
$$

Again,

$$
W=\int_{V_{1}}^{V_{2}} p d V
$$

If $V_{2}>V_{1}$, then W is positive, indicating that the substance does work on its environment. If $V_{2}<V_{1}$, then W is negative, which indicates that the environment does work on the substance.

Again,

$$
W=\int_{V_{1}}^{V_{2}} p d V
$$

If $V_{2}>V_{1}$, then W is positive, indicating that the substance does work on its environment. If $V_{2}<V_{1}$, then W is negative, which indicates that the environment does work on the substance.

The $p-V$ diagram is an example of a thermodynamic diagram, in which the physical state of a substance is represented by two thermodynamic variables. Such diagrams are very useful in meteorology; we will discuss other examples later, in particular, the tephigram.

If we are dealing with a unit mass of a substance, the volume V is replaced by the specific volume α and the work w that is done when the specific volume increases by $d w$ is

$$
d w=p d \alpha
$$

If we are dealing with a unit mass of a substance, the volume V is replaced by the specific volume α and the work w that is done when the specific volume increases by $d w$ is

$$
d w=p d \alpha
$$

The thermodynamic equation may be written

$$
d q=d u+d w
$$

If we are dealing with a unit mass of a substance, the volume V is replaced by the specific volume α and the work w that is done when the specific volume increases by $d w$ is

$$
d w=p d \alpha
$$

The thermodynamic equation may be written

$$
d q=d u+d w
$$

Using this with the equation above, we get

$$
d q=d u+p d \alpha
$$

which is an alternative statement of the First Law of Thermodynamics.

Joule's Law

When a gas expands without doing external work, into a chamber that has been evacuated, and without taking in or giving out heat, the temperature of the gas does not change.

Joule's Law

When a gas expands without doing external work, into a chamber that has been evacuated, and without taking in or giving out heat, the temperature of the gas does not change.

This statement is strictly true only for an ideal gas, but air behaves very similarly to an ideal gas over a wide range of conditions.

Joule's Law

When a gas expands without doing external work, into a chamber that has been evacuated, and without taking in or giving out heat, the temperature of the gas does not change.

This statement is strictly true only for an ideal gas, but air behaves very similarly to an ideal gas over a wide range of conditions.

Joule's Law leads to an important conclusion concerning the internal energy of an ideal gas. If a gas neither does external work nor takes in or gives out heat, $d q=0$ and $d w=0$, so that, by the First Law of Thermodynamics, $d u=0$.

Joule's Law

When a gas expands without doing external work, into a chamber that has been evacuated, and without taking in or giving out heat, the temperature of the gas does not change. This statement is strictly true only for an ideal gas, but air behaves very similarly to an ideal gas over a wide range of conditions.

Joule's Law leads to an important conclusion concerning the internal energy of an ideal gas. If a gas neither does external work nor takes in or gives out heat, $d q=0$ and $d w=0$, so that, by the First Law of Thermodynamics, $d u=0$.

According to Joule's law, under these conditions the temperature of the gas does not change, which implies that the kinetic energy of the molecules remains constant.

Therefore, since the total internal energy of the gas is constant, that part of the internal energy due to the potential energy must also remain unchanged, even though the volume of the gas changes.

Therefore, since the total internal energy of the gas is constant, that part of the internal energy due to the potential energy must also remain unchanged, even though the volume of the gas changes.

In other words, the internal energy of an ideal gas is independent of its volume if the temperature is kept constant.

Therefore, since the total internal energy of the gas is constant, that part of the internal energy due to the potential energy must also remain unchanged, even though the volume of the gas changes.

In other words, the internal energy of an ideal gas is independent of its volume if the temperature is kept constant. This can be the case only if the molecules of an ideal gas do not exert forces on each other.

Therefore, since the total internal energy of the gas is constant, that part of the internal energy due to the potential energy must also remain unchanged, even though the volume of the gas changes.

In other words, the internal energy of an ideal gas is independent of its volume if the temperature is kept constant.

This can be the case only if the molecules of an ideal gas do not exert forces on each other.

In this case, the internal energy of an ideal gas will depend only on its temperature:

$$
u=u(T)
$$

Specific Heats

Suppose a small quantity of heat $d q$ is given to a unit mass of a material and, as a consequence, the temperature of the material increases from T to $T+d T$ without any changes in phase occurring within the material.

Specific Heats

Suppose a small quantity of heat $d q$ is given to a unit mass of a material and, as a consequence, the temperature of the material increases from T to $T+d T$ without any changes in phase occurring within the material.

The ratio $d q / d T$ is called the specific heat of the material. However, the specific heat defined in this way could have any number of values, depending on how the material changes as it receives the heat.

Specific Heats

Suppose a small quantity of heat $d q$ is given to a unit mass of a material and, as a consequence, the temperature of the material increases from T to $T+d T$ without any changes in phase occurring within the material.
The ratio $d q / d T$ is called the specific heat of the material. However, the specific heat defined in this way could have any number of values, depending on how the material changes as it receives the heat.
If the volume of the material is kept constant, a specific heat at constant volume, c_{v}, is defined

$$
c_{v}=\left(\frac{d q}{d T}\right)_{V}
$$

Specific Heats

Suppose a small quantity of heat $d q$ is given to a unit mass of a material and, as a consequence, the temperature of the material increases from T to $T+d T$ without any changes in phase occurring within the material.
The ratio $d q / d T$ is called the specific heat of the material. However, the specific heat defined in this way could have any number of values, depending on how the material changes as it receives the heat.
If the volume of the material is kept constant, a specific heat at constant volume, c_{v}, is defined

$$
c_{V}=\left(\frac{d q}{d T}\right)_{V}
$$

But if the volume of the material is constant, the thermodynamic equation gives $d q=d u$.

Again, $c_{v}=(d q / D t)_{V}$. But V constant implies $d q=d u$. Therefore

$$
c_{v}=\left(\frac{d u}{d T}\right)_{V}
$$

Again, $c_{v}=(d q / D t)_{V}$. But V constant implies $d q=d u$. Therefore

$$
c_{v}=\left(\frac{d u}{d T}\right)_{V}
$$

For an ideal gas, Joule's law applies and therefore u depends only on temperature. Therefore, regardless of whether the volume of a gas changes, we may write

$$
c_{v}=\frac{d u}{d T} .
$$

Again, $c_{v}=(d q / D t)_{V}$. But V constant implies $d q=d u$. Therefore

$$
c_{v}=\left(\frac{d u}{d T}\right)_{V}
$$

For an ideal gas, Joule's law applies and therefore u depends only on temperature. Therefore, regardless of whether the volume of a gas changes, we may write

$$
c_{v}=\frac{d u}{d T} .
$$

Since u is a function of state, no matter how the material changes from state 1 to state 2 , the change in its internal energy is

$$
u_{2}-u_{1}=\int_{T_{1}}^{T_{2}} c_{v} d T
$$

Again, $c_{v}=(d q / D t)_{V}$. But V constant implies $d q=d u$. Therefore

$$
c_{v}=\left(\frac{d u}{d T}\right)_{V}
$$

For an ideal gas, Joule's law applies and therefore u depends only on temperature. Therefore, regardless of whether the volume of a gas changes, we may write

$$
c_{v}=\frac{d u}{d T} .
$$

Since u is a function of state, no matter how the material changes from state 1 to state 2 , the change in its internal energy is

$$
u_{2}-u_{1}=\int_{T_{1}}^{T_{2}} c_{v} d T
$$

In differential form, we have:

$$
d u=c_{v} d T
$$

The First Law of Thermodynamics for an ideal gas can now be written in the form

$$
d q=c_{v} d T+p d \alpha
$$

The First Law of Thermodynamics for an ideal gas can now be written in the form

$$
d q=c_{v} d T+p d \alpha
$$

We can also define a specific heat at constant pressure

$$
c_{p}=\left(\frac{d q}{d T}\right)_{p}
$$

where the material is allowed to expand as heat is added to it and its temperature rises, but its pressure remains constant.

The First Law of Thermodynamics for an ideal gas can now be written in the form

$$
d q=c_{v} d T+p d \alpha
$$

We can also define a specific heat at constant pressure

$$
c_{p}=\left(\frac{d q}{d T}\right)_{p}
$$

where the material is allowed to expand as heat is added to it and its temperature rises, but its pressure remains constant.

In this case, some of the heat added to the material will have to be expended to do work as the system expands against the constant pressure of its environment.

The First Law of Thermodynamics for an ideal gas can now be written in the form

$$
d q=c_{v} d T+p d \alpha
$$

We can also define a specific heat at constant pressure

$$
c_{p}=\left(\frac{d q}{d T}\right)_{p}
$$

where the material is allowed to expand as heat is added to it and its temperature rises, but its pressure remains constant.

In this case, some of the heat added to the material will have to be expended to do work as the system expands against the constant pressure of its environment.

Therefore, a larger quantity of heat must be added to the material to raise its temperature by a given amount than if the volume of the material were kept constant.

Therefore

$$
c_{p}>c_{v}
$$

Therefore

$$
c_{p}>c_{v}
$$

For the case of an ideal gas, this inequality can be seen mathematically as follows. We write the thermodynamic equation as

$$
d q=c_{v} d T+p d \alpha=c_{v} d T+d(p \alpha)-\alpha d p
$$

Therefore

$$
c_{p}>c_{v}
$$

For the case of an ideal gas, this inequality can be seen mathematically as follows. We write the thermodynamic equation as

$$
d q=c_{v} d T+p d \alpha=c_{v} d T+d(p \alpha)-\alpha d p
$$

From the equation of state, $d(p \alpha)=d(R T)=R d T$.

Therefore

$$
c_{p}>c_{v}
$$

For the case of an ideal gas, this inequality can be seen mathematically as follows. We write the thermodynamic equation as

$$
d q=c_{v} d T+p d \alpha=c_{v} d T+d(p \alpha)-\alpha d p
$$

From the equation of state, $d(p \alpha)=d(R T)=R d T$.
Therefore,

$$
d q=\left(c_{v}+R\right) d T-\alpha d p
$$

Therefore

$$
c_{p}>c_{v}
$$

For the case of an ideal gas, this inequality can be seen mathematically as follows. We write the thermodynamic equation as

$$
d q=c_{v} d T+p d \alpha=c_{v} d T+d(p \alpha)-\alpha d p
$$

From the equation of state, $d(p \alpha)=d(R T)=R d T$.
Therefore,

$$
d q=\left(c_{v}+R\right) d T-\alpha d p
$$

At constant pressure, the last term vanishes; therefore,

$$
c_{p}=\left(\frac{d q}{d T}\right)_{p}=c_{v}+R
$$

Therefore

$$
c_{p}>c_{v}
$$

For the case of an ideal gas, this inequality can be seen mathematically as follows. We write the thermodynamic equation as

$$
d q=c_{v} d T+p d \alpha=c_{v} d T+d(p \alpha)-\alpha d p
$$

From the equation of state, $d(p \alpha)=d(R T)=R d T$.
Therefore,

$$
d q=\left(c_{v}+R\right) d T-\alpha d p
$$

At constant pressure, the last term vanishes; therefore,

$$
c_{p}=\left(\frac{d q}{d T}\right)_{p}=c_{v}+R
$$

Using this in the equation above it, we obtain an alternative form of the First Law of Thermodynamics:

$$
d q=c_{p} d T-\alpha d p
$$

The specific heats at constant volume and at constant pressure for dry air are 717 and $1004 \mathbf{J ~ K}^{-1} \mathbf{k g}^{-1}$, respectively, and the difference between them is $287 \mathrm{~J} \mathrm{~K}^{-1} \mathrm{~kg}^{-1}$, which is the gas constant for dry air.

The specific heats at constant volume and at constant pressure for dry air are 717 and $1004 \mathbf{J K ~ K}^{-1} \mathbf{k g}^{-1}$, respectively, and the difference between them is $287 \mathrm{~J} \mathrm{~K}^{-1} \mathrm{~kg}^{-1}$, which is the gas constant for dry air.

Again,

$$
c_{v}=717 \quad c_{p}=1004 \quad R=287
$$

(all in units $1004 \mathrm{~J} \mathrm{~K}^{-1} \mathrm{~kg}^{-1}$).

The specific heats at constant volume and at constant pressure for dry air are 717 and $1004 \mathbf{J ~ K}^{-1} \mathbf{k g}^{-1}$, respectively, and the difference between them is $287 \mathrm{~J} \mathrm{~K}^{-1} \mathrm{~kg}^{-1}$, which is the gas constant for dry air.

Again,

$$
c_{v}=717 \quad c_{p}=1004 \quad R=287
$$

(all in units $1004 \mathrm{~J} \mathrm{~K}^{-1} \mathrm{~kg}^{-1}$).
For an ideal monatomic gas $c_{p}: c_{v}: R=5: 3: 2$, and for an ideal diatomic gas $c_{p}: c_{v}: R=7: 5: 2$.

The specific heats at constant volume and at constant pressure for dry air are 717 and $1004 \mathbf{J K}^{-1} \mathbf{k g}^{-1}$, respectively, and the difference between them is $287 \mathrm{~J} \mathrm{~K}^{-1} \mathbf{k g}^{-1}$, which is the gas constant for dry air.

Again,

$$
c_{v}=717 \quad c_{p}=1004 \quad R=287
$$

(all in units $1004 \mathbf{J ~ K}^{-1} \mathrm{~kg}^{-1}$).
For an ideal monatomic gas $c_{p}: c_{v}: R=5: 3: 2$, and for an ideal diatomic gas $c_{p}: c_{v}: R=7: 5: 2$.
Since the atmosphere is comprised primarily of diatomic gases (N_{2} and O_{2}), we have

$$
\gamma=\frac{c_{p}}{c_{v}} \approx \frac{7}{5}=1.4, \quad \kappa=\frac{R}{c_{p}} \approx \frac{2}{7}=0.286
$$

Mnemonics

For air, $c_{p}: c_{v}: R=7: 5: 2$.

Mnemonics

For air, $c_{p}: c_{v}: R=7: 5: 2$.

$$
\begin{aligned}
\gamma=c_{p} / c_{v} & \text { Indices in alphabetical order } \\
R=c_{p}-c_{v} & \text { Indices in alphabetical order }
\end{aligned}
$$

Mnemonics

For air, $c_{p}: c_{v}: R=7: 5: 2$.

$$
\begin{aligned}
\gamma=c_{p} / c_{v} & \text { Indices in alphabetical order } \\
R=c_{p}-c_{v} & \text { Indices in alphabetical order }
\end{aligned}
$$

$$
c_{p} \approx 1000 \mathbf{J ~ K}^{-1} \mathbf{k g}^{-1}
$$

(true value $1004 \mathbf{J ~ K}^{-1} \mathrm{~kg}^{-1}$)

Mnemonics

For air, $c_{p}: c_{v}: R=7: 5: 2$.

$$
\begin{aligned}
\gamma=c_{p} / c_{v} & \text { Indices in alphabetical order } \\
R=c_{p}-c_{v} & \text { Indices in alphabetical order }
\end{aligned}
$$

$$
c_{p} \approx 1000 \mathbf{J ~ K}^{-1} \mathbf{k g}^{-1}
$$

(true value $1004 \mathbf{J ~ K}^{-1} \mathrm{~kg}^{-1}$)
Therefore,

$$
c_{v} \approx \frac{5}{7} \times 1000 \approx 714 \mathbf{J ~ K}^{-1} \mathbf{k g}^{-1}
$$

(true value $717 \mathrm{~J} \mathrm{~K}^{-1} \mathrm{~kg}^{-1}$)

Mnemonics

For air, $c_{p}: c_{v}: R=7: 5: 2$.

$$
\begin{aligned}
\gamma=c_{p} / c_{v} & \text { Indices in alphabetical order } \\
R=c_{p}-c_{v} & \text { Indices in alphabetical order }
\end{aligned}
$$

$$
c_{p} \approx 1000 \mathbf{J ~ K}^{-1} \mathbf{k g}^{-1}
$$

(true value $1004 \mathbf{J ~ K}^{-1} \mathrm{~kg}^{-1}$)
Therefore,

$$
c_{v} \approx \frac{5}{7} \times 1000 \approx 714 \mathbf{J ~ K}^{-1} \mathbf{k g}^{-1}
$$

(true value $717 \mathrm{~J} \mathrm{~K}^{-1} \mathrm{~kg}^{-1}$)
Moreover,

$$
R \approx \frac{2}{7} \times 1000 \approx 286 \mathbf{J ~ K}^{-1} \mathbf{k g}^{-1}
$$

(true value $287 \mathrm{~J} \mathrm{~K}^{-1} \mathrm{~kg}^{-1}$)

Enthalpy

Suppose heat is added to a unit mass of material at constant pressure. Suppose the resulting expansion causes the (specific) volume to increase from α_{1} to α_{2}.

Enthalpy

Suppose heat is added to a unit mass of material at constant pressure. Suppose the resulting expansion causes the (specific) volume to increase from α_{1} to α_{2}.
Then the work done by a unit mass of the material is

$$
\int_{\alpha_{1}}^{\alpha_{2}} p d \alpha=p\left(\alpha_{2}-\alpha_{1}\right)
$$

Enthalpy

Suppose heat is added to a unit mass of material at constant pressure. Suppose the resulting expansion causes the (specific) volume to increase from α_{1} to α_{2}.
Then the work done by a unit mass of the material is

$$
\int_{\alpha_{1}}^{\alpha_{2}} p d \alpha=p\left(\alpha_{2}-\alpha_{1}\right)
$$

Therefore, the finite quantity of heat Δq added is given by

$$
\begin{aligned}
\Delta q & =\left(u_{2}-u_{1}\right)+p\left(\alpha_{2}-\alpha_{1}\right) \\
& =\left(u_{2}+p \alpha_{2}\right)-\left(u_{1}+p \alpha_{1}\right)
\end{aligned}
$$

where u_{1} and u_{2} are the initial and final internal energies for unit mass.

Enthalpy

Suppose heat is added to a unit mass of material at constant pressure. Suppose the resulting expansion causes the (specific) volume to increase from α_{1} to α_{2}.
Then the work done by a unit mass of the material is

$$
\int_{\alpha_{1}}^{\alpha_{2}} p d \alpha=p\left(\alpha_{2}-\alpha_{1}\right)
$$

Therefore, the finite quantity of heat Δq added is given by

$$
\begin{aligned}
\Delta q & =\left(u_{2}-u_{1}\right)+p\left(\alpha_{2}-\alpha_{1}\right) \\
& =\left(u_{2}+p \alpha_{2}\right)-\left(u_{1}+p \alpha_{1}\right)
\end{aligned}
$$

where u_{1} and u_{2} are the initial and final internal energies for unit mass.

We define the enthalpy of a unit mass of the material by

$$
h=u+p \alpha
$$

Again, the specific enthalpy is defined as:

$$
h=u+p \alpha
$$

Since u, p, and α are functions of state, h is also a function of state.

Again, the specific enthalpy is defined as:

$$
h=u+p \alpha
$$

Since u, p, and α are functions of state, h is also a function of state.

From above it follows that, at constant pressure,

$$
\Delta q=\left(h_{2}-h_{1}\right)
$$

or, in other words,

$$
\Delta q=\Delta h
$$

Again, the specific enthalpy is defined as:

$$
h=u+p \alpha
$$

Since u, p, and α are functions of state, h is also a function of state.

From above it follows that, at constant pressure,

$$
\Delta q=\left(h_{2}-h_{1}\right)
$$

or, in other words,

$$
\Delta q=\Delta h
$$

Differentiating the defining equation, $h=u+p \alpha$, we obtain

$$
\begin{aligned}
d h & =d u+d(p \alpha) \\
& =d u+p d \alpha+\alpha d p \\
& =d q+\quad \alpha d p
\end{aligned}
$$

Again, the specific enthalpy is defined as:

$$
h=u+p \alpha
$$

Since u, p, and α are functions of state, h is also a function of state.

From above it follows that, at constant pressure,

$$
\Delta q=\left(h_{2}-h_{1}\right)
$$

or, in other words,

$$
\Delta q=\Delta h
$$

Differentiating the defining equation, $h=u+p \alpha$, we obtain

$$
\begin{aligned}
d h & =d u+d(p \alpha) \\
& =d u+p d \alpha+\alpha d p \\
& =d q+\quad \alpha d p
\end{aligned}
$$

Transferring terms to the other side, we get:

$$
d q=d h-\alpha d p
$$

This is another form of the First Law of Thermodynamics.

Repeating,

$$
d q=d h-\alpha d p
$$

But we already had the equation

$$
d q=c_{p} d T-\alpha d p
$$

Repeating,

$$
d q=d h-\alpha d p
$$

But we already had the equation

$$
d q=c_{p} d T-\alpha d p
$$

Comparing these last two equations, we conclude that

$$
d h=c_{p} d T
$$

or, in integrated form,

$$
h=c_{p} T
$$

where h is taken as zero when $T=0$.

Repeating,

$$
d q=d h-\alpha d p
$$

But we already had the equation

$$
d q=c_{p} d T-\alpha d p
$$

Comparing these last two equations, we conclude that

$$
d h=c_{p} d T
$$

or, in integrated form,

$$
h=c_{p} T
$$

where h is taken as zero when $T=0$.
In view of this, h is sometimes called the heat at constant pressure, because it corresponds to the heat given to a material to raise its temperature from 0 to T Kelvins at constant pressure.

Dry Static Energy

The hydrostatic equation gives

$$
\frac{d p}{d z}=-g \rho, \quad \text { or } \quad \alpha d p=-g d z
$$

Dry Static Energy

The hydrostatic equation gives

$$
\frac{d p}{d z}=-g \rho, \quad \text { or } \quad \alpha d p=-g d z
$$

Using this in the thermodynamic equation, we have

$$
\begin{aligned}
d q & =c_{p} d T-\alpha d p \\
& =c_{p} d T+g d z \\
& =d(h+\Phi)
\end{aligned}
$$

Dry Static Energy

The hydrostatic equation gives

$$
\frac{d p}{d z}=-g \rho, \quad \text { or } \quad \alpha d p=-g d z
$$

Using this in the thermodynamic equation, we have

$$
\begin{aligned}
d q & =c_{p} d T-\alpha d p \\
& =c_{p} d T+g d z \\
& =d(h+\Phi)
\end{aligned}
$$

Hence, if the material is a parcel of air with a fixed mass that is moving about in an hydrostatic atmosphere, the quantity

$$
(h+\Phi)
$$

which is called the dry static energy, is constant provided the parcel neither gains nor loses heat (that is, $d q=0$).

Dry Static Energy

The hydrostatic equation gives

$$
\frac{d p}{d z}=-g \rho, \quad \text { or } \quad \alpha d p=-g d z
$$

Using this in the thermodynamic equation, we have

$$
\begin{aligned}
d q & =c_{p} d T-\alpha d p \\
& =c_{p} d T+g d z \\
& =d(h+\Phi)
\end{aligned}
$$

Hence, if the material is a parcel of air with a fixed mass that is moving about in an hydrostatic atmosphere, the quantity

$$
(h+\Phi)
$$

which is called the dry static energy, is constant provided the parcel neither gains nor loses heat (that is, $d q=0$).
For adiabatic changes, the dry static energy is constant.

Exercises:

