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Part 2

Atmospheric Thermodynamics
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Atmospheric Thermodynamics
Thermodynamics plays an important role in our quanti-
tative understanding of atmospheric phenomena, ranging
from the smallest cloud microphysical processes to the gen-
eral circulation of the atmosphere.

The purpose of this section of the course is to introduce
some fundamental ideas and relationships in thermodynam-
ics and to apply them to a number of simple, but important,
atmospheric situations.

The course is based closely on the text of Wallace & Hobbs
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Outline of Material
• 1 The Gas Laws

• 2 The Hydrostatic Equation

• 3 The First Law of Thermodynamics

• 4 Adiabatic Processes

• 5 Water Vapour in Air

• 6 Static Stability

• 7 The Second Law of Thermodynamics
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The Kinetic Theory of Gases
The atmosphere is a gaseous envelope surrounding the Earth.
The basic source of its motion is incoming solar radiation,
which drives the general circulation.

To begin to understand atmospheric dynamics, we must first
understand the way in which a gas behaves, especially when
heat is added are removed. Thus, we begin by studying
thermodynamics and its application in simple atmospheric
contexts.
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The Kinetic Theory of Gases
The atmosphere is a gaseous envelope surrounding the Earth.
The basic source of its motion is incoming solar radiation,
which drives the general circulation.

To begin to understand atmospheric dynamics, we must first
understand the way in which a gas behaves, especially when
heat is added are removed. Thus, we begin by studying
thermodynamics and its application in simple atmospheric
contexts.

Fundamentally, a gas is an agglomeration of molecules. We
might consider the dynamics of each molecule, and the inter-
actions between the molecules, and deduce the properties of
the gas from direct dynamical analysis. However, consider-
ing the enormous number of molecules in, say, a kilogram of
gas, and the complexity of the inter-molecular interactions,
such an analysis is utterly impractical.
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We resort therefore to a statistical approach, and consider
the average behaviour of the gas. This is the approach called
the kinetic theory of gases. The laws governing the bulk
behaviour are at the heart of thermodynamics. We will
not consider the kinetic theory explicitly, but will take the
thermodynamic principles as our starting point.
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The Gas Laws
The pressure, volume, and temperature of any material are
related by an equation of state, the ideal gas equation. For
most purposes we may assume that atmospheric gases obey
the ideal gas equation exactly.
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The Gas Laws
The pressure, volume, and temperature of any material are
related by an equation of state, the ideal gas equation. For
most purposes we may assume that atmospheric gases obey
the ideal gas equation exactly.

The ideal gas equation may be written

pV = mRT

Where the variables have the following meanings:

p = pressure (Pa)

V = volume (m3)

m = mass (kg)

T = temperature (K)

R = gas constant (JK−1 kg−1)
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Again, the gas law is:

pV = mRT

The value of R depends on the particular gas.
For dry air, its value is R = 287JK−1 kg−1.
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Again, the gas law is:

pV = mRT

The value of R depends on the particular gas.
For dry air, its value is R = 287JK−1 kg−1.

Exercise: Check the dimensions of R.

Since the density is ρ = m/V , we may write

p = RρT .

Defining the specific volume, the volume of a unit mass of

gas, as α = 1/ρ, we can write

pα = RT .
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Special Cases
Boyle’s Law: We may write

V =
mRT

p
.

For a fixed mass of gas at constant temperature, mRT is

constant, so volume is inversely proportional to pressure:

V ∝ 1/p .
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Special Cases
Boyle’s Law: We may write

V =
mRT

p
.

For a fixed mass of gas at constant temperature, mRT is

constant, so volume is inversely proportional to pressure:

V ∝ 1/p .

Charles Law: We may write

V =

(
mR

p

)
T .

For a fixed mass of gas at constant pressure, mR/p is con-

stant, so volume is directly proportional to temperature:

V ∝ T .
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Avogadro’s Hypothesis
One mole (mol) of a gas is the molecular weight in grams.
One kilomole (kmol) of a gas is the molecular weight in
kilograms. For example, the molecular weight of nitrogen
N2 is 28 (we ignore the effects of isotopic variations). So:

One mole of N2 corresponds to 28g

One kilomole of N2 corresponds to 28kg
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Avogadro’s Hypothesis
One mole (mol) of a gas is the molecular weight in grams.
One kilomole (kmol) of a gas is the molecular weight in
kilograms. For example, the molecular weight of nitrogen
N2 is 28 (we ignore the effects of isotopic variations). So:

One mole of N2 corresponds to 28g

One kilomole of N2 corresponds to 28kg

According to Avogadro’s Hypothesis, equal volumes of dif-
ferent gases at a given temperature and pressure have the
same number of molecules; or, put another way, gases with
the same number of molecules occupy the same volume at
a given temperature and pressure.
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The number of molecules in a mole of any gas is a universal
constant, called Avogadro’s Number, NA. The value of NA
is 6.022× 1023. So:

28 g of nitrogen contains NA molecules of N2

28kg contains 103 ×NA molecules.
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For a gas of molecular weight M , with mass m (in kilograms)
the number n of kilomoles is

n =
m

M
.

So, we use m = nM in the gas law to write it

pV = n(MR)T
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The number of molecules in a mole of any gas is a universal
constant, called Avogadro’s Number, NA. The value of NA
is 6.022× 1023. So:

28 g of nitrogen contains NA molecules of N2

28kg contains 103 ×NA molecules.

For a gas of molecular weight M , with mass m (in kilograms)
the number n of kilomoles is

n =
m

M
.

So, we use m = nM in the gas law to write it

pV = n(MR)T

By Avogadro’s hypothesis, equal volumes of different gases
at a given temperature and pressure have the same number
of molecules. Therefore, the value of MR is the same for
any gas. It is called the universal gas constant, denoted:

R∗ = MR = 8.3145JK−1 mol−1 = 8314.5JK−1 kmol−1 .
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Then the gas law may be written in the form normally found
in texts on chemistry:

pV = nR∗T .

with n the number of moles of gas and R∗ = 8.3145JK−1 mol−1.
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Then the gas law may be written in the form normally found
in texts on chemistry:

pV = nR∗T .

with n the number of moles of gas and R∗ = 8.3145JK−1 mol−1.

The gas constant for a single molecule of a gas is also a
universal constant, called Boltzmann’s constant, k. Since
the gas constant R∗ is for NA molecules (the number in a
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Then the gas law may be written in the form normally found
in texts on chemistry:

pV = nR∗T .

with n the number of moles of gas and R∗ = 8.3145JK−1 mol−1.

The gas constant for a single molecule of a gas is also a
universal constant, called Boltzmann’s constant, k. Since
the gas constant R∗ is for NA molecules (the number in a
kilomole), we get

k =
R∗

NA

Now, for a gas containing n0 molecules per unit volume, the
equation of state is

p = n0kT .
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Virtual Temperature
The mean molecular weight Md of dry air is about 29
(average of four parts N2 (28) and one part O2 (32)).
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Virtual Temperature
The mean molecular weight Md of dry air is about 29
(average of four parts N2 (28) and one part O2 (32)).

The molecular weight Mv of water vapour (H2O) is about
18 (16 for O and 2 for H2).

Thus, the mean molecular weight, Mm, of moist air, which
is a a mixture of dry air and water vapour, is less than that,
Md, of dry air and more than that of water vapour:

Mv < Mm < Md

The gas constant for water vapour is larger than that for
dry air:

Rd =
R∗

Md
, and Rv =

R∗

Mv

so that
Mv < Md =⇒ Rv > Rd .
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The numerical values of Rd and Rv are as follows:

Rd =
R∗

Md
= 287JK−1kg−1 , Rv =

R∗

Mv
= 461JK−1kg−1 .

We define the ratio of these as:

ε ≡ Rd

Rv
=

Mv

Md
≈ 0.622 .
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For moist air, which is a mixure of dry air and water vapour,
the mean molecular weight Mm, and therefore also the gas
‘constant’ Rm, depends on the amount of moisture in the
air.
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The numerical values of Rd and Rv are as follows:

Rd =
R∗

Md
= 287JK−1kg−1 , Rv =

R∗

Mv
= 461JK−1kg−1 .

We define the ratio of these as:

ε ≡ Rd

Rv
=

Mv

Md
≈ 0.622 .

For moist air, which is a mixure of dry air and water vapour,
the mean molecular weight Mm, and therefore also the gas
‘constant’ Rm, depends on the amount of moisture in the
air.

It is inconvenient to use a gas ‘constant’ which varies in
this way. It is simpler to retain the constant R = Rd for dry
air, and to use a modified temperature, Tv, in the ideal gas
equation. We call this the virtual temperature.
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Mixing Ratio
Let’s consider a fixed volume V of moist air at temperature

T and pressure p which contains a mass md of dry air and

a mass mv of water vapour. The total mass is m = md + mv.

The mixing ratio is defined by

w =
mv

md
.
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Mixing Ratio
Let’s consider a fixed volume V of moist air at temperature

T and pressure p which contains a mass md of dry air and

a mass mv of water vapour. The total mass is m = md + mv.

The mixing ratio is defined by

w =
mv

md
.

The mixing ratio is a dimensionless number. It is usually
given as grams of water vapour per kilogram of air.

In middle latitudes, w is typically a few grams per kilogram.
In the tropics it can be greater than 20gkg−1. If there
is no evapouration or condensation, the mixing ratio is a
conserved quantity.
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Mixing Ratio and Vapour Pressure
By the ideal gas law, the partial pressure pressure exerted
by a constituent of a mixture of gases is proportional to
the number of kilomoles of the constituent in the mixture.
Thus:

pd = ndR
∗T dry air

e = nvR
∗T water vapour

p = nR∗T moist air

where pd is the pressure due to dry air, e the pressure due
to water vapour and p the total pressure.
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Mixing Ratio and Vapour Pressure
By the ideal gas law, the partial pressure pressure exerted
by a constituent of a mixture of gases is proportional to
the number of kilomoles of the constituent in the mixture.
Thus:

pd = ndR
∗T dry air

e = nvR
∗T water vapour

p = nR∗T moist air

where pd is the pressure due to dry air, e the pressure due
to water vapour and p the total pressure.

Therefore,

e

p
=

nv

n
=

nv

nv + nd
=

mv/Mv

mv/Mv + md/Md

Dividing by Mv/md, this gives
e

p
=

w

w + ε
16



Problem: If the mixing ratio is 5.5 gkg−1, and the total
pressure is p = 1026.8hPa, calculate the vapour pressure.
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Problem: If the mixing ratio is 5.5 gkg−1, and the total
pressure is p = 1026.8hPa, calculate the vapour pressure.

Solution: We have

e =

(
w

w + ε

)
p ≈ w

ε
p

where ε = 0.622. Substituting w = 5.5gkg−1 = 0.0055gg−1, we
find that e = 9hPa.
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Virtual Temperature
The density of the mixture of air and water vapour is

ρ =
md + mv

V
= ρd + ρv

where ρd is the value the density would have if only the
mass md of dry air were present and ρv is the value the
density would have if only the mass mv of water vapour
were present.
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Virtual Temperature
The density of the mixture of air and water vapour is

ρ =
md + mv

V
= ρd + ρv

where ρd is the value the density would have if only the
mass md of dry air were present and ρv is the value the
density would have if only the mass mv of water vapour
were present.

We apply the ideal gas law to each component:

pd = RdρdT

e = RvρvT

where pd and e are the partial pressures exerted by the dry
air and water vapour respectively.
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By Dalton’s law of partial pressure,

p = pd + e .
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By Dalton’s law of partial pressure,

p = pd + e .

Combining the above results,

ρ = ρd + ρv =
pd

RdT
+

e

RvT

=
p− e

RdT
+

Rd

Rv

e

RdT

=
p

RdT
− e

RdT
+ ε

e

RdT

=
p

RdT

[
1− e

p
(1− ε)

]
.
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By Dalton’s law of partial pressure,

p = pd + e .

Combining the above results,

ρ = ρd + ρv =
pd

RdT
+

e

RvT

=
p− e

RdT
+

Rd

Rv

e

RdT

=
p

RdT
− e

RdT
+ ε

e

RdT

=
p

RdT

[
1− e

p
(1− ε)

]
.

We may write this equation as

p = RdρTv

where the virtual temperature Tv is defined by

Tv =
T

1− (e/p)(1− ε)
.
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Again,
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where the virtual temperature Tv is defined by
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T
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Again,
p = RdρTv

where the virtual temperature Tv is defined by

Tv =
T

1− (e/p)(1− ε)
.

The great advantage of introducing virtual temperature is
that the total pressure and total density of the mixture are
related by the ideal gas equation with the gas constant the
same as that for dry air, Rd.
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Again,
p = RdρTv

where the virtual temperature Tv is defined by

Tv =
T

1− (e/p)(1− ε)
.

The great advantage of introducing virtual temperature is
that the total pressure and total density of the mixture are
related by the ideal gas equation with the gas constant the
same as that for dry air, Rd.

The virtual temperature is the temperature that dry air
must have in order to to have the same density as the moist
air at the same pressure. Note that the virtual temperature
is always greater than the actual tempeature:

Tv ≥ T .
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Again,
p = RdρTv

where the virtual temperature Tv is defined by

Tv =
T

1− (e/p)(1− ε)
.

The great advantage of introducing virtual temperature is
that the total pressure and total density of the mixture are
related by the ideal gas equation with the gas constant the
same as that for dry air, Rd.

The virtual temperature is the temperature that dry air
must have in order to to have the same density as the moist
air at the same pressure. Note that the virtual temperature
is always greater than the actual tempeature:

Tv ≥ T .

Typically, the virtual temperature exceeds the actual tem-
perature by only a few degrees.
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Approximate Expressions for Tv
We can assume that e � p and also that w is small. By the
binomial theorem,

1

1− (e/p)(1− ε)
≈ 1 + (e/p)(1− ε)

and the virtual temperature is

Tv ≈ T

[
1 +

e

p
(1− ε)

]
.
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Approximate Expressions for Tv
We can assume that e � p and also that w is small. By the
binomial theorem,

1

1− (e/p)(1− ε)
≈ 1 + (e/p)(1− ε)

and the virtual temperature is

Tv ≈ T

[
1 +

e

p
(1− ε)

]
.

Now substituting for e/p, we get[
1 +

e

p
(1− ε)

]
=

[
1 +

w

w + ε
(1− ε)

]
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Approximate Expressions for Tv
We can assume that e � p and also that w is small. By the
binomial theorem,

1

1− (e/p)(1− ε)
≈ 1 + (e/p)(1− ε)

and the virtual temperature is

Tv ≈ T

[
1 +

e

p
(1− ε)

]
.

Now substituting for e/p, we get[
1 +

e

p
(1− ε)

]
=

[
1 +

w

w + ε
(1− ε)

]
But we assume that w � ε, so we get[

1 +
w

w + ε
(1− ε)

]
≈

[
1 +

1− ε

ε
w

]
21



Again, [
1 +

w

w + ε
(1− ε)

]
≈

[
1 +

1− ε

ε
w

]
Since ε = 0.622 we have (1− ε)/ε = 0.608. Thus,

Tv ≈ T [1 + 0.608w] .
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Again, [
1 +

w

w + ε
(1− ε)

]
≈

[
1 +

1− ε

ε
w

]
Since ε = 0.622 we have (1− ε)/ε = 0.608. Thus,

Tv ≈ T [1 + 0.608w] .

Problem: Calculate the virtual temperature of moist air at
30◦C having a mixing ratio of 20 gkg−1.
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Again, [
1 +

w

w + ε
(1− ε)

]
≈

[
1 +

1− ε

ε
w

]
Since ε = 0.622 we have (1− ε)/ε = 0.608. Thus,

Tv ≈ T [1 + 0.608w] .

Problem: Calculate the virtual temperature of moist air at
30◦C having a mixing ratio of 20 gkg−1.

Solution: First, T = 30 + 273 = 303K and w = 20gkg−1 =
0.02gg−1. Then

Tv ≈ 303 [1 + 0.608× 0.02] = 306.68 K

So, the virtual temperature is (306.68 − 273) = 33.68◦C, an
elevation of 3.68◦C above the actual temperature.

22



End of §2.1
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