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Atmospheric Thermodynamics
Thermodynamics plays an important role in our quanti-
tative understanding of atmospheric phenomena, ranging
from the smallest cloud microphysical processes to the gen-
eral circulation of the atmosphere.

The purpose of this section of the course is to introduce
some fundamental ideas and relationships in thermodynam-
ics and to apply them to a number of simple, but important,
atmospheric situations.

The course is based closely on the text of Wallace & Hobbs
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Outline of Material
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• 3 The First Law of Thermodynamics
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• 5 Water Vapour in Air

• 6 Static Stability
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The Kinetic Theory of Gases
The atmosphere is a gaseous envelope surrounding the Earth.
The basic source of its motion is incoming solar radiation,
which drives the general circulation.

To begin to understand atmospheric dynamics, we must first
understand the way in which a gas behaves, especially when
heat is added are removed. Thus, we begin by studying
thermodynamics and its application in simple atmospheric
contexts.

Fundamentally, a gas is an agglomeration of molecules. We
might consider the dynamics of each molecule, and the inter-
actions between the molecules, and deduce the properties of
the gas from direct dynamical analysis. However, consider-
ing the enormous number of molecules in, say, a kilogram of
gas, and the complexity of the inter-molecular interactions,
such an analysis is utterly impractical.
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We resort therefore to a statistical approach, and consider
the average behaviour of the gas. This is the approach called
the kinetic theory of gases. The laws governing the bulk
behaviour are at the heart of thermodynamics. We will
not consider the kinetic theory explicitly, but will take the
thermodynamic principles as our starting point.
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I. The Gas Laws
The pressure, volume, and temperature of any material are
related by an equation of state, the ideal gas equation. For
most purposes we may assume that atmospheric gases obey
the ideal gas equation exactly.

The ideal gas equation may be written

pV = mRT

Where the variables have the following meanings:

p = pressure (Pa)

V = volume (m3)

m = mass (kg)

T = temperature (K)

R = gas constant (JK−1 kg−1)
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Again, the gas law is:

pV = mRT

The value of R depends on the particular gas.
For dry air, its value is R = 287JK−1 kg−1.

Exercise: Check the dimensions of R.

Since the density is ρ = m/V , we may write

p = RρT .

Defining the specific volume, the volume of a unit mass of

gas, as α = 1/ρ, we can write

pα = RT .

8



Special Cases
Boyle’s Law: We may write

V =
mRT

p
.

For a fixed mass of gas at constant temperature, mRT is

constant, so volume is inversely proportional to pressure:

V ∝ 1/p .

Charles Law: We may write

V =

(
mR

p

)
T .

For a fixed mass of gas at constant pressure, mR/p is con-

stant, so volume is directly proportional to temperature:

V ∝ T .
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Avogadro’s Hypothesis
One mole (mol) of a gas is the molecular weight in grams.
One kilomole (kmol) of a gas is the molecular weight in
kilograms. For example, the molecular weight of nitrogen
N2 is 28 (we ignore the effects of isotopic variations). So:

One mole of N2 corresponds to 28g

One kilomole of N2 corresponds to 28kg

According to Avogadro’s Hypothesis, equal volumes of dif-
ferent gases at a given temperature and pressure have the
same number of molecules; or, put another way, gases with
the same number of molecules occupy the same volume at
a given temperature and pressure.
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The number of molecules in a mole of any gas is a universal
constant, called Avogadro’s Number, NA. The value of NA
is 6.022× 1023. So:

28 g of nitrogen contains NA molecules of N2

28kg contains 103 ×NA molecules.

For a gas of molecular weight M , with mass m (in kilograms)
the number n of kilomoles is

n =
m

M
.

So, we use m = nM in the gas law to write it

pV = n(MR)T

By Avogadro’s hypothesis, equal volumes of different gases
at a given temperature and pressure have the same number
of molecules. Therefore, the value of MR is the same for
any gas. It is called the universal gas constant, denoted:

R∗ = MR = 8.3145JK−1 mol−1 = 8314.5JK−1 kmol−1 .
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Then the gas law may be written in the form normally found
in texts on chemistry:

pV = nR∗T .

with n the number of moles of gas and R∗ = 8.3145JK−1 mol−1.

The gas constant for a single molecule of a gas is also a
universal constant, called Boltzmann’s constant, k. Since
the gas constant R∗ is for NA molecules (the number in a
kilomole), we get

k =
R∗

NA

Now, for a gas containing n0 molecules per unit volume, the
equation of state is

p = n0kT .
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Virtual Temperature
The mean molecular weight Md of dry air is about 29
(average of four parts N2 (28) and one part O2 (32)).

The molecular weight Mv of water vapour (H2O) is about
18 (16 for O and 2 for H2).

Thus, the mean molecular weight, Mm, of moist air, which
is a a mixture of dry air and water vapour, is less than that,
Md, of dry air and more than that of water vapour:

Mv < Mm < Md

The gas constant for water vapour is larger than that for
dry air:

Rd =
R∗

Md
, and Rv =

R∗

Mv

so that
Mv < Md =⇒ Rv > Rd .
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The numerical values of Rd and Rv are as follows:

Rd =
R∗

Md
= 287JK−1kg−1 , Rv =

R∗

Mv
= 461JK−1kg−1 .

We define the ratio of these as:

ε ≡ Rd

Rv
=

Mv

Md
≈ 0.622 .

For moist air, which is a mixure of dry air and water vapour,
the mean molecular weight Mm, and therefore also the gas
‘constant’ Rm, depends on the amount of moisture in the
air.

It is inconvenient to use a gas ‘constant’ which varies in
this way. It is simpler to retain the constant R = Rd for dry
air, and to use a modified temperature, Tv, in the ideal gas
equation. We call this the virtual temperature.
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Mixing Ratio
Let’s consider a fixed volume V of moist air at temperature

T and pressure p which contains a mass md of dry air and

a mass mv of water vapour. The total mass is m = md + mv.

The mixing ratio is defined by

w =
mv

md
.

The mixing ratio is a dimensionless number. It is usually
given as grams of water vapour per kilogram of air.

In middle latitudes, w is typically a few grams per kilogram.
In the tropics it can be greater than 20gkg−1. If there
is no evapouration or condensation, the mixing ratio is a
conserved quantity.
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Mixing Ratio and Vapour Pressure
By the ideal gas law, the partial pressure pressure exerted
by a constituent of a mixture of gases is proportional to
the number of kilomoles of the constituent in the mixture.
Thus:

pd = ndR
∗T dry air

e = nvR
∗T water vapour

p = nR∗T moist air

where pd is the pressure due to dry air, e the pressure due
to water vapour and p the total pressure.

Therefore,

e

p
=

nv

n
=

nv

nv + nd
=

mv/Mv

mv/Mv + md/Md

Dividing by Mv/md, this gives
e

p
=

w

w + ε
16



Problem: If the mixing ratio is 5.5 gkg−1, and the total
pressure is p = 1026.8hPa, calculate the vapour pressure.

Solution: We have

e =

(
w

w + ε

)
p ≈ w

ε
p

where ε = 0.622. Substituting w = 5.5gkg−1 = 0.0055gg−1, we
find that e = 9hPa.
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Virtual Temperature
The density of the mixture of air and water vapour is

ρ =
md + mv

V
= ρd + ρv

where ρd is the value the density would have if only the
mass md of dry air were present and ρv is the value the
density would have if only the mass mv of water vapour
were present.

We apply the ideal gas law to each component:

pd = RdρdT

e = RvρvT

where pd and e are the partial pressures exerted by the dry
air and water vapour respectively.
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By Dalton’s law of partial pressure,

p = pd + e .

Combining the above results,

ρ = ρd + ρv =
pd

RdT
+

e

RvT

=
p− e

RdT
+

Rd

Rv

e

RdT

=
p

RdT
− e

RdT
+ ε

e

RdT

=
p

RdT

[
1− e

p
(1− ε)

]
.

We may write this equation as

p = RdρTv

where the virtual temperature Tv is defined by

Tv =
T

1− (e/p)(1− ε)
.
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Again,
p = RdρTv

where the virtual temperature Tv is defined by

Tv =
T

1− (e/p)(1− ε)
.

The great advantage of introducing virtual temperature is
that the total pressure and total density of the mixture are
related by the ideal gas equation with the gas constant the
same as that for dry air, Rd.

The virtual temperature is the temperature that dry air
must have in order to to have the same density as the moist
air at the same pressure. Note that the virtual temperature
is always greater than the actual tempeature:

Tv ≥ T .

Typically, the virtual temperature exceeds the actual tem-
perature by only a few degrees.
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Approximate Expressions for Tv
We can assume that e � p and also that w is small. By the
binomial theorem,

1

1− (e/p)(1− ε)
≈ 1 + (e/p)(1− ε)

and the virtual temperature is

Tv ≈ T

[
1 +

e

p
(1− ε)

]
.

Now substituting for e/p, we get[
1 +

e

p
(1− ε)

]
=

[
1 +

w

w + ε
(1− ε)

]
But we assume that w � ε, so we get[

1 +
w

w + ε
(1− ε)

]
≈

[
1 +

1− ε

ε
w

]
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Again, [
1 +

w

w + ε
(1− ε)

]
≈

[
1 +

1− ε

ε
w

]
Since ε = 0.622 we have (1− ε)/ε = 0.608. Thus,

Tv ≈ T [1 + 0.608w] .

Problem: Calculate the virtual temperature of moist air at
30◦C having a mixing ratio of 20 gkg−1.

Solution: First, T = 30 + 273 = 303K and w = 20gkg−1 =
0.02gg−1. Then

Tv ≈ 303 [1 + 0.608× 0.02] = 306.68 K

So, the virtual temperature is (306.68 − 273) = 33.68◦C, an
elevation of 3.68◦C above the actual temperature.
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End of §2.1
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II. The Hydrostatic Equation
Air pressure at any height in the atmosphere is due to the
force per unit area exerted by the weight of all of the air ly-
ing above that height. Consequently, atmospheric pressure
decreases with increasing height above the ground.

The net upward force acting on a thin horizontal slab of air,
due to the decrease in atmospheric pressure with height, is
generally very closely in balance with the downward force
due to gravitational attraction that acts on the slab.

If the net upward pressure force on the slab is equal to the
downward force of gravity on the slab, the atmosphere is
said to be in hydrostatic balance.
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Balance of vertical forces in an atmosphere in hydrostatic balance.
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The mass of air between heights z and z + δz in the column
of air is ρ δz.

The downward gravitational force acting on this slab of air,
due to the weight of the air, is gρδz.

Let the change in pressure in going from height z to height
z + δz be δp. Since we know that pressure decreases with
height, δp must be a negative quantity.

The upward pressure on the lower face of the shaded block
must be slightly greater than the downward pressure on the
upper face of the block.

Therefore, the net vertical force on the block due to the
vertical gradient of pressure is upward and given by the
positive quantity −δp as indicated in the figure.
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For an atmosphere in hydrostatic equilibrium, the balance
of forces in the vertical requires that

−δp = gρ δz

In the limit as δz → 0,

∂p

∂z
= −gρ .

This is the hydrostatic equation.

The negative sign ensures that the pressure decreases with
increasing height.

Since ρ = 1/α, the equation can be rearranged to give

g dz = −α dp
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Integrating the hydrostatic equation from height z (and
pressure p(z)) to an infinite height:

−
∫ p(∞)

p(z)
dp =

∫ ∞

z
gρ dz

Since p(∞) = 0,

p(z) =

∫ ∞

z
gρ dz

That is, the pressure at height z is equal to the weight of
the air in the vertical column of unit cross-sectional area
lying above that level.

If the mass of the Earth’s atmosphere were uniformly dis-
tributed over the globe, the pressure at sea level would be
1013 hPa, or 1.013 × 105 Pa, which is referred to as 1 atmo-
sphere (or 1 atm).
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Geopotential
The geopotential Φ at any point in the Earth’s atmosphere
is defined as the work that must be done against the Earth’s
gravitational field to raise a mass of 1 kg from sea level to
that point.

In other words, Φ is the gravitational potential energy per
unit mass. The units of geopotential are Jkg−1 or m2 s−2.

The work (in joules) in raising 1 kg from z to z + dz is g dz.
Therefore

dΦ = g dz

or, using the hydrostatic equation,

dΦ = g dz = −α dp
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The geopotential Φ(z) at height z is thus given by

Φ(z) =

∫ z

0
g dz .

where the geopotential Φ(0) at sea level (z = 0) has been
taken as zero.

The geopotential at a particular point in the atmosphere
depends only on the height of that point and not on the
path through which the unit mass is taken in reaching that
point.

We define the geopotential height Z as

Z =
Φ(z)

g0
=

1

g0

∫ z

0
g dz

where g0 is the globally averaged acceleration due to gravity
at the Earth’s surface.
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Geopotential height is used as the vertical coordinate in
most atmospheric applications in which energy plays an im-
portant role. It can be seen from the Table below that the
values of Z and z are almost the same in the lower atmo-
sphere where g ≈ g0.
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The Hypsometric Equation
In meteorological practice it is not convenient to deal with
the density of a gas, ρ, the value of which is generally not
measured. By making use of the hydrostatic equation and
the gas law, we can eliminate ρ:

∂p

∂z
= − pg

RT
= − pg

RdTv

Rearranging the last expression and using dΦ = g dz yields

dΦ = g dz = −RT
dp

p
= −RdTv

dp

p

Integrating between pressure levels p1 and p2, with geo-
potentials Z1 and Z1 respectively,∫ Φ2

Φ1

dΦ = −
∫ p2

p1

RdTv
dp

p
or

Φ2 − Φ1 = −Rd

∫ p2

p1

Tv
dp

p
32



Dividing both sides of the last equation by g0 and reversing
the limits of integration yields

Z2 − Z1 =
Rd

g0

∫ p1

p2

Tv
dp

p

The difference Z2−Z1 is called the geopotential thickness of
the layer.

If the virtual temperature is constant with height, we get

Z2 − Z1 = H

∫ p1

p2

dp

p
= H log

(
p1

p2

)
or

p2 = p1 exp

[
−Z2 − Z1

H

]
where H = RdTv/g0 is the scale height. Since Rd = 287JK−1kg−1

and g0 = 9.81ms−2 we have, approximately, H = 29.3 Tv.

If we take a mean value for virtual temperature of Tv = 255K,
the scale height H for air in the atmosphere is found to be
about 7.5km.

Exercise: Check these statements.
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The temperature and vapour pressure of the atmosphere
generally vary with height. In this case we can define a
mean virtual temperature T̄v (see following Figure):

T̄v =

∫ log p1
log p2

Tvd log p∫ log p1
log p2

d log p
=

∫ log p1
log p2

Tvd log p

log(p1/p2)

Using this in the thickness equation we get

Z2 − Z1 =
Rd

g0

∫ p1

p2

Tv d log p =
RdT̄v

g0
log

p1

p2

This is called the hypsometric equation:

Z2 − Z1 =
RdT̄v

g0
log

p1

p2
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Figure 3.2. Vertical profile, or sounding, of virtual temperature.
If area ABC is equal to area CDE, then T̄v is the mean virtual

temperature with respect to log p between the pressure levels p1 and p2.
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Constant Pressure Surfaces
Since pressure decreases monotonically with height, pres-
sure surfaces never intersect. It follows from the hypsomet-
ric equation that that the thickness of the layer between any
two pressure surfaces p2 and p1 is proportional to the mean
virtual temperature of the layer, T̄v.

Essentially, the air between the two pressure levels expands
and the layer becomes thicker as the temperature increases.

Exercise: Calculate the thickness of the layer between the
1000 hPa and 500 hPa pressure surfaces, (a) at a point in
the tropics where the mean virtual temperature of the layer
is 15◦C, and (b) at a point in the polar regions where the
mean virtual temperature is −40◦C.
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Solution: From the hypsometric equation,

∆Z = Z500 − Z1000 =
RdT̄v

g0
ln

(
1000

500

)
= 20.3 T̄v metres

Therefore, for the tropics with virtual temperature T̄v =
288K we get

∆Z = 5846m .

For polar regions with virtual temperature T̄v = 233K, we
get

∆Z = 4730m .

In operational practice, thickness is rounded to the nearest
10 m and expressed in decameters (dam). Hence, answers
for this exercise would normally be expressed as 585 dam
and 473 dam, respectively.
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Using soundings from a network of stations, it is possible to
construct topographical maps of the distribution of geopo-
tential height on selected pressure surfaces.

If the three-dimensional distribution of virtual temperature
is known, together with the distribution of geopotential
height on one pressure surface, it is possible to infer the
distribution of geopotential height of any other pressure sur-
face.

The same hypsometric relationship between the three-dimens-
ional temperature field and the shape of pressure surface
can be used in a qualitative way to gain some useful in-
sights into the three-dimensional structure of atmospheric
disturbances, as illustrated by the following examples:

• Warm-core hurricane

• Cold-core upper low

• Extratropical cyclone
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Figure 3.3. Vertical cross-sections through (a) a hurricane,
(b) a cold-core upper tropospheric low, and

(c) a middle-latitude disturbance that tilts westward with height.
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Reduction of Pressure to Sea Level
In mountainous regions the difference in surface pressure
from one measuring station to another is largely due to dif-
ferences in elevation.

To isolate that part of the pressure field that is due to the
passage of weather systems, it is necessary to reduce the
pressures to a common reference level. For this purpose,
sea level is normally used.

Let Zg and pg be the geopotential and pressure at ground
level and Z0 and p0 the geopotential and pressure at sea level
(Z0 = 0).

Then, for the layer between the Earth’s surface and sea
level, the hypsometric equation becomes

(Zg − Z0) = Zg = H̄ ln
po

pg

where H̄ = RdT̄v/g0.
40



Once again,

Zg = H̄ ln
po

pg

where H̄ = RdT̄v/g0.

This can be solved to obtain the sea-level pressure

p0 = pg exp

(
Zg

H̄

)
= pg exp

(
g0Zg

RdT̄v

)
The last expression shows how the sea-level pressure de-
pends on the mean virtual temperature between ground and
sea level.
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If Zg is small, the scale height H̄ can be evaluated from the
ground temperature.

Also, if Zg � H̄, the exponential can be approximated by

exp

(
Zg

H̄

)
≈ 1 +

Zg

H̄
.

Since H̄ is about 8 km for the observed range of ground
temperatures on Earth, this approximation is satisfactory
provided that Zg is less than a few hundred meters.

With this approximation, we get

p0 ≈ pg

(
1 +

Zg

H̄

)
or p0 − pg ≈

(pg

H̄

)
Zg

Since pg ≈ 1000hPa and H̄ ≈8 km, the pressure correction
(in hPa) is roughly equal to Zg (in meters) divided by 8.

p0 − pg ≈ 1
8Zg

In other words, near sea level the pressure decreases by
about 1 hPa for every 8 m of vertical ascent.
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Exercise: Calculate the geopotential height of the 1000 hPa
pressure surface when the pressure at sea level is 1014 hPa.
The scale height of the atmosphere may be taken as 8 km.

Solution: From the hypsometric equation,

Z1000 = H̄ ln
( p0

1000

)
= H̄ ln

(
1 +

p0 − 1000

1000

)
≈ H̄

(
p0 − 1000

1000

)
where p0 is the sea level pressure and the approximation

ln(1 + x) ≈ x

for x � 1 has been used.

Substituting H̄ ≈ 8000m into this expression gives

Z1000 ≈ 8(p0 − 1000)

Therefore, with p0 = 1014hPa, the geopotential height Z1000
of the 1000 hPa pressure surface is found to be 112 m above
sea level.
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Exercise: Derive a relationship for the height of a given
pressure surface p in terms of the pressure p0 and tempera-
ture T0 at sea level assuming that the temperature decreases
uniformly with height at a rate Γ Kkm−1.

Solution: Let the height of the pressure surface be z; then
its temperature T is given by

T = T0 − Γz

Combining the hydrostatic equation with the ideal gas equa-
tion gives

dp

p
= − g

RT
dz

From these equations it follows that

dp

p
= − g

R(T0 − Γz)
dz
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Again:
dp

p
= − g

R(T0 − Γz)
dz

Integrating this equation between pressure levels p0 and p
and corresponding heights 0 and z, and neglecting the vari-
ation of g with z, we obtain∫ p

po

dp

p
= − g

R

∫ z

0

dz

T0 − Γz
.

Aside: ∫
dx

ax + b
=

1

a
log(ax + b) .

Thus:

log
p

p0
=

g

RΓ
log

(
T0 − Γz

T0

)
.

Therefore

z =
T0

Γ

[
1−

(
p

po

)RΓ/g
]
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Altimetry
The altimetry equation

z =
T0

Γ

[
1−

(
p

po

)RΓ/g
]

forms the basis for the calibration of altimeters on aircraft.
An altimeter is simply an aneroid barometer that measures
the air pressure p.

However, the scale of the altimeter is expressed as the height
above sea level where z is related to p by the above equation
with values for the parameters in accordance with the U.S.
Standard Atmosphere:

T0 = 288K

p0 = 1013.25hPa

Γ = 6.5Kkm−1
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Exercise (Hard!): Show that, in the limit Γ → 0, the altime-
try equation is consistent with the relationship

p = p0 exp
(
− z

H

)
already obtained for an isothermal atmosphere.

Solution (Easy!): Use l’Hôpital’s Rule.
Note: If you are unfamiliar with l’Hôpital’s Rule, either ignore this

exercise or, better still, try it using more elementary means.
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End of §2.2
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III. First Law of Thermodynamics
A mass of gas possesses internal energy due to the kinetic
and potential energy of its molecules or atoms. Changes in
internal energy are manifested as changes in the tempera-
ture of the system.

Suppose that a closed system of unit mass takes in a certain
quantity of thermal energy q, which it can receive by ther-
mal conduction and/or radiation. As a result the system
may do a certain amount of external work w.

The excess of the energy supplied to the body over and
above the external work done by the body is q − w. It fol-
lows from the principle of conservation of energy that the
internal energy of the system must increase by q − w.

That is,

∆u = q − w
where ∆u is the change in internal energy of the system.
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Again, let ∆u be the change in internal energy of the system:

∆u = q − w

In differential form this becomes

du = dq − dw

where dq is the differential increment of heat added to the
system, dw the differential element of work done by the
system, and du the differential increase in internal energy
of the system.

This is a statement of the First Law of Thermodynamics.
In fact, it provides a definition of du.

The change in internal energy du depends only on the initial
and final states of the system, and is therefore independent
of the manner by which the system is transferred between
these two states. Such parameters are referred to as func-
tions of state
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Consider a substance, the working substance, contained in
a cylinder of fixed cross-sectional area that is fitted with a
movable, frictionless piston.

The volume of the substance is proportional to the distance
from the base of the cylinder to the face of the piston, and
can be represented on the horizontal axis of the graph shown
in the following figure. The pressure of the substance in
the cylinder can be represented on the vertical axis of this
graph.

Therefore, every state of the substance, corresponding to a
given position of the piston, is represented by a point on
this pressure-volume (p–V ) diagram.
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Figure 3.4: Representation of the state of a working substance in a

cylinder on a p–V diagram.
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If the piston moves outwards through an incremental dis-
tance dx, the work dW done by the substance in pushing the
external force F through the distance dx is

dW = F dx

Since F = pA, where A is the cross-sectional area,

dW = pAdx = p dV

In other words, the work done is equal to the pressure of
the substance multiplied by its increase in volume. Note
that dW = p dV is equal to the shaded area in the graph, the
area under the curve PQ.

When the substance passes from state A with volume V1 to
state B with volume V2, the work W done by the material
is equal to the area under the curve AB. That is,

W =

∫ V2

V1

p dV
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Again,

W =

∫ V2

V1

p dV

If V2 > V1, then W is positive, indicating that the substance
does work on its environment. If V2 < V1, then W is neg-
ative, which indicates that the environment does work on
the substance.

The p–V diagram is an example of a thermodynamic dia-
gram, in which the physical state of a substance is repre-
sented by two thermodynamic variables. Such diagrams are
very useful in meteorology; we will discuss other examples
later, in particular, the tephigram.
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If we are dealing with a unit mass of a substance, the volume
V is replaced by the specific volume α and the work w that
is done when the specific volume increases by dw is

dw = p dα

The thermodynamic equation may be written

dq = du + dw

Using this with the equation above, we get

dq = du + p dα

which is an alternative statement of the
First Law of Thermodynamics.
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Joule’s Law
When a gas expands without doing external work, into a
chamber that has been evacuated, and without taking in or
giving out heat, the temperature of the gas does not change.

This statement is strictly true only for an ideal gas, but air
behaves very similarly to an ideal gas over a wide range of
conditions.

Joule’s Law leads to an important conclusion concerning the
internal energy of an ideal gas. If a gas neither does external
work nor takes in or gives out heat, dq = 0 and dw = 0, so
that, by the First Law of Thermodynamics, du = 0.

According to Joule’s law, under these conditions the tem-
perature of the gas does not change, which implies that the
kinetic energy of the molecules remains constant.
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Therefore, since the total internal energy of the gas is con-
stant, that part of the internal energy due to the potential
energy must also remain unchanged, even though the vol-
ume of the gas changes.

In other words, the internal energy of an ideal gas is inde-
pendent of its volume if the temperature is kept constant.

This can be the case only if the molecules of an ideal gas do
not exert forces on each other.

In this case, the internal energy of an ideal gas will depend
only on its temperature:

u = u(T )
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Specific Heats
Suppose a small quantity of heat dq is given to a unit mass
of a material and, as a consequence, the temperature of the
material increases from T to T + dT without any changes in
phase occurring within the material.

The ratio dq/dT is called the specific heat of the mate-
rial. However, the specific heat defined in this way could
have any number of values, depending on how the material
changes as it receives the heat.

If the volume of the material is kept constant, a specific
heat at constant volume, cv, is defined

cv =

(
dq

dT

)
V

But if the volume of the material is constant, the thermo-
dynamic equation gives dq = du.
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Again, cv = (dq/Dt)V . But V constant implies dq = du. There-
fore

cv =

(
du

dT

)
V

For an ideal gas, Joule’s law applies and therefore u depends
only on temperature. Therefore, regardless of whether the
volume of a gas changes, we may write

cv =
du

dT
.

Since u is a function of state, no matter how the material
changes from state 1 to state 2, the change in its internal
energy is

u2 − u1 =

∫ T2

T1

cv dT

In differential form, we have:

du = cv dT .
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The First Law of Thermodynamics for an ideal gas can now

be written in the form

dq = cv dT + p dα

We can also define a specific heat at constant pressure

cp =

(
dq

dT

)
p

where the material is allowed to expand as heat is added
to it and its temperature rises, but its pressure remains
constant.

In this case, some of the heat added to the material will have
to be expended to do work as the system expands against
the constant pressure of its environment.

Therefore, a larger quantity of heat must be added to the
material to raise its temperature by a given amount than if
the volume of the material were kept constant.
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Therefore
cp > cv

For the case of an ideal gas, this inequality can be seen
mathematically as follows. We write the thermodynamic
equation as

dq = cv dT + p dα = cv dT + d(pα)− α dp

From the equation of state, d(pα) = d(RT ) = R dT .

Therefore,
dq = (cv + R)dT − α dp

At constant pressure, the last term vanishes; therefore,

cp =

(
dq

dT

)
p

= cv + R

Using this in the equation above it, we obtain an alternative

form of the First Law of Thermodynamics:

dq = cp dT − α dp .
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The specific heats at constant volume and at constant pres-
sure for dry air are 717 and 1004JK−1kg−1, respectively, and
the difference between them is 287JK−1kg−1, which is the
gas constant for dry air.

Again,
cv = 717 cp = 1004 R = 287

(all in units 1004JK−1kg−1).

For an ideal monatomic gas cp : cv : R = 5 : 3 : 2, and for an
ideal diatomic gas cp : cv : R = 7 : 5 : 2.

Since the atmosphere is comprised primarily of diatomic
gases (N2 and O2), we have

γ =
cp
cv
≈ 7

5
= 1.4 , κ =

R

cp
≈ 2

7
= 0.286 .
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Mnemonics
For air, cp : cv : R = 7 : 5 : 2.

γ = cp/cv Indices in alphabetical order

R = cp − cv Indices in alphabetical order

cp ≈ 1000JK−1kg−1

(true value 1004JK−1kg−1)

Therefore,
cv ≈ 5

7 × 1000 ≈ 714JK−1kg−1

(true value 717JK−1kg−1)

Moreover,
R ≈ 2

7 × 1000 ≈ 286JK−1kg−1

(true value 287JK−1kg−1)
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Enthalpy
Suppose heat is added to a unit mass of material at con-
stant pressure. Suppose the resulting expansion causes the
(specific) volume to increase from α1 to α2.

Then the work done by a unit mass of the material is∫ α2

α1

p dα = p(α2 − α1)

Therefore, the finite quantity of heat ∆q added is given by

∆q = (u2 − u1) + p(α2 − α1)

= (u2 + pα2)− (u1 + pα1)

where u1 and u2 are the initial and final internal energies for
unit mass.

We define the enthalpy of a unit mass of the material by

h = u + pα .
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Again, the specific enthalpy is defined as:

h = u + pα

Since u, p, and α are functions of state, h is also a function
of state.

From above it follows that, at constant pressure,

∆q = (h2 − h1)

or, in other words,
∆q = ∆h .

Differentiating the defining equation, h = u + pα, we obtain

dh = du + d(pα)

= du + p dα + α dp

= dq + α dp

Transferring terms to the other side, we get:

dq = dh− α dp .
This is another form of the First Law of Thermodynamics.
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Repeating,
dq = dh− α dp .

But we already had the equation

dq = cp dT − α dp .

Comparing these last two equations, we conclude that

dh = cp dT

or, in integrated form,

h = cpT

where h is taken as zero when T = 0.

In view of this, h is sometimes called the heat at constant
pressure, because it corresponds to the heat given to a mate-
rial to raise its temperature from 0 to T Kelvins at constant
pressure.
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Dry Static Energy
The hydrostatic equation gives

dp

dz
= −gρ , or α dp = −g dz

Using this in the thermodynamic equation, we have

dq = cp dT − α dp

= cp dT + g dz

= d(h + Φ)

Hence, if the material is a parcel of air with a fixed mass that
is moving about in an hydrostatic atmosphere, the quantity

(h + Φ)

which is called the dry static energy, is constant provided
the parcel neither gains nor loses heat (that is, dq = 0).

For adiabatic changes, the dry static energy is constant.
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Exercises:
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End of §2.3
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IV. Adiabatic Processes
If a material undergoes a change in its physical state (e.g.,
its pressure, volume, or temperature) without any heat be-
ing added to it or withdrawn from it, the change is said to
be adiabatic.

Suppose that the initial state of a material is represented by
the point A on the thermodynamic diagram below, and that
when the material undergoes an isothermal transformation
it moves along the line AB.

If the same material undergoes a similar change in volume
but under adiabatic conditions, the transformation would
be represented by a curve such as AC, which is called an
adiabat.

70

An isotherm and an adiabat on a p–V -diagram.
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The adiabat AC is steeper than the isotherm AB.
The reason for this is easily seen.

During the adiabatic compression (dα < 0) the internal en-
ergy increases:

dq = du + p dα and dq = 0 =⇒ du = −p dα > 0

and therefore the temperature of the system rises:

du = cv dT > 0 =⇒ TC > TA

However, for the isothermal compression from A to B, the
temperature remains constant: TB = TA. Hence, TB < TC.
But αB = αC (the final volumes are equal); so

pB =
RTB

αB
<

RTC

αC
= pC

that is, pB < pC.

Thus, the adiabat is steeper than the isotherm.
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The Idea of an Air Parcel
In the atmosphere, molecular mixing is important only within
a centimeter of the Earth’s surface and at levels above the
turbopause (∼105 km).

At intermediate levels, virtually all mixing in the vertical
is accomplished by the exchange of macroscale air parcels
with horizontal dimensions ranging from a few centimeters
to the scale of the Earth itself.

That is, mixing is due not to molecular motions, but to
eddies of various sizes.

Recall Richardson’s rhyme:

Big whirls have little whirls that feed on their velocity,

And little whirls have lesser whirls and so on to viscosity.

--- in the molecular sense.
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To gain some insights into the nature of vertical mixing in
the atmosphere it is useful to consider the behavior of an
air parcel of infinitesimal dimensions that is assumed to be:

• thermally insulated from its environment, so that its tem-
perature changes adiabatically as it rises or sinks

• always at exactly the same pressure as the environmental
air at the same level, which is assumed to be in hydro-
static equilibrium

• moving slowly enough that the macroscopic kinetic en-
ergy of the air parcel is a negligible fraction of its total
energy.

This simple, idealized model is helpful in understanding
some of the physical processes that influence the distribu-
tion of vertical motions and vertical mixing in the atmo-
sphere.
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The Dry Adiabatic Lapse Rate
We will now derive an expression for the rate of change of
temperature with height of a parcel of dry air as it moves
about in the Earth’s atmosphere.

Since the air parcel undergoes only adiabatic transforma-
tions (dq = 0), and the atmosphere is in hydrostatic equilib-
rium, for a unit mass of air in the parcel we have:

cv dT + p dα = 0

cv dT + d(p α)− α dp = 0

cv dT + d(R T )− α dp = 0

(cv + R)dT + g dz = 0

cp dT + g dz = 0

Dividing through by dz, we obtain

−
(

dT

dz

)
=

g

cp
≡ Γd

where Γd is called the dry adiabatic lapse rate.
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Since an air parcel expands as it rises in the atmosphere,
its temperature will decrease with height so that Γd is a
positive quantity.

Substituting g = 9.81ms−2 and cp = 1004JK−1kg−1 gives

Γd =
g

cp
= 0.0098 K m−1 = 9.8 K km−1 ≈ 10 K km−1

which is the dry adiabatic lapse rate.

It should be emphasized again that Γd is the rate of change
of temperature following a parcel of dry air that is being
raised or lowered adiabatically in the atmosphere.

The actual lapse rate of temperature in a column of air,
which we will indicate by

Γ = −dT

dz
,

as measured for example by a radiosonde, averages 6 or
7Kkm−1 in the troposphere, but it takes on a wide range
of values at individual locations.
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Potential Temperature
Definition: The potential temperature θ of an air parcel
is the temperature that the parcel of air would have if it
were expanded or compressed adiabatically from its existing
pressure to a standard pressure of p0 = 1000hPa.

We will derive an expression for the potential temperature
of an air parcel in terms of its pressure p, temperature T ,
and the standard pressure p0.

For an adiabatic transformation (dq = 0) the thermodynamic
equation is

cp dT − α dp = 0

Using the gas equation pα = RT yields

cp dT − RT

p
dp = 0 or

dT

T
=

R

cp

dp

p
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Integrating from standard ressure p0 (where, by definition,
T = θ) to p (with temperature T ), we write:∫ T

θ

dT

T
=

R

cp

∫ p

p0

dp

p

Evaluating the integrals, we get:

log

(
T

θ

)
=

R

cp
log

(
p

p0

)
= log

(
p

p0

)R/cp

Taking the exponential (antilog) of both sides

T

θ
=

(
p

p0

)R/cp

Solving for θ,

θ = T

(
p

p0

)−R/cp
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Defining the thermodynamic constant κ = R/cp, we get

θ = T

(
p

p0

)−κ

This equation is called Poisson’s equation.

For dry air, R = Rd = 287JK−1kg−1 and cp = 1004JK−1kg−1.

Recall that, for a diatomic gas, R : cp = 2 : 7, so

κ =
2

7
≈ 0.286

? ? ?
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Conservation of θ
Recall the thermodynamic equation in the form

ds ≡ dq

T
= cp

dT

T
−R

dp

p
= cp

dθ

θ
(∗)

The quantity ds is the change in entropy (per unit mass).

By definition, diabatic changes have dq = 0.
Therefore, we also have ds = 0 and dθ = 0.

Thus, [
Adiabatic

Changes

]
correspond to

[
Isentropic

Changes

]
We can write the thermodynamic equation (*) as:

dq

dt
=

cpT

θ

dθ

dt

The potential temperature is constant for adiabatic flow.
The entropy is constant for adiabatic flow.
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Parameters that remain constant during certain transfor-
mations are said to be conserved. Potential temperature is
a conserved quantity for an air parcel that moves around in
the atmosphere under adiabatic conditions.

Potential temperature is an extremely useful parameter in
atmospheric thermodynamics, since atmospheric processes
are often close to adiabatic, in which case θ remains essen-
tially constant.

Later, we will consider a more complicated quantity, the
isentropic potential vorticity, which is approximately con-
served for a broad range of atmospheric conditions.
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Thermodynamic Diagrams
To examine the variation of temperature in the vertical di-
rection, the most obvious approach would be to plot T as a
function of z.

It is customary to use T as the abscissa and z as the ordinate,
to facilitate interpretation of the graph.

For the mean conditions, we obtain the familiar picture,
with the troposphere, stratosphere, mesosphere and ther-
mosphere.
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Atmospheric stratification.
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The Tephigram
There are several specially designed diagrams for depiction
of the vertical structure. The one in common use in Ireland
is the tephigram.

The name derives from T -φ-gram, where φ was an old nota-
tion for entropy. It is a temperature-entropy diagram.

The tephigram was introduced by Napier Shaw (1854–1945),
a British meteorologist, Director of the Met Office.

Shaw founded the Department of Meteorology at Imperial
College London, and was Professor there from 1920 to 1924.
He did much to establish the scientific foundations of mete-
orology.

We owe to Shaw the introduction of the millibar (now re-
placed by the hectoPascal).
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We define the change in specific entropy due to the addition
of heat to a unit mass of material:

ds =
dq

T

By the first law of thermodynamics, this can be written

ds =
cpdT − αdp

T
= cp

dT

T
−R

dp

p
(∗)

But recall the definition of potential temperature:

θ = T

(
p

p0

)−κ

or log θ = log T − κ(log p− log p0)

Differentiating and multiplying by cp, we have

cp
dθ

θ
= cp

dT

T
−R

dp

p
(∗∗)

From (*) and (**) it follows that

ds = cp
dθ

θ
= cpd log θ
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Again,
ds = cpd log θ

Integrating from a reference value θ0 where s = s0, we get

s = cp log(θ/θ0) + s0

? ? ?

We will now consider a straightforward plot of T against s
(figure to follow).

The entropy is linearly related to the logarithm of potential
temperature θ. Thus

s = cp log θ + const.

We can thus plot θ instead of s on the vertical axis, on a
logarithmic scale.
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The temperature-entropy diagram or tephigram. The
region of primary interest is indicated by the small box.
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Next, recall the definition of potential temperature:

θ = T

(
p

p0

)−κ

.

Taking logarithms of both sides,

log θ = log T − κ log p + const.

or
s = cp log T −R log p + const.

So, for a constant value of pressure, s is given by the loga-
rithm of temperature. We can plot a series of such curves
of s against T for a range of values of pressure, and get the
picture shown above.

The region of interest for the lower atmopshere is indicated
by a small square. This region is extracted and used in the
design of the tephigram. Since surfaces of constant pressure
are approximately horizontal, it is convenient to rotate the
diagram through 45◦.
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The temperature-entropy diagram or tephigram. Zoom
and rotation of area of interest (Wallace & Hobbs,

1st Edn, p. 96).
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Notes on Tephigram:

• The spacing on the temperature axis is uniform.

• log θ is uniformly spaced, so that θ is not. However, on the
restricted range, the spacing of θ appears nearly uniform.

• The isobars are fairly close to horizontal.

• We can think of the chart as a plot of temperature as a
function of pressure. However, its special design enables
us to deduce stability properties by inspection.

• Lines of constrant temperature are called isotherms.

• Lines of constant potential temperature are called adia-
bats or isentropes.

• Lines of constant pressure are called isobars.
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Extract from the Met Éireann web-site

(9 August, 2004)

A tephigram is a graphical representation of observations of pres-
sure, temperature and humidity made in a vertical sounding of the
atmosphere. Vertical soundings are made using an instrument called
a radiosonde, which contains pressure, temperature and humidity
sensors and which is launched into the atmosphere attached to a
balloon.
The tephigram contains a set of fundamental lines which are used
to describe various processes in the atmosphere. These lines in-
clude:

• Isobars — lines of constant pressure

• Isotherms — lines of constant temperature

• Dry adiabats — related to dry adiabatic processes (potential
temperature constant)

• Saturated adiabats — related to saturated adiabatic processes
(wet bulb potential temperature constant)

On the tephigram there are two kinds of information represented
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• The environment curves (red) which describes the structure of
the atmosphere

• The process curves (green) which describes what happens to a
parcel of air undergoing a particular type of process (e.g. adi-
abatic process)

In addition, the right hand panel displays height, wind direction
and speed at a selection of pressure levels.
Tephigrams can be used by the forecaster for the following pur-
poses

• to determine moisture levels in the atmosphere

• to determine cloud heights

• to predict levels of convective activity in the atmosphere

• forecast maximum and minimum temperatures

• forecast fog formation and fog clearance
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Sample Tephigram based on radiosode ascent from Valentia

Observatory for 1200 UTC, 9 August, 2004.
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End of §2.4
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V. Water Vapour in Air
So far we have indicated the presence of water vapour in
the air through the vapour pressure e that it exerts.

We have quantified its effect on the density of air by intro-
ducing the concepts of mixing ratio and of virtual temper-
ature.

However, the amount of water vapour present in a certain
quantity of air may be expressed in many different ways,
some of the more important of which are considered now.
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A Bewildering Variety
• Vapour Pressure

• Mixing Ratio

• Specific Humidity

• Absolute Humidity

• Relative Humidity

• Dew Point Temperature/Dew Point Depression

• Wet-bulb Temperature/Wet-bulb Depression

• Wet-bulb Potential Temperature

• Virtual Temperature

• Saturation Level
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Why So Many Moisture Variables?
• Some are useful because they are easy to measure.

Wet-bulb temperature is easy to measure, but it is not
easy to convert to more useful parameters, so psycho-
metric tables have been devised.

• Some are conserved quantities describing physical char-
acteristics of the air.

The mixing ratio is not measured directly, but it is useful
because it is conserved for an air parcel moving vertically
(or horizontally) without mixing.

• Some are fundamental quantities, related simply to other
thermodynamic variables.

Vapour pressure is hard to measure and not directly use-
ful in applications. But it is theoretically important, de-
scribing how saturation humidity varies with tempera-
ture.
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Mixing Ratio & Specific Humidity
The mixing ratio w is the ratio of the mass mv of water
vapour to the mass md of dry air in a parcel of air.

That is,

w =
mv

md

Clearly, the mixing ratio w is a dimensionless quantity. It is
generally expressed in grams of water vapour per kilogram
of dry air.

In the atmosphere the magnitude of w typically ranges from
a few grams per kilogram in middle latitudes to values of
around 20gkg−1 in the tropics.

It should be noted that if neither condensation nor evap-
ouration takes place, the mixing ratio of an air parcel is
constant (i.e., it is a conserved quantity).
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The mass of water vapour mv in a unit mass of air (dry air
plus water vapour) is called the specific humidity q.

That is,

q =
mv

mv + md

Since the magnitude of w is only a few percent (w � 1, or
mv � md), it follows that w and q are nearly equal:

q =
mv

mv+md
≈ mv

md
= w

Exercise: If air contains water vapour with a mixing ratio
of 5.5gkg−1 and the total pressure is 1026.8 hPa, calculate
the vapour pressure e.

Exercise: Calculate the virtual temperature correction for
moist air at 30◦C that has a mixing ratio of 20gkg−1.
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Exercise: If air contains water vapour with a mixing ratio
of 5.5gkg−1 and the total pressure is 1026.8 hPa, calculate
the vapour pressure e.

Solution: Recall that we had

e ≈ p

ε
w

where ε = Rd/Rv = 0.622.

Now w = 5.5gkg−1 = 0.0055gg−1

And p = 1026.8hPa= 102680Pa.

So

e =
102680

0.622
× 0.0055 = 908Pa ≈ 9hPa
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Exercise: Calculate the virtual temperature correction for
moist air at 30◦C that has a mixing ratio of 20gkg−1.

Solution: First, convert the temperature and mixing ratio:

T = 30◦C = 303K

w = 20gkg−1 = 0.02gg−1

By a result already obtained,

Tv ≈ T [1 + 0.608w]

where 0.608 = (1− ε)/ε.

Thus

Tv − T ≈ 0.608 w T = 0.608× 0.02× 303 = 3.68K

Therefore, the virtual temperature elevation is 3.68◦C.
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Saturation Vapour Pressures
Consider a small closed box containing a shallow layer of
water at temperature T (draw a picture).

Initially assume there is dry air above the water. Water
will begin to evapourate and, as it does, the number of
water molecules in the box, and therefore the water vapour
pressure, will increase.

As the water vapour pressure increases, so will the rate at
which the water molecules condense from the vapour phase
back to the liquid phase.

If the rate of condensation is less than the rate of evapoura-
tion, the box is said to be unsaturated.

When the water vapour pressure in the box increases to the
point that the rate of condensation is equal to the rate of
evapouration, the air is said to be saturated.
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Figure 3.8. A box (a) unsaturated and (b) saturated with respect to a

plane surface of pure water at temperature T . The vapour pressure

over a plane surface of pure water at temperature T is es.
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More precisely, the air is said to be saturated with respect
to a plane surface of pure water at temperature T .

The pressure es that is then exerted by the water vapour is
called the saturation vapour pressure over a plane surface
of pure water at temperature T .

Similarly, if the water were replaced by a plane surface of
pure ice at temperature T , and the rate of condensation
of water vapour were equal to the rate of evapouration of
the ice, the pressure esi exerted by the water vapour would
be the saturation vapour pressure over a plane surface of
pure ice at temperature T .

Since, at any given temperature, the rate of evapouration
from ice is less than from water, esi(T ) < es(T ).
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The rate at which water molecules evapourate from either
water or ice increases with increasing temperature.

Consequently, both es and esi increase with increasing tem-
perature, and their magnitudes depend only on tempera-
ture.

es = es(T ) , esi = esi(T )

The variations with temperature of es and es−esi are shown
in the following figure [not differing scales].

It can be seen that the magnitude of es− esi reaches a peak
value at about −12◦C.

It follows that if an ice particle is in water-saturated air it
will grow due to the deposition of water vapour upon it.

We will see later that this phenomenon plays a role in the
growth of precipitable particles in some clouds.
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Variations with temperature of the saturation vapour pressure es over

a plane surface of pure water (red line). Difference es − esi between

saturation vapour pressures over water and ice (blue line).
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Saturation Mixing Ratio
Definition: The saturation mixing ratio ws is the ratio of
the mass ms of water vapour in a given volume of air that
is saturated to the mass md of the dry air:

ws =
ms

md

Since water vapour and dry air both obey the ideal gas
equation,

ws =
ρs

ρd
=

es/RvT

(p− es)/RdT
=

Rd

Rv

es

p− es

where ρs is the partial density of water vapour required to
saturate air with respect to water at temperature T , ρd is
the partial density of the dry air, and p is the total pressure.
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Again,

ws =
Rd

Rv

es

p− es

Recall that we defined the ratio of gas constants

ε =
Rd

Rv
= 0.622

so the saturation mixing ration can be written

ws = ε× es

p− es

For the range of temperatures observed in the Earth’s at-
mosphere, the saturation vapour pressure is much smaller
than the total pressure, es � p; therefore,

ws ≈ ε× es

p

Hence, at a given temperature, the saturation mixing ratio
is inversely proportional to the total pressure.
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Repeat:

ws ≈ ε× es

p
= 0.622× es

p

Since es depends only on temperature, it follows that ws is
a function of temperature and pressure.

Lines of constant saturation mixing ratio are printed as
dashed lines on the tephigram and are labeled with the
value of ws in grams of water vapour per kilogram of dry
air.

It is apparent from the slope of these lines that at constant
pressure ws increases with increasing temperature, and at
constant temperature ws increases with decreasing pressure.

Exercise: Check the above statement (1) by examination of
the tephigram and (2) by analytical means (requiring the
Clausius-Clapeyron Equation).
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Relative Humidity and Dew Point
The relative humidity (RH) with respect to water is the ra-
tio — expressed as a percentage — of the actual mixing ratio
w of the air to the saturation mixing ratio ws with respect
to a plane surface of pure water at the same temperature
and pressure.

That is,

RH = 100× w

ws
≈ 100× e

es

The dew point Td is the temperature to which air must be
cooled at constant pressure for it to become saturated with
respect to a plane surface of pure water.

In other words, the dew point is the temperature at which
the saturation mixing ratio ws with respect to liquid water
becomes equal to the actual mixing ratio w.
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It follows that the humidity at temperature T and pressure
p is given by

RH = 100×
[
ws at temperature Td and pressure p

ws at temperature T and pressure p

]
The frost point is defined as the temperature to which air
must be cooled at constant pressure to saturate it with re-
spect to a plane surface of pure ice.

Saturation mixing ratios and relative humidities with re-
spect to ice may be defined in analogous ways to their defi-
nitions with respect to liquid water.

Exercise: Air at 1000 hPa and 18◦C has a mixing ratio of
6gkg−1. What are the relative humidity and dew point of
the air?

Solution: 46%, 6.5◦C. This exercise may be solved using the
tephigram chart.
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Thermal Comfort
At the Earth’s surface, the pressure varies only slightly from
place to place and from time to time. Therefore, the dew
point is a good indicator of the moisture content of the air.

In warm, humid weather the dew point is also a convenient
indicator of the level of human discomfort.

For example, most people begin to feel uncomfortable when
the dew point rises above 20◦C, and air with a dew point
above about 22◦C is generally regarded as extremely humid
or “sticky”.

Fortunately, dew points much above this temperature are
rarely observed even in the tropics.

In contrast to the dew point, relative humidity depends as
much upon the temperature of the air as upon its moisture
content.
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On a sunny day the relative humidity may drop by as much
as 50% from morning to afternoon, just because of a rise in
air temperature.

Relative humidity is not a good indicator of the level of hu-
man discomfort.

For example, a relative humidity of 70% may feel quite com-
fortable at a temperature of 20◦C, but it would cause consid-
erable discomfort to most people at a temperature of 30◦C.

The highest dew points occur over warm bodies of water or
vegetated surfaces from which water is evapourating.

In the absence of vertical mixing, the air just above these
surfaces would become saturated with water vapour, at which
point the dew point would be the same as the temperature
of the underlying surface.

Complete saturation is rarely achieved over hot surfaces,
but dew points in excess of 25◦C are sometimes observed
over the warmest regions of the oceans.
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Lifting Condensation Level
The lifting condensation level (LCL) is the level to which an
unsaturated parcel of air can be lifted adiabatically before
it becomes saturated.

During lifting the mixing ratio w and potential temperature
θ of the air parcel remain constant, but the saturation mix-
ing ratio ws decreases until it becomes equal to w at the
LCL.

Therefore, the LCL is located at the intersection of the po-
tential temperature line passing through the temperature
T and pressure p of the parcel of air, and the ws line that
passes through the pressure p and dew point Td of the air
parcel (see figure).
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The lifting condensation level of a parcel of air at A, with pressure p,

temperature T and dew point Td, is at point C.
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Since the dew point and LCL are related in the manner
indicated in the figure, knowledge of either one is sufficient
to determine the other.

Similarly, a knowledge of pressure, temperature and any
one moisture parameter is sufficient to determine all the
other moisture parameters we have defined.
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Wet-bulb Temperature
The wet-bulb temperature is measured with a thermometer,
the glass bulb of which is covered with a moist cloth over
which ambient air is drawn.

The heat required to evapourate water from the moist cloth
to saturate the ambient air is supplied by the air as it comes
into contact with the cloth.

When the difference between the temperatures of the bulb
and the ambient air is steady and suffcient to supply the
heat needed to evapourate the water, the thermometer will
read a steady temperature, which is called the wet-bulb tem-
perature.

If a raindrop falls through a layer of air that has a constant
wet-bulb temperature, the raindrop will eventually reach a
temperature equal to the wet-bulb temperature of the air.
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The definition of the wet-bulb temperature is rather similar
to that of the dew point, but there is a distinct difference.

If the unsaturated air approaching the wet bulb has a mixing
ratio w, the dew point Td is the temperature to which the air
must be cooled at constant pressure to become saturated.

The air that leaves the wet bulb has a mixing ratio w′ that
saturates it at temperature Tw.

If the air approaching the wet bulb is unsaturated, w′ is
greater than w ; therefore, Td ≤ Tw ≤ T .
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Latent Heat
Under certain conditions heat supplied to a system may
produce a change in phase, rather than a change in tem-
perature.

In this case, the increase in internal energy is associated
entirely with a change in molecular configurations in the
presence of intermolecular forces, rather than an increase
in the kinetic energy of the molecules.

For example, if heat is supplied to ice at 1000 hPa and 0◦C,
the temperature remains constant until all of the ice has
melted.

Definition: The latent heat of melting (Lm) is defined as
the heat that has to be given to a unit mass of a material
to convert it from the solid to the liquid phase without a
change in temperature.

The temperature at which this phase change occurs is called
the melting point.
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At 1000 hPa and 0◦C, the latent heat of melting of the water
substance is 3.34× 105 Jkg−1. Note that:[

latent heat

of melting

]
=

[
latent heat

of fusion

]
=

[
latent heat

of freezing

]
.

Definition: The latent heat of vapourization or evapoura-
tion (Lv) is the heat that has to be given to a unit mass of
material to convert it from the liquid to the vapour phase
without a change in temperature.

The temperature at which this phase change occurs is called
the boiling point.

For water at 1000 hPa and 100◦C the latent heat of vapour-
ization is 2.25× 106 Jkg−1.[

latent heat

of vaporization

]
=

[
latent heat

of condensation

]
=

[
latent heat

of boiling

]
.
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Saturated Adiabatic Processes
When an air parcel rises in the atmosphere its temperature
decreases with altitude at the dry adiabatic lapse rate until
it becomes saturated with water vapour.

Further lifting results in the condensation of liquid water
(or the deposition of ice), which releases latent heat. Con-
sequently, the rate of decrease in the temperature of the
rising parcel is reduced.

If all of the condensation products remain in the rising par-
cel, the process may still be considered to be adiabatic (and
reversible), even though latent heat is released in the sys-
tem.

The air parcel is then said to undergo a saturated adiabatic
process.
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If, on the other hand, all the condensation products imme-
diately fall out of the air parcel, the process is irreversible,
and not strictly adiabatic, since the condensation products
carry some heat.

The air parcel is then said to undergo a pseudoadiabatic
process.

However, the amount of heat carried by condensation prod-
ucts is small compared to that carried by the air itself.

Therefore, the saturated-adiabatic lapse rate is essentially
the same as the pseudoadiabatic lapse rate.
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Saturated Adiabatic Lapse Rate
We will derive an expression for the rate of change in tem-
perature with height of a parcel of air undergoing a satu-
rated adiabatic process.

The hydrostatic and thermodynamic equations allow us to
write

dq = cp dT + g dz

If the saturation mixing ratio of the air with respect to water
is ws, the quantity of heat dq released into a unit mass of dry
air due to condensation of liquid water is −Lv dws, where Lv

is the latent heat of condensation.

Therefore,
−Lv dws = cp dT + g dz
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Again,
−Lv dws = cp dT + g dz

Dividing both sides by cp dz and rearranging terms, we ob-
tain

dT

dz
= −Lv

cp

dws

dz
− g

cp

The chain rule gives

dws =

(
∂ws

∂p

)
T

dp +

(
∂ws

∂T

)
p
dT

We will assume that the first right-hand term is negligible in
comparison with the second: the dependence of ws on pres-
sure is much weaker than its dependence on temperature.
[Note that lines of constant saturated mixing ratio ws and isotherms are

fairly close to parallel on the tephigram.]

Then
dT

dz
= −Lv

cp

(
∂ws

∂T

)
p

dT

dz
− g

cp
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Rearranging the last expression yields

dT

dz
=

−g/cp

1 +
Lv

cp

(
∂ws

∂T

)
p

We write this as

Γs ≡ −
dT

dz
=

Γd

1 +
Lv

cp

(
∂ws

∂T

)
p

where Γs is called the saturated adiabatic lapse rate, which
is the rate of decrease in temperature with height of an air
parcel undergoing a saturated adiabatic process.

The magnitude of Γs is not constant but depends on the
pressure and temperature. Since (∂ws/∂T )p is always posi-
tive, it follows that

Γs < Γd
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Actual values of Γs range from about 4Kkm−1 near the
ground in warm, humid air masses to typical values of 6–7Kkm−1

in the middle troposphere.

For typical temperatures near the tropopause, Γs is only
slightly less than Γd because the moisture capacity is so
small that the effect of condensation is negligible.

Lines that show the decrease in temperature with height of
a parcel of air that is rising or sinking in the atmosphere
under saturated adiabatic (or pseudoadiabatic) conditions
are called saturated adiabats (or pseudoadiabats).

On the tephigram, these are the curved lines that diverge
upward and tend to become parallel to the dry adiabats at
lower pressure values.
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Exercise: A parcel of air with an initial temperature of 15◦C
and dew point 2◦C is lifted adiabatically from the 1000 hPa
level. Determine its LCL and temperature at that level.
If the air parcel is lifted a further 200 hPa above its LCL,
what is its final temperature and how much liquid water is
condensed during this rise?

Solution: Solve using a tephigram chart.
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William Thomson (Lord Kelvin) was the first (in 1862) to derive

quantitative estimates of the dry and saturated adiabatic lapse rates

based on theoretical arguments.
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Equivalent Potential Temperature
Combining the gas law (pα = RT ) and the thermodynamic
equation (dq = cpdT − αdp) we have

dq

T
=

{
cp

dT

T
−R

dp

p

}
The potential temperature θ is given by

θ = T

(
p

p0

)−R/cp

or, taking logarithms of both sides,

log θ = log T − R

cp
log p + const

Differentiating this equation gives

cp
dθ

θ
=

{
cp

dT

T
−R

p

p

}
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Since the expressions in braces in the above two equations
are identical, the left hand sides must be equal:

dq

T
= cp

dθ

θ

Substituting the heating rate dq = −Lv dws, we obtain

− Lv

cpT
dws =

dθ

θ

“It can be shown that”
Lv

cpT
dws ≈ d

(
Lvws

cpT

)
(see Wallace & Hobbs, Exercise 3.52. Not for exams!)]

It follows from this that

−d

(
Lvws

cpT

)
≈ dθ

θ

This last expression can be integrated to give

−
(

Lvws

cpT

)
≈ log θ + const

130

We will define the constant of integration by requiring that
at low temperatures, as ws → 0, θ → θe.

Then

−
(

Lvws

cpT

)
≈ log

θ

θe
or

θe = θ exp

(
Lvws

cpT

)
The quantity θe is the equivalent potential temperature.

It can be seen that θe is the potential temperature θ of a
parcel of air when its saturation mixing ratio ws is zero.
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The equivalent potential temperature of an air parcel may
be found as follows.

• The air is expanded pseudo-adiabatically until all the
vapour has condensed, released its latent heat, and fallen
out.

• The air is then compressed dry adiabatically to the stan-
dard pressure of 1000 hPa when it will attain the tem-
perature θe.

[Illustrate on tephigram]

(If the air is initially unsaturated, ws and T are the satura-
tion mixing ratio and temperature at the point where the air
first becomes saturated after being lifted dry adiabatically.)

The equivalent potential temperture is conserved during
both dry and saturated adiabatic processes.
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Wet-bulb Potential Temperature
If the line of constant equivalent potential temperature (that
is, the pseudoadiabat) that passes through the wet-bulb
temperature of a parcel of air is traced back on a tephi-
gram to the point where it intersects the 1000 hPa isobar,
the temperature at this intersection is called the wet-bulb
potential temperature θw of the air parcel.

Like the equivalent potential temperature, the wet-bulb po-
tential temperature is conserved during both dry and sat-
urated adiabatic processes. Both θw and θe are valuable as
tracers of air masses.

When height, rather than pressure, is used as the indepen-
dent variable, the conserved quantity during adiabatic or
pseudoadiabatic ascent or descent with water undergoing
transitions between liquid and vapour phases is the moist
static energy.
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Moist Static Energy
The moist static energy (MSE) is defined as

MSE = cpT + Φ + Lvq

where T is the temperature of the air parcel, Φ is the geopo-
tential and q the specific humidity (recall q ≈ w).

• The first term (cpT ) is the enthalpy per unit mass of air

• The second term (Φ) is the potential energy

• The third term (Lvq) the latent heat content.

The first two terms comprise the dry static energy.
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Recall the definition of moist static energy:

MSE = cpT + Φ + Lvq

When air is lifted dry adiabatically, enthalpy is converted
into potential energy and the latent heat content remains
unchanged.

In saturated adiabatic ascent, energy is exchanged among
all three terms: potential energy increases, while enthalpy
and latent heat content both decrease. However, the sum
of the three terms remains constant.
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Normand’s Rule
Normand’s Rule: On a tephigram, the lifting condensation
level (LCL) of an air parcel is located at the intersection of:

• The potential temperature line that passes through the
point located by the temperature and pressure of the air
parcel

• The equivalent potential temperature line (that is, the
pseudo-adiabat) that passes through the point located by
the wet-bulb temperature and pressure of the air parcel
and

• The saturation mixing ratio line that passes through the
point determined by the dew point and pressure of the
air.

This rule is illustrated in the following figure.

136



Figure 3.11. Illustration of Normand’s rule.
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Consider an air parcel with temperature T , pressure p, dew
point Td, and wet-bulb temperature Tw.

It can be seen that, if T , p, and Td are known, Tw may be
readily determined using Normand’s rule.

Also, by extrapolating the θe line that passes through Tw to
the 1000 hPa level, the wet-bulb potential temperature θw,
may be found (see figure).
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Ascent Followed by Descent
If a parcel of air is lifted above its LCL so that condensation
occurs, and if the products of the condensation fall out as
precipitation, the latent heat gained by the air during this
process will be retained by the air if the parcel returns to
its original level.

The effects of the saturated ascent coupled with the adia-
batic descent are:

• Net increases in the temperature and potential tempera-
ture of the parcel

• A decrease in moisture content (as indicated by changes
in the mixing ratio, relative humidity, dew point and wet-
bulb temperature)

• No change in the equivalent potential temperature or
wet-bulb potential temperature, which are conserved quan-
tities for air parcels undergoing both dry and saturated
processes.
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Exercise
The following exercise illustrates the effects of ascent and
descent.

(1) An air parcel at 950 hPa has a temperature of 14◦C and
a mixing ratio of 8 gkg−1. What is the wet-bulb potential
temperature of the air?

(2) The air parcel is lifted to the 700 hPa level by pass-
ing over a mountain, and 70% of the water vapour that is
condensed out by the ascent is removed by precipitation.
Determine the temperature, potential temperature, mixing
ratio, and wet-bulb potential temperature of the air parcel
after it has returned to the 950 hPa level on the other side
of the mountain.
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Solution
On a tephigram, locate the initial state of the air at 950 hPa and 14◦C.
The saturation mixing ratio for an air parcel with temperature and
pressure is found from the chart to be 10.6gkg−1.
Therefore, since the air has a mixing ratio of only 8 gkg−1, it is unsat-
urated. The wet-bulb potential temperature can be determined using
the following method: Trace the constant potential temperature line
that passes through the initial state of the air parcel up to the point
where it intersects the saturation mixing ratio line with value 8 gkg−1.
This occurs at a pressure of about 890 hPa, which is the LCL of the
air parcel. Now follow the equivalent potential temperature line that
passes through this point back down to the 1000 hPa level and read off
the temperature on the abscissa — it is 14◦C. This is in the wet-bulb
potential temperature θw of the air.

When the air is lifted over the mountain, its temperature and pressure

up to the LCL at 890 hPa are given by points on the potential tem-

perature line that passes through the point 950 hPa and 14◦C. With

further ascent of the air parcel to the 700 hPa level, the air follows the

saturated adiabat that passes through the LCL. This saturated adia-

bat intersects the 700 hPa level at a point where the saturation mixing
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ratio is 4.7gkg−1. Therefore, 8 − 4.7 = 3.3gkg−1 of water vapour has to

condense out between the LCL and the 700 hPa level, and 70% of this,

or 2.3gkg−1, is precipitated out. Therefore, at the 700 hPa level there

is 1gkg−1 of liquid water in the air. The air parcel descends on the

other side of the mountain at the saturated adiabatic lapse rate until it

evapourates all of its liquid water, at which point the saturation mix-

ing ratio will have risen to 4.7 + 1 = 5.7gkg−1. The air parcel is now

at a pressure of 760 hPa and a temperature of 1.8◦C. Thereafter, the

air parcel descends along a dry adiabat to the 950 hPa level, where its

temperature is 20◦C and the mixing ratio is still 5.7gkg−1. If the method

indicated in the Figure above is applied again, the wet-bulb potential

temperature of the air parcel will be found to be unchanged at 14◦C.
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Mountain Winds
The heating of air during its passage over a mountain, 6◦C
in the above example, is responsible for the remarkable
warmth of the Föhn and Chinook winds, which often blow
downward along the lee side of mountain ranges.

Aside: The person who first explained the Föhn wind in this
way appears to have been Julius F. von Hann in his clas-
sic book Lehrbuch der Meteorologie (Leipzig, 1901). J. von
Hann (1839-1921) was an Austrian meteorologist, who in-
troduced thermodynamic principles into meteorology. He
developed theories for mountain and valley winds. He also
published the first comprehensive treatise on climatology
(1883).

Comment: Remark on mean winds in Rio and Buenos Aires.
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End of §2.5
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VI. Static Stability
Consider a parcel of unsaturated air. Assume the actual
lapse rate is less than the dry adiabatic lapse rate:

Γ < Γd

If a parcel of unsaturated air is raised vertically, its tem-
perature will be lower than the ambient temperature at the
higher level.

The colder parcel of air will be denser than the warmer
ambient air and will tend to return to its original level.

If the parcel is displaced downwards, it becomes warmer
than the ambient air and will tend to rise again.

In both cases, the parcel of air encounters a restoring force
after being displaced, which inhibits vertical mixing. Thus,
the condition Γ < Γd corresponds to stable stratification (or
positive static stability) for unsaturated air parcels.
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Conditions for (a) positive static stability (Γ < Γd) and (b) negative

static instability (Γ > Γd) for the displacement of unsaturated air.

146

Exercise: An unsaturated parcel of air has density ρ′ and
temperature T ′, and the density and temperature of the am-
bient air are ρ and T . Derive an expression for the downward
acceleration of the air parcel in terms of T and T ′.

Sketch of Solution: The downward buoyancy force on the
parcel is

F = (ρ′ − ρ)g

Therefore, the downward acceleration is

a =
F

ρ′
=

(
ρ′ − ρ

ρ′

)
g

or, using the gas equation,

a = g

(
T − T ′

T

)
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By the definitions of the lapse rates, we have

T ′ = T0 − Γd z T = T0 − Γ z

Therefore, the downward acceleration is

a = g

(
Γd − Γ

T

)
Z

where Z is the upward displacement of the parcel.

Then the upward acceleration is Z̈. Thus, by Newton’s
second law of motion,

Z̈ +
{ g

T
(Γd − Γ)

}
Z = 0

If (Γd − Γ) > 0, this equation has solutions corresponding to
bounded oscillations with (squared) frequency ω2 = g

T (Γd−Γ).
The oscillations are stable.

If (Γd − Γ) < 0, the solutions are exponentially growing with
time. This corresponds to static instability.
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Exercise: Find the period of oscillation of a parcel of air dis-
placed vertically, where the ambient temperature and lapse-
rate are

• T = 250K and Γ = 6Kkm−1, typical tropospheric values

• T = 250K and Γ = −2Kkm−1, typical of strong inversion

Solution: The equation of motion for the parcel is

z̈ + ω2 z = 0

where ω2 = (g/T )(Γd − Γ).

Assuming Γd = 10Kkm−1 = 0.01Km−1 and g = 10ms−2,

ω2 =
g

T
(Γd − Γ) =

(
10

250

) (
10− 6

103

)
= 0.00016

Thus the period of the motion is

τ =
2π

ω
≈ 500 sec

For Γ = −2Kkm−1, ω2 is tripled. Thus, τ ≈ 290 s.
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Inversions
Layers of air with negative lapse rates (i.e., temperatures
increasing with height) are called inversions. It is clear
from the above discussion that these layers are marked by
very strong static stability.

A low-level inversion can act as a lid that traps pollution-
laden air beneath it (See following figure).

The layered structure of the stratosphere derives from the
fact that it represents an inversion in the vertical tempera-
ture profile.
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Looking down onto widespread haze over southern Africa. The haze is

confined below a temperature inversion. Above the inversion, the air

is remarkably clean and the visibility is excellent.
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Static Instability
If Γ > Γd, a parcel of unsaturated air displaced upward will
have a temperature greater than that of its environment.
Therefore, it will be less dense than the ambient air and
will continue to rise.

Similarly, if the parcel is displaced downward it will be
cooler than the ambient air, and it will continue to sink
if left to itself.

Such unstable situations generally do not persist in the free
atmosphere, since the instability is eliminated by strong ver-
tical mixing as fast as it forms.

The only exception is in the layer just above the ground
under conditions of very strong heating from below.
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Exercise: Show that if the potential temperature θ increases
with increasing altitude the atmosphere is stable with re-
spect to the displacement of unsaturated air parcels.

Solution: By the gas equation

p = RρT

The hydrostatic equation is
dp

dz
= −gρ

dp

ρ
= −g dz

Poisson’s equation is

θ = T

(
p

p0

)−R/cp
or cp log θ = cp log T −R log p + const

Differentiating this yields

cpT
dθ

θ
= cp dT −RT

dp

p

= cp dT − dp

ρ
= cp dT + g dz .
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Again,

cpT
dθ

θ
= cp dT + g dz .

Consequently,
1

θ

dθ

dz
=

1

T

(
dT

dz
+

g

cp

)
or

1

θ

dθ

dz
=

1

T
(Γd − Γ)

Thus, if the potential temperature θ increases with altitude
(dθ/dz > 0) we have Γ < Γd and the atmosphere is stable with
respect to the displacement of unsaturated air parcels.
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Conditional & Convective Instability
If a parcel of air is saturated, its temperature will decrease
with height at the saturated adiabatic lapse rate Γs.

It follows that if Γ is the actual lapse rate, saturated air
parcels will be stable, neutral, or unstable with respect to
vertical displacements, according to the following scheme:

Γ < Γs stable

Γ = Γs neutral

Γ > Γs unstable

When an environmental temperature sounding is plotted
on a tephigram, the distinctions between Γ, Γd and Γs are
clearly discernible.
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If the actual lapse rate Γ of the atmosphere lies between the
saturated adiabatic lapse rate and the dry adiabatic lapse
rate,

Γs < Γ < Γd

a parcel of air that is lifted sufficiently far above its equilib-
rium level will become warmer than the ambient air. This
situation is illustrated in the following figure.
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Conditions for conditional instability (Γs < Γ < Γd). LCL is the lifting

condensation level and LFC is the level of free convection.
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If the vertical displacement of the parcel is small, the parcel
will be heavier than its environment and will return to its
original height.

However, if the vertical displacement is large, the parcel
develops a positive buoyancy that carries it upward even in
the absence of further forced lifting.

For this reason, the point where the buoyancy changes sign
is referred to as the level of free convection (LFC).

The level of free convection depends on the amount of mois-
ture in the rising parcel of air as well as the magnitude of
the lapse rate Γ.

It follows that, for a layer in which Γs < Γ < Γd, vigor-
ous convective overturning will occur if vertical motions are
large enough to lift air parcels beyond their level of free
convection. Clearly, mountainous terrain is important here.

Such an atmosphere is said to be conditionally unstable
with respect to convection.
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If vertical motions are weak, this type of stratification can
be maintained indefinitely.

The stability of the atmosphere may be understood in broad
terms by considering a mechanical analogy, as illustrated
below.

Figure 3.15. Analogs for (a) stable, (b) unstable, (c) neutral, and (d)

conditional instability.
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Convective Instability
The potential for instability of air parcels is related also to
the vertical stratification of water vapour.

In the profiles shown below, the dew point decreases rapidly
with height within the inversion layer AB that marks the
top of a moist layer.

Convective instability. The blue shaded region is a dry inversion layer.
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Now, suppose that the moist layer is lifted. An air parcel at
A will reach its LCL almost immediately, and beyond that
point it will cool moist adiabatically.

But an air parcel starting at point B will cool dry adiabat-
ically through a deep layer before it reaches its LCL.

Therefore, as the inversion layer is lifted, the top part of
it cools much more rapidly than the bottom part, and the
lapse rate quickly becomes destabilized.

Sufficient lifting may cause the layer to become condition-
ally unstable, even if the entire sounding is absolutely stable
to begin with.

The criterion for this so-called convective (or potential) in-
stability is that dθe/dz be negative within the layer.

Throughout large areas of the tropics θe decreases markedly
with height from the mixed layer to the much drier air
above. Yet deep convection breaks out only within a few
percent of the area where there is sufficient lifting.

161

End of §2.6
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Second Law of Thermodynamics
The First Law of Thermodynamics is a statement of the
principle of conservation of energy. The Second Law of
Thermodynamics is concerned with the maximum fraction
of a quantity of heat that can be converted into work.

A discussion of the Carnot cycle can be found in Wallace
& Hobbs. It is also described in most standard texts on
thermodynamics.

We will provide only an outline here.
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The Carnot Cycle
A cyclic process is a series of operations by which the state
of a substance changes but finally returns to its original
state.

If the volume of the working substance changes, the sub-
stance may do external work, or work may be done on the
working substance, during a cyclic process.

Since the initial and final states of the working substance are
the same in a cyclic process, and internal energy is a func-
tion of state, the internal energy of the working substance
is unchanged in a cyclic process.

Therefore, the net heat absorbed by the working substance
is equal to the external work that it does in the cycle.
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A working substance is said to undergo a reversible trans-
formation if each state of the system is in equilibrium, so
that a reversal in the direction of an infinitesimal change re-
turns the working substance and the environment to their
original states.

A heat engine is a device that does work through the agency
of heat.

If during one cycle of an engine a quantity of heat Q1 is
absorbed and heat Q2 is rejected, the amount of work done
by the engine is Q1 −Q2 and its efficiency η is defined as

η =
Work done by the engine

Heat absorbed by the working substance
=

Q1 −Q2

Q1

Carnot was concerned with the efficiency with which heat
engines can do useful mechanical work. He envisaged an
ideal heat engine consisting of a working substance con-
tained in a cylinder (figure follows).
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The components of Carnot’s ideal heat engine.

By means of this contraption, we can induce the working
substance to undergo transformations which are either adi-
abatic or isothermal.
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An infinite warm reservoir of heat (H) at constant tem-
perature T1, and an infinite cold reservoir for heat (C) at
constant temperature T2 (where T1 > T2) are available.

Also, an insulating stand S to facilitate adiabatic changes.

Heat can be supplied from the warm reservoir to the work-
ing substance contained in the cylinder, and heat can be
extracted from the working substance by the cold reservoir.

As the working substance expands, the piston moves out-
ward and external work is done by the working substance.

As the working substance contracts, the piston moves in-
ward and work is done on the working substance.
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Representations of a Carnot cycle on a p− V diagram. The red lines

are isotherms and the blue lines adiabats.
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Carnot’s cycle consists of taking the working substance in
the cylinder through the following four operations that to-
gether constitute a reversible, cyclic transformation

1. The substance starts at point A with temperature T2. The
working substance is compressed adiabatically to state B.
Its temperature rises to T1.

2. The cylinder is now placed on the warm reservoir H, from
which it extracts a quantity of heat Q1. The working sub-
stance expands isothermally at temperature T1 to point
C. During this process the working substance does work.

3. The working substance undergoes an adiabatic expansion
to point D and its temperature falls to T2. Again the
working substance does work against the force applied to
the piston.

4. Finally, the working substance is compressed isothermally
back to its original state A. In this transformation the
working substance gives up a quantity of heat Q2 to the
cold reservoir.
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The net amount of work done by the working substance
during the Carnot cycle is equal to the area contained within
the figure ABCD. This can be written

W =

∮
C

p dV

Since the working substance is returned to its original state,
the net work done is equal to Q1 − Q2 and the efficiency of
the engine is given by

η =
Q1 −Q2

Q1

In this cyclic operation the engine has done work by trans-
ferring a certain quantity of heat from a warmer (H) to a
cooler (C) body.
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One way of stating the Second Law of Thermodynamics is:
“only by transferring heat from a warmer to a colder body
can heat can be converted into work in a cyclic process.”

It can be shown that no engine can be more efficient than a
reversible engine working between the same limits of tem-
perature, and that all reversible engines working between
the same temperature limits have the same efficiency.

The validity of these two statements, which are known as
Carnot’s Theorems, depends on the truth of the Second Law
of Thermodynamics.

Exercise: Show that in a Carnot cycle the ratio of the heat
Q! absorbed from the warm reservoir at temperature T1 to
the heat Q2 rejected to the cold reservoir at temperature T2
is equal to T1/T2.
Solution: See Wallace & Hobbs.
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Heat Engines
A heat engine is a device that does work through the agency
of heat.

Examples of real heat engines are the steam engine and a
nuclear power plant.

The warm and cold reservoirs for a steam engine are the
boiler and the condenser. The warm and cold reservoirs
for a nuclear power plant are the nuclear reactor and the
cooling tower.

In both cases, water (in liquid and vapour forms) is the
working substance that expands when it absorbs heat and
thereby does work by pushing a piston or turning a turbine
blade.
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The Atmospheric Heat Engines
Why do we study heat engines and Carnot Cycles?

The atmosphere itself can be regarded as the working sub-
stance of an enormous heat engine.

• Heat is added in the tropics, where the temperature is
high.

• Heat is transported by atmospheric motions from the
tropics to the temperate latudes

• Heat is emitted in temperate latitudes, where the tem-
perature is relatively low.

We can apply the principles of thermodynamic engines to
the atmosphere and discuss concepts such as its efficiency.
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Alternative Statements of 2nd Law
One way of stating the Second Law of Thermodynamics is
as follows:
Heat can be converted into work in a cyclic process only

by transferring heat from a warmer to a colder body.

Another statement of the Second Law is:
Heat cannot of itself pass from a colder to a warmer

body in a cyclic process.

That is, the “uphill” heat-flow cannot happen without the
performance of work by some external agency.

174

Entropy
We define the increase dS in the entropy of a system as

dS =
dQ

T
where dQ is the quantity of heat that is added reversibly to
the system at temperature T .

For a unit mass of the substance,

ds =
dq

T

(s is the specific entropy).

Entropy is a function of the state of a system and not the
path by which the system is brought to that state.

The First Law of Thermodynamics for a reversible transfor-
mation may be written as

dq = cp dT − α dp ,
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Therefore,

ds =
dq

T
= cp

dT

T
− α

T
dp =

(
cp

dT

T
−R

dp

p

)
In this form the First Law contains functions of state only.

From the definition of potential temperature θ (Poisson’s
equation) we get

cp
dθ

θ
=

(
cp

dT

T
−R

dp

p

)
Since the right hand sides of the above two equations are
equal, their left hand sides are too:

ds = cp
dθ

θ
.

Integrating, we have

s = cp log θ + s0

where s0 is a reference value for the entropy.
176



Transformations in which entropy (and therefore potential
temperature) are constant are called isentropic.

Therefore, adiabats are generally referred to as isentropes.

The potential temperature can be used as a surrogate for
entropy, and this is generally done in atmospheric science.
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The Clausius-Clapeyron Equation
[The subject matter of this section (CC Equation) will not
form part of the examinations.]

We can use the Carnot cycle to derive an important rela-
tionship, known as the Clausius-Clapeyron Equation.

The Clausius-Clapeyron equation describes how the satu-
rated vapour pressure above a liquid changes with tempera-
ture. [Details will not be given here. See Wallace & Hobbs.]

In approximate form, the Clausius-Clapeyron Equation may
be written

des

dT
≈ Lv

Tα
where α is the specific volume of water vapour that is in
equilibrium with liquid water at temperature T .
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The vapour exerts a pressure es given by the ideal gas equa-
tion:

esα = RvT

Eliminating α, we get

1

es

des

dT
≈ Lv

RvT 2

If we write this as
des

es
=

Lv

Rv

dT

T 2

we can immediately integrate it to obtain

log es =
Lv

Rv

(
− 1

T

)
+ const

Taking the exponential of both sides,

es = es(T0) exp

[
Lv

Rv

(
1

T0
− 1

T

)]
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Since es = 6.11hPa at 273K Rv = 461J K−1kg−1 and Lv =
2.500× 106 Jkg−1, the saturated vapour pressure es (in hPa)
of water at temperature T (Kelvins) is given by

es = 6.11 exp

[
5.42× 103

(
1

273
− 1

T

)]
Exercise: Using matlab, draw a graph of es as a function of
T for the range −20◦C < T < +40◦C.
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Generalized Statement of 2nd Law
The Second Law of Thermodynamics states that

• for a reversible transformation there is no change in the
entropy of the universe.

In other words, if a system receives heat reversibly, the
increase in its entropy is exactly equal in magnitude to the
decrease in the entropy of its surroundings.

• the entropy of the universe increases as a result of irre-
versible transformations.

The Second Law of Thermodynamics cannot be proved. It
is believed to be valid because it leads to deductions that
are in accord with observations and experience.

Evidence is overwhelming that the Second Law is true.
Deny it at your peril!
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Quotes Concerning the 2nd Law

Sir Arthur Eddington, one of
the most prominent and im-
portant astrophysicists of the
last century.

If someone points out to you that your pet theory of the
universe is in disagreement with Maxwell’s equations, then
so much the worse for Maxwell’s equations. And if your
theory contradicts the facts, well, sometimes these exper-
imentalists make mistakes. But if your theory is found
to be against the Second Law of Thermodynamics, I can
give you no hope; there is nothing for it but to collapse in
deepest humiliation.
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Charles Percy Snow (1905-
1980) a scientist and novel-
ist, most noted for his lectures
and books regarding his con-
cept of The Two Cultures.

A good many times I have been present at gatherings of
people who, by the standards of the traditional culture, are
thought highly educated and who have with considerable
gusto been expressing their incredulity at the illiteracy of
scientists. Once or twice I have been provoked and have
asked the company how many of them could describe the
Second Law of Thermodynamics. The response was cold:
it was also negative.
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Nothing in life is certain except death, taxes and the sec-
ond law of thermodynamics. All three are processes in
which useful or accessible forms of some quantity, such
as energy or money, are transformed into useless, inac-
cessible forms of the same quantity. That is not to say that
these three processes don’t have fringe benefits: taxes pay
for roads and schools; the second law of thermodynamics
drives cars, computers and metabolism; and death, at the
very least, opens up tenured faculty positions.

[Seth Lloyd, Professor, Department of Mechanical Engi-
neering, MIT. Nature 430, 971 (26 August 2004)]

184



Entropy is a measure of the disorder (or randomness) of a
system. The Second Law implies that the disorder of the
universe is inexorably increasing.

The two laws of thermodynamics may be summarised as
follows:

• (1) The energy of the universe is constant

• (2) The entropy of the universe tends to a maximum.

They are sometimes parodied as follows:

• (1) You can’t win

• (2) You can’t break even

• (3) You can’t get out of the game.
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End of §2.7
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