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Abstract. Recently, Bringmann and Kane established two new Bailey pairs and used them
to relate certain q-hypergeometric series to real quadratic fields. We show how these pairs give
rise to new mock theta functions in the form of q-hypergeometric double sums. Additionally, we
prove an identity between one of these sums and two classical mock theta functions introduced
by Gordon and McIntosh.

1. Introduction

A Bailey pair relative to a is a pair of sequences (αn, βn)n≥0 satisfying

βn =
n∑
k=0

αk
(q)n−k(aq)n+k

. (1.1)

Here we have used the standard q-hypergeometric notation,

(a)n = (a; q)n =
n∏
k=1

(1− aqk−1),

valid for n ∈ N ∪ {∞}. The Bailey lemma states that if (αn, βn) is a Bailey pair relative to a,
then so is (α′n, β

′
n), where

α′n =
(b)n(c)n(aq/bc)n

(aq/b)n(aq/c)n
αn (1.2)

and

β′n =
n∑
k=0

(b)k(c)k(aq/bc)n−k(aq/bc)
k

(aq/b)n(aq/c)n(q)n−k
βk. (1.3)

Inserting (1.2) and (1.3) into (1.1) with n→∞ gives∑
n≥0

(b)n(c)n(aq/bc)nβn =
(aq/b)∞(aq/c)∞
(aq)∞(aq/bc)∞

∑
n≥0

(b)n(c)n(aq/bc)n

(aq/b)n(aq/c)n
αn, (1.4)

valid whenever both sides converge. For more on Bailey pairs, including historical perspectives
and recent advances, see Chapter 3 of [2], [3], or [13].
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In a recent study of multiplicative q-series, Bringmann and Kane [6] established two new and
interesting Bailey pairs. They showed that (an, bn) is a Bailey pair relative to 1, where

a2n = (1− q4n)q2n
2−2n

n−1∑
j=−n

q−2j
2−2j , (1.5)

a2n+1 = −(1− q4n+2)q2n
2

n∑
j=−n

q−2j
2
, (1.6)

and

bn =
(−1)n(q; q2)n−1

(q)2n−1
χ(n 6= 0), (1.7)

and (αn, βn) is a Bailey pair relative to q, where

α2n =
1

1− q

q2n2+2n
n−1∑
j=−n

q−2j
2−2j + q2n

2
n∑

j=−n
q−2j

2

 , (1.8)

α2n+1 = − 1

1− q

q2n2+4n+2
n∑

j=−n
q−2j

2
+ q2n

2+2n
n∑

j=−n−1
q−2j

2−2j

 , (1.9)

and

βn =
(−1)n(q; q2)n

(q)2n+1
. (1.10)

These closely resemble Bailey pairs related to 7th order mock theta functions [1], but surpris-
ingly no q-series obtained by a direct substitution of either (1.5)–(1.7) or (1.8)–(1.10) in (1.4) is
a genuine mock theta function. For example, it turns out that substituting (1.5)–(1.7) in (1.4)
with b, c→∞ yields

−q
(−q)∞

ω(q)

where ω(q) is one of the third order mock theta functions. The presence of the infinite product
means that this is not a mock theta function but a mixed mock modular form.

Recall that mock theta functions are q-series which were introduced by Ramanujan in his last
letter to G. H. Hardy on January 12, 1920. Until 2002, it was not known how these functions
fit into the theory of modular forms. Thanks to work of Zwegers [15] and Bringmann and
Ono [8, 9], we now know that each of Ramanujan’s examples of mock theta functions is the
holomorphic part of a weight 1/2 harmonic weak Maass form f(τ) (as usual, q := e2πiτ where
τ = x + iy ∈ H). Following Zagier [14], the holomorphic part of any weight k harmonic weak
Maass form f is called a mock modular form of weight k. If k = 1/2 and the image of f under
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the operator ξk := 2iyk ∂
∂τ is a unary theta function, then the holomorphic part of f is called a

mock theta function. Specializations of the Appell-Lerch series

m(x, q, z) :=
1

j(z, q)

∑
r∈Z

(−1)rq(
r
2)zr

1− qr−1xz

are perhaps the most well-known and most important class of mock theta functions [14, 15].
Here x, z ∈ C∗ := C \ {0} with neither z nor xz an integral power of q, and

j(x, q) := (x)∞(q/x)∞(q)∞.

For more on mock theta functions, their remarkable history and modern developments, see [12]
and [14].

The goal of this paper is to obtain genuine mock theta functions from the Bailey pairs of
Bringmann and Kane by first moving a step along the Bailey chain. Applying (1.2) and (1.3) to
(an, bn) with (b, c)→ (−1,∞) and to (αn, βn) with (b, c)→ (−q,∞), we obtain the Bailey pairs
recorded in the following two lemmas.

Lemma 1.1. The pair (a′n, b
′
n) is a Bailey pair relative to 1, where

a′2n = 2(1− q2n)q4n
2−n

n−1∑
j=−n

q−2j
2−2j ,

a′2n+1 = −2(1− q2n+1)q4n
2+3n+1

n∑
j=−n

q−2j
2
,

and

b′n =
1

(−q)n

n∑
j=1

(−1)j(q; q
2)j−1(−1)jq(

j+1
2 )

(q)n−j(q)2j−1
.

Lemma 1.2. The pair (α′n, β
′
n) is a Bailey pair relative to q, where

α′2n =
1

1− q

q4n2+3n
n−1∑
j=−n

q−2j
2−2j + q4n

2+n
n∑

j=−n
q−2j

2

 ,

α′2n+1 = − 1

1− q

q4n2+7n+3
n∑

j=−n
q−2j

2
+ q4n

2+5n+1
n∑

j=−n−1
q−2j

2−2j

 ,

and

β′n =
1

(−q)n

n∑
j=0

(−q)j(q; q2)j(−1)jq(
j+1
2 )

(q)n−j(q)2j+1
.
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With our main result, we present four mock theta functions arising from the Bailey pairs in
Lemmas 1.1 and 1.2. Define

θn,p(x, y, q) :=
1

J0,np(2n+p)

p−1∑
r∗=0

p−1∑
s∗=0

qn(
r−(n−1)/2

2 )+(n+p)(r−(n−1)/2)(s+(n+1)/2)+n(s+(n+1)/2
2 )

×
(−x)r−(n−1)/2(−y)s+(n+1)/2J3

p2(2n+p)j(−q
np(s−r)xn/yn, qnp

2
)j(qp(2n+p)(r+s)+p(n+p)xpyp, qp

2(2n+p))

j(qp(2n+p)r+p(n+p)/2(−y)n+p/(−x)n, qp2(2n+p))j(qp(2n+p)s+p(n+p)/2(−x)n+p/(−y)n, qp2(2n+p))
,

where r := r∗+ {(n− 1)/2} and s := s∗+ {(n− 1)/2} with 0 ≤ {α} < 1 denoting the fractional
part of α. Also, Jm := Jm,3m with Ja,m := j(qa, qm), and Ja,m := j(−qa, qm).

Theorem 1.3. The following are mock theta functions:

W1(q) :=
∑
n≥j≥1

(−1)j(q; q
2)j−1(−1)jqn

2+(j+1
2 )

(−q)n(q)n−j(q)2j−1
(1.11)

= 4m(−q17, q48,−1)− 4q−5m(−q, q48,−1)− 2q2θ3,2(q
5, q5, q)

j(q, q3)
,

W2(q) :=
∑
n≥j≥1

(q; q2)n(−1)j(q; q
2)j−1(−1)n+jq(

j+1
2 )

(−q)n(q)n−j(q)2j−1
(1.12)

= 4m(−q, q8,−1) +
2qθ1,2(−q2,−q2, q)

j(−1, q)
,

W3(q) :=
∑
n≥j≥1

(q; q2)n(−1)j(q
2; q4)j−1(−1)n+jqn

2+j2+j

(−q2; q2)n(q2; q2)n−j(q2; q2)2j−1
(1.13)

= 4m(−q, q12,−1) +
2q3θ1,1(−q7,−q7, q4)

j(−q, q4)
,

W4(q) :=
∑
n≥j≥0

(−q)j(q; q2)j(−1)jqn
2+n+(j+1

2 )

(−q)n(q)n−j(q)2j+1
(1.14)

= −2q−4m(−q5, q48,−1)− 2q−2m(−q11, q48,−1) +
θ3,2(q

3, q3, q)

j(q, q3)
.

It should be noted that the series defining W2(q) does not converge. However, similar to the
sixth order mock theta function µ(q) [5], the sequence of even partial sums and the sequence of
odd partial sums both converge. We define W2(q) as the average of these two values.

To prove Theorem 1.3 we first use the Bailey machinery to express the Wi in terms of Hecke-
type double sums fa,b,c(x, y, q), where

fa,b,c(x, y, q) :=
∑

sg(r)=sg(s)

sg(r)(−1)r+sxrysqa(
r
2)+brs+c(

s
2). (1.15)



q-HYPERGEOMETRIC DOUBLE SUMS AS MOCK THETA FUNCTIONS 5

Here x, y ∈ C∗ and sg(r) := 1 for r ≥ 0 and sg(r) := −1 for r < 0. Then we apply recent results
of Hickerson and Mortenson [11] to express the Hecke-type double sums as Appell-Lerch series
m(x, q, z) (up to the addition of weakly holomorphic modular forms).

We highlight one connection to classical mock theta functions. Namely, we express the multi-
sum (1.12) in terms of the “eighth order” mock theta functions S1(q) and T1(q), defined by (see
[10])

S1(q) :=
∑
n≥0

qn(n+2)(−q; q2)n
(−q2; q2)n

and

T1(q) :=
∑
n≥0

qn(n+1)(−q2; q2)n
(−q; q2)n+1

.

Corollary 1.4. We have the identity

W2(q) = 2qT1(q)− qS1(q).

Similar identities involving mock theta functions and multisums were given by Andrews [4,
Section 13], and more could be deduced from [7, Theorem 2.4].

The paper proceeds as follows. Some background material on Hecke-type double sums and
Appell-Lerch series is collected in Section 2, and Theorem 1.3 and Corollary 1.4 are established
in Section 3.

2. Preliminaries

We recall some relevant preliminaries. The most important is a result which allows us to
convert from the Hecke-type double sums (1.15) to Appell-Lerch series. Define

ga,b,c(x, y, q, z1, z0) :=
a−1∑
t=0

(−y)tqc(
t
2)j(qbtx, qa)m

(
−qa(

b+1
2 )−c(a+1

2 )−t(b2−ac) (−y)a

(−x)b
, qa(b

2−ac), z0)

)

+

c−1∑
t=0

(−x)tqa(
t
2)j(qbty, qc)m

(
−qc(

b+1
2 )−a(c+1

2 )−t(b2−ac) (−x)c

(−y)b
, qc(b

2−ac), z1

)
.

(2.1)
Following [11], we use the term “generic” to mean that the parameters do not cause poles in

the Appell-Lerch series or in the quotients of theta functions.

Theorem 2.1. [11, Theorem 0.3] Let n and p be positive integers with (n, p) = 1. For generic
x, y ∈ C∗

fn,n+p,n(x, y, q) = gn,n+p,n(x, y, q,−1,−1) + θn,p(x, y, q).

We shall also require certain facts about j(x, q), m(x, q, z) and fa,b,c(x, y, q). From the defi-
nition of j(x, q), we have
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j(qnx, q) = (−1)nq−(n2)x−nj(x, q) (2.2)

where n ∈ Z and

j(x, q) = j(q/x, q) = −xj(x−1, q). (2.3)

Next, some relevant properties of the sum m(x, q, z) are given in the following (see (2.2b) of
Proposition 2.1 and Theorem 2.3 in [11]).

Proposition 2.2. For generic x, z, z0 ∈ C∗.

m(x, q, z) = x−1m(x−1, q, z−1) (2.4)

and

m(x, q, z) = m(x, q, z0) +
z0J

3
1 j(z/z0, q)j(xzz0, q)

j(z0, q)j(z, q)j(xz0, q)j(xz, q)
. (2.5)

Finally, two important transformation properties of fa,b,c(x, y, q) are given in the following
(see Propositions 5.1 and 5.2 in [11]).

Proposition 2.3. For x, y ∈ C∗,

fa,b,c(x, y, q) =fa,b,c(−x2qa,−y2qc, q4)− xfa,b,c(−x2q3a,−y2qc+2b, q4)

− yfa,b,c(−x2qa+2b,−y2q3c, q4) + xyqbfa,b,c(−x2q3a+2b,−y2q3c+2b, q4)
(2.6)

and

fa,b,c(x, y, q) = −q
a+b+c

xy
fa,b,c(q

2a+b/x, q2c+b/y, q). (2.7)

3. Proof of Theorem 1.3

Proof of Theorem 1.3. As the proofs of (1.11)–(1.14) are similar, we give full details only for
(1.11) and (1.14). Recall that the goal is to express each double sum q-series in terms of Appell-
Lerch series. For (1.11), apply Lemma 1.1 and let b, c→∞ in (1.4) to obtain
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W1(q) =
∑
n≥0

qn
2
b′n(q)

=
1

(q)∞

∑
n≥0

qn
2
a′n(q)

=
1

(q)∞

(∑
n≥0

q4n
2
a′2n(q) +

∑
n≥0

q4n
2+4n+1a′2n+1(q)

)

=
2

(q)∞

(∑
n≥0

q8n
2−n

n−1∑
j=−n

q−2j
2−2j −

∑
n≥0

q8n
2+n

n−1∑
j=−n

q−2j
2−2j

−
∑
n≥0

q8n
2+7n+2

n∑
j=−n

q−2j
2 −

∑
n≥0

q8n
2+9n+3

n∑
j=−n

q−2j
2

)
.

After replacing n with −n in the second sum and n with −n − 1 in the fourth sum, we let
n = (r + s + 1)/2, j = (r − s − 1)/2 in the first two sums and n = (r + s)/2, j = (r − s)/2 in
the latter two sums to find

W1(q) =
2q2

(q)∞

(( ∑
r,s≥0

r 6≡s (mod 2)

−
∑
r,s<0

r 6≡s (mod 2)

)
q

3
2
r2+5rs+ 7

2
r+ 3

2
s2+ 7

2
s

−
( ∑

r,s≥0
r≡s (mod 2)

−
∑
r,s<0

r≡s (mod 2)

)
q

3
2
r2+5rs+ 7

2
r+ 3

2
s2+ 7

2
s

)

=
2q2

(q)∞

(
2q5f3,5,3(−q23,−q19, q4)− f3,5,3(−q13,−q13, q4)− q15f3,5,3(−q29,−q29, q4)

)

= − 2q2

(q)∞
f3,5,3(q

5, q5, q).

In the penultimate equality, we have replaced (r, s) first by (2r+ 1, 2s) and then by (2r, 2s+ 1)
in the first line, and then replaced (r, s) first by (2r, 2s) and then by (2r+1, 2s+1) in the second
line, and then invoked (1.15). In the last step, we have used (2.6). By Theorem 2.1, (2.1), (2.2)
and (2.3), we have

f3,5,3(q
5, q5, q) = −2q−2j(q, q3)m(−q17, q48,−1) + 2q−7j(q, q3)m(−q, q48,−1) + θ3,2(q

5, q5, q)

and so

W1(q) = 4m(−q17, q48,−1)− 4q−5m(−q, q48,−1)− 2q2θ3,2(q
5, q5, q)

j(q, q3)
.

For (1.12), apply Lemma 1.1 and let b = −√q and c =
√
q in (1.4) to get
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W2(q) =
∑
n≥0

(−1)n(q; q2)nb
′
n(q)

=
(q; q2)∞

2(q2; q2)∞

∑
n≥0

(−1)na′n(q)

=
(q; q2)∞

2(q2; q2)∞

(∑
n≥0

a′2n(q)−
∑
n≥0

a′2n+1(q)

)

=
(q; q2)∞
(q2; q2)∞

(∑
n≥0

q4n
2−n

n−1∑
j=−n

q−2j
2−2j −

∑
n≥0

q4n
2+n

n−1∑
j=−n

q−2j
2−2j

+
∑
n≥0

q4n
2+3n+1

n∑
j=−n

q−2j
2 −

∑
n≥0

q4n
2+5n+2

n∑
j=−n

q−2j
2

)
.

As before, we proceed with

W2(q) =
(q; q2)∞
(q2; q2)∞

(( ∑
r,s≥0

r 6≡s (mod 2)

−
∑
r,s<0

r 6≡s (mod 2)

)
q

1
2
r2+3rs+ 3

2
r+ 1

2
s2+ 3

2
s+1

+
( ∑

r,s≥0
r≡s (mod 2)

−
∑
r,s<0

r≡s (mod 2)

)
q

1
2
r2+3rs+ 3

2
r+ 1

2
s2+ 3

2
s+1

)

=
(q; q2)∞
(q2; q2)∞

((∑
r,s≥0

−
∑
r,s<0

)
q

1
2
r2+3rs+ 3

2
r+ 1

2
s2+ 3

2
s+1

)

=
q(q; q2)∞
(q2; q2)∞

f1,3,1(−q2,−q2, q).

By Theorem 2.1, (2.1) and (2.2), we have

f1,3,1(−q2,−q2, q) = 2q−1j(−1, q)m(−q, q8,−1) + θ1,2(−q2,−q2, q)

and so

W2(q) = 4m(−q, q8,−1) +
2qθ1,2(−q2,−q2, q)

j(−1, q)
.

For (1.13), apply Lemma 1.1 and let b = q, c→∞ and q → q2 in (1.4) to get
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W3(q) =
∑
n≥0

(−1)n(q; q2)nq
n2
b′n(q2)

=
(q; q2)∞
(q2; q2)∞

∑
n≥0

(−1)nqn
2
a′n(q2)

=
(q; q2)∞
(q2; q2)∞

(∑
n≥0

q4n
2
a′2n(q2)−

∑
n≥0

q4n
2+4n+1a′2n+1(q

2)

)

=
2(q; q2)∞
(q2; q2)∞

(∑
n≥0

q12n
2−2n

n−1∑
j=−n

q−4j
2−4j −

∑
n≥0

q12n
2+2n

n−1∑
j=−n

q−4j
2−4j

+
∑
n≥0

q12n
2+10n+3

n∑
j=−n

q−4j
2 −

∑
n≥0

q12n
2+14n+5

n∑
j=−n

q−4j
2

)
.

So,

W3(q) =
2(q; q2)∞
(q2; q2)∞

(( ∑
r,s≥0

r 6≡s (mod 2)

−
∑
r,s<0

r 6≡s (mod 2)

)
q2r

2+8rs+5r+2s2+5s+3

+
( ∑

r,s≥0
r≡s (mod 2)

−
∑
r,s<0

r≡s (mod 2)

)
q2r

2+8rs+5r+2s2+5s+3

)

=
2(q; q2)∞
(q2; q2)∞

((∑
r,s≥0

−
∑
r,s<0

)
q2r

2+8rs+5r+2s2+5s+3

)

=
2q3(q; q2)∞
(q2; q2)∞

f1,2,1(−q7,−q7, q4).

By Theorem 2.1, (2.1), (2.2) and (2.3), we have

f1,2,1(−q7,−q7, q4) = 2q−3j(−q, q4)m(−q, q12,−1) + θ1,1(−q7,−q7, q4)

and so

W3(q) = 4m(−q, q12,−1) +
2q3θ1,1(−q7,−q7, q4)

j(−q, q4)
.

Finally, for (1.14), apply Lemma 1.2 and let b, c→∞ in (1.4) to get
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W4(q) =
∑
n≥0

qn
2+nβ′n(q)

=
(1− q)
(q)∞

∑
n≥0

qn
2+nα′n(q)

=
(1− q)
(q)∞

(∑
n≥0

q4n
2+2nα′2n(q) +

∑
n≥0

q4n
2+6n+2α′2n+1(q)

)

=
1

(q)∞

(∑
n≥0

q8n
2+5n

n−1∑
j=−n

q−2j
2−2j +

∑
n≥0

q8n
2+3n

n∑
j=−n

q−2j
2

−
∑
n≥0

q8n
2+13n+5

n∑
j=−n

q−2j
2 −

∑
n≥0

q8n
2+11n+3

n∑
j=−n−1

q−2j
2−2j

)
.

After replacing n with−n−1 in the third and fourth sums, we let n = (r+s+1)/2, j = (r−s−1)/2
in the first and fourth sums and n = (r + s)/2, j = (r − s)/2 in the second and third sums to
get

W4(q) =
1

(q)∞

(( ∑
r,s≥0

r 6≡s (mod 2)

−
∑
r,s<0

r 6≡s (mod 2)

)
q

3
2
r2+5rs+ 13

2
r+ 3

2
s2+ 13

2
s+5

+
( ∑

r,s≥0
r≡s (mod 2)

−
∑
r,s<0

r≡s (mod 2)

)
q

3
2
r2+5rs+ 3

2
r+ 3

2
s2+ 3

2
s

)

=
1

(q)∞

(
2q13f3,5,3(−q25,−q29, q4) + f3,5,3(−q9,−q9, q4) + q11f3,5,3(−q25,−q25, q4)

)

=
1

(q)∞
f3,5,3(q

3, q3, q)

where in the last step we have used (2.6) and (2.7). By Theorem 2.1, (2.1), (2.2), (2.3) and
(2.4), we have

f3,5,3(q
3, q3, q) = −2q−4j(q, q3)m(−q5, q48,−1)− 2q−2j(q, q3)m(−q11, q48,−1) + θ3,2(q

3, q3, q)

and so

W4(q) = −2q−4m(−q5, q48,−1)− 2q−2m(−q11, q48,−1) +
θ3,2(q

3, q3, q)

j(q, q3)
.

�

Proof of Corollary 1.4. Equations (4.36) and (4.38) of [11] state
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S1(q) = −2q−1m(−q, q8,−1) +
J3,8J

2
2,8

qJ2
1,8

T1(q) = q−1m(−q, q8, q6).
By (1.12), (2.3) and (2.5), the claim is equivalent to the identity

J3,8J
2
2,8

J2
1,8

+
2qθ1,2(−q2,−q2, q)

j(−1, q)
=

−2j(q8, q24)3j(−q6, q8)
j(q6, q8)j(−1, q8)j(−q7, q8)

.

We have verified this identity using Garvan’s MAPLE program (see http://www.math.ufl.

edu/~fgarvan/qmaple/theta-supplement/).
�
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