
A REMARK ON A CONJECTURE OF BORWEIN AND CHOI

ROBERT OSBURN

Abstract. We prove the remaining case of a conjecture of Borwein and Choi con-
cerning an estimate on the square of the number of solutions to n = x2 + Ny2 for a
squarefree integer N .

1. Introduction

We consider the positive definite quadratic form Q(x, y) = x2 + Ny2 for a squarefree
integer N . Let r2,N (n) denote the number of solutions to n = Q(x, y) (counting signs
and order). In this note, we estimate

∑

n≤x

r2,N (n)2.

A positive squarefree integer N is called solvable (or more classically “numerus idoneus”)
if x2 + Ny2 has one form per genus. Note that this means the class number of the form
class group of discriminant −4N equals the number of genera, 2t, where t is the number
of distinct prime factors of N . Concerning r2,N (n), Borwein and Choi [1] proved the
following:

Theorem 1.1. Let N be a solvable squarefree integer. Let x > 1 and ε > 0. We have
∑

n≤x

r2,N (n)
2

=
3

N

(

∏

p|2N

2p

p + 1

)

(x log x + α(N)x) + O(N
1

4
+εx

3

4
+ε)

where the product is over all primes dividing 2N and

α(N) = −1 + 2γ +
∑

p|2N

log p

p + 1
+

2L′(1, χ−4N)

L(1, χ−4N)
− 12

π2
ζ ′(2)

where γ is the Euler-Mascheroni constant and L(1, χ−4N) is the L-function corresponding
to the quadratic character mod −4N .

Based on this result, Borwein and Choi posed the following:

Conjecture 1.2. For any squarefree N ,
∑

n≤x

r2,N (n)
2 ∼ 3

N

(

∏

p|2N

2p

p + 1

)

x log x

The main result in [10] was the following.

Theorem 1.3. Let Q(x, y) = x2 + Ny2 for a squarefree integer N with −N 6≡ 1 mod 4.
Let r2,N (n) denote the number of solutions to n = Q(x, y) (counting signs and order).
Then

∑

n≤x

r2,N (n)
2 ∼ 3

N

(

∏

p|2N

2p

p + 1

)

x log x.
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In this note, we settle the conjecture in the remaining case, namely

Theorem 1.4. For −N ≡ 1 mod 4, we have
∑

n≤x

r2,N (n)
2 ∼ 3

N

(

∏

p|2N

2p

p + 1

)

x log x.

2. Preliminaries

Let Q(x, y) = ax2 + bxy + cy2 denote a positive definite integral quadratic form with
discriminant D = b2 − 4ac and gcd(a, b, c) = 1. Given Q, let κ be the largest positive
integer with D/κ2 an integer congruent to 0 or 1 modulo 4. We call κ the conductor of
Q and set d = D/κ2. Let r(Q, n) be the number of representations of the integer n by
the form Q. We now relate r(Q, n) to counting the number of integral ideals of norm n
in a given class in a generalized ideal class group.

Given D = κ2d we consider ideals in OK where K = Q(
√

d). Let Iκ be the group of
fractional ideals of OK which are quotients of ideals coprime to κ and Pκ be the subgroup
of fractional ideals which are quotients of principal ideals 〈α〉 ∈ Iκ where α ∈ Z + κO.
Then set CLκ(K) = Iκ�Pκ. The elements of CLκ(K) correspond bijectively to proper
equivalence classes of positive definite quadratic forms of discriminant D = κ2d. If the
proper equivalence class of Q corresponds to the ideal class c, then by [3], page 219, we
have

r(Q, n) =
∑

r|κ
w((κ/r)2d)J(cr , n/r2)

where

w(D) =







6 if D = −3
4 if D = −4
2 otherwise.

Also J(cr, n) is the number of integral ideals of norm n in the class cr where cr is
the image of c under the natural homomorphism CLκ(K) → CLκ/r(K). For the form

Q(x, y) = x2 + Ny2 where −N ≡ 1 mod 4, the conductor κ = 2 and so we have

r2,N (n) = w(−4N)J(c, n) + w(−N)J(c2, n/4)

= 2J(c, n) + w(−N)J(c2, n/4)

where c2 is the image under CL2(K) → CL1(K), that is, c2 is a class in the ideal class
group of K = Q(

√
−N).

We now discuss a classical result of Rankin [11] and Selberg [12] which estimates the

size of Fourier coefficients of a modular form. Specifically, if f(z) =
∞
∑

n=1

a(n)e2πinz is a

nonzero cusp form of weight k on Γ0(N), then
∑

n≤x

|a(n)|2 = α〈f, f〉xk + O(xk− 2

5 )

where α > 0 is an absolute constant and 〈f, f〉 is the Petersson scalar product. In

particular, if f is a cusp form of weight 1, then
∑

n≤x

|a(n)|2 = O(x). One can adapt their

result to say the following. Given two cusp forms of weight k on a suitable congruence

subgroup of Γ = SL2(Z), say f(z) =

∞
∑

n=1

a(n)e2πinz and g(z) =

∞
∑

n=1

b(n)e2πinz, then
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∑

n≤x

a(n)b(n)n1−k = Ax + O(x
3

5 )

where A is a constant. In particular, if f and g are cusp forms of weight 1, then
∑

n≤x

a(n)b(n) = O(x).

We conclude this section with a relationship between genus characters of generalized
ideal class groups and the poles of the Rankin-Selberg convolution of L-functions. Recall
that a group homomorphism χ : I2 → S1 is an ideal class character if it is trivial on P2,
i.e.

χ(〈a〉) = 1

for a ≡ 1 mod 〈2〉. Thus an ideal class character is a character on the generalized class
group I2�P2. Recall also that a genus character (see Chapter 12, section 5 in [5]) is an
ideal class character of order at most two.

Let us also recall the notion of the Rankin-Selberg convolution of two L-functions. For
squarefree N , consider two ideal class characters χ1, χ2 for CL2(K), the generalized ideal
class group of K = Q(

√
−N) and their associated Hecke L-series

L2(s, χ1) =
∑

(a,2)=1

χ1(a)

N(a)
s

L2(s, χ2) =
∑

(a,2)=1

χ2(a)

N(a)s

which converge absolutely in some right half-plane. We form the convolution L-series by
multiplying the coefficients,

L2(s, χ1 ⊗ χ2) =
∑

(a,2)=1

χ1(a)χ2(a)

N(a)
s

The following result describes a relationship between genus characters χ and the orders
of poles of L2(s, χ ⊗ χ). The proof is similar to that of Proposition 2.4 in [10].

Proposition 2.1. Let χ be an ideal class character for CL2(K), −N ≡ 1 mod 4, and
L2(s, χ) the associated Hecke L-series. Then χ is a genus character if and only if L2(s, χ⊗
χ) has a double pole at s = 1.

Remark 2.2. By Proposition 2.1, if χ is a non-genus character, then L2(s, χ ⊗ χ) has
at most a simple pole at s = 1.

3. Proof of Theorem 1.4

Proof. As the proof is similar to that of Theorem 1.3 in [10], we sketch the relevant
details. If −N ≡ 1 mod 4, then the discriminant of K = Q(

√
−N) is −N . We also

assume that t is the number of distinct prime factors of N and so the discriminant −N
also has t distinct prime factors. For K = Q(

√
−N), consider the zeta function

ζK(s, 2) =
∑

(a,2)=1

1

N(a)
s

where the sum is over those ideals a of OK prime to 2. We now split up ζK(s, 2),
according to the classes ci of the generalized ideal class group CL2(K), into the partial
zeta functions (see page 161 of [7])
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ζci
(s) =

∑

a∈ci

1

N(a)s

so that ζK(s, 2) =

h2−1
∑

i=0

ζci
(s) where h2 is the order of CL2(K).

Let c be the ideal class in CL2(K) which corresponds to the proper equivalence class
of Q(x, y) = x2 + Ny2. Now let χ be an ideal class character of CL2(K) and consider
the Hecke L-series for χ, namely

L2(s, χ) =
∑

(a,2)=1

χ(a)

N(a)
s .

We may now rewrite the Hecke L-series as

L2(s, χ) =

h2−1
∑

i=0

χ(ci)ζci
(s).

And so summing over all ideal class characters of CL2(K), we have

∑

χ

χ(c)L2(s, χ) =

h2−1
∑

i=0

ζci
(s)

(

∑

χ

χ(c)χ(ci)
)

.

The inner sum is nonzero precisely when c = ci. Thus we have

ζc(s) =
1

h2

∑

χ

χ(c)L2(s, χ)

and so

ζc(s) =
1

h2
(L2(s, χ0) + χ1(c)L2(s, χ1) + · · · + χh2−1(c)L2(s, χh2−1)).

As χ0 is the trivial character, L2(s, χ0) = ζK(s, 2). Comparing nth coefficients, we
have

J(c, n) =
1

h2
(an + b1(n) + · · · + bh2−1(n)).

where an is the number of integral ideals of OK prime to 2 and of norm n and the bi’s
are coefficients of weight 1 cusp forms (see [2]). Recall we also have

r2,N (n) = 2J(c, n) + w(−N)J(c2, n/4)

and so

r2,N (n) =
2

h2

(

an + b1(n) + · · · + bh2−1(n)
)

+ w(−N)J(c2, n/4).

Thus
∑

n≤x

r2,N (n)
2

=
4

h2
2

(

∑

n≤x

a2
n +

∑

i
n≤x

bi(n)
2

+ 2
∑

i
n≤x

anbi(n) +
∑

i 6=j
n≤x

bi(n)bj(n)
)

+

4

h2

∑

n≤x

(

an + b1(n) + · · · + bh2−1(n)
)

w(−N)J(c2, n/4) +
∑

n≤x

w(−N)2J(c2, n/4)2.
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Assume −N ≡ 1 mod 8. Applying the main theorem in [6] to the Dirichlet series
∞
∑

n=1

a2
n

ns
, we obtain

∑

n≤x

a2
n ∼ Ax log x

where A =
1

2π2
L(1, χ−N)

2
∏

p|N

p

p + 1
. As −N has t distinct prime factors, we have 2t

genus characters for CL(K) where K = Q(
√
−N). By [7] (see Theorem 1, page 127),

we have 2t genus characters for CL2(K). We now must estimate
∑

i
n≤x

bi(n)
2
. Let us now

assume that the first 2t − 1 terms arise from L-functions associated to genus characters.
By Proposition 2.1 and an application of Perron’s formula, we obtain

∑

n≤x

bi(n)
2 ∼ Ax log x.

As this estimate holds for each i such that 1 ≤ i ≤ 2t − 1, the term Ax log x appears 2t

times in the estimate of
∑

n≤x

r2,N (n)2. By Remark 2.2 and the Rankin-Selberg estimate,

the remaining terms are all O(x). Thus

∑

n≤x

r2,N (n)
2 ∼ 4

h2
2

(

2t 1

2π2
L(1, χ−N)

2
∏

p|N

p

p + 1

)

x log x.

By [4], we have L(1, χ−N) = hπ√
N

where h is the class number of K and h2 = h. Thus

∑

n≤x

r2,N (n)
2 ∼ 3

N

(

∏

p|2N

2p

p + 1

)

x log x.

For −N ≡ 5 mod 8, we have h2 = 3h and again by [6],

∑

n≤x

a2
n ∼

( 9

2π2
L(1, χ−N)

2
∏

p|N

p

p + 1

)

x log x.

Thus
∑

n≤x

r2,N (n)
2 ∼ 3

N

(

∏

p|2N

2p

p + 1

)

x log x.

�

Remark 3.1. We would like to mention another approach which confirms Theorems 1.3
and 1.4. Let Q ∈ Z2×2 be a non-singular symmetric matrix with even diagonal entries
and q(x) = 1

2Q[x] = 1
2x

T Qx, x ∈ Z2, the associated quadratic form in two variables.
Let r(Q, n) denote the number of representations of n by the quadratic form Q. Now
consider the theta function

θQ(z) =
∑

x∈Z2

eπizQ[x].

The Dirichlet series associated with the automorphic form θQ is
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(4π)−1/2ζQ( 1
2 + s)

where

ζQ(s) =
∞
∑

n=1

r(Q, n)

ns
=

∑

x∈Z2\{0}
q(x)−s

for <(s) > 1. A careful and involved application of the Rankin-Selberg method to the
above Dirichlet series (see Theorems 2.1 and 5.1 in [8] and Theorem 5.2 in [9]) combined
with a Tauberian argument yields the following (see Theorem 6.1 in [8])

∑

n≤x

r(Q, n)2 ∼ AQx log x

where

AQ = 12
A(q)

q

∏

p|q

(

1 +
1

p

)−1

.

Here q = det Q and A(q) denotes the multiplicative function defined by

A(pe) = 2 + (1 − 1
p )(e − 1)

where p is an odd prime, e ≥ 1, and

A(2e) =







1 if e ≤ 1,
2 if e = 2,
e − 1 if e ≥ 3.

Let us now turn to our situation. Consider q(x) = x2 + Ny2 = 1
2x

T Qx where Q =
(

2 0
0 2N

)

, N squarefree. Thus q = 4N . Suppose N has t distinct prime factors. Then

A(4N) = 2t+1 and so

AQ =
3

N
2t+1

∏

p|2N

(

1 +
1

p

)−1

=
3

N

∏

p|2N

2p

p + 1
.
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