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Abstract. In this note, we prove a general identity between a q-multisum BN (q) and a sum
of N2 products of quotients of theta functions. The q-multisum BN (q) recently arose in the
computation of a probability involving modules over finite chain rings.

1. Introduction

Probabilistic proofs of classical q-series identities constitute an intriguing part of the litera-
ture in combinatorics. A prominent example of this perspective concerns the Andrews-Gordon
identities [1, 8] which state for 1 ≤ i ≤ k and k ≥ 2

∑
n1,...,nk−1≥0

qN
2
1+···+N2

k−1+N1+···+Nk−1

(q)n1 · · · (q)nk

=
∞∏
s=1

s 6≡0,±i (mod 2k+1)

1

1− qs
, (1.1)

where Nj = nj + · · · + nk−1. Here and throughout, we use the standard q-hypergeometric (or
“q-Pochhammer symbol”) notation

(a)n = (a; q)n :=

n−1∏
k=0

(1− aqk),

valid for n ∈ N∪{∞}. In [7], Fulman uses a Markov chain on the nonnegative integers to prove
the extreme cases i = 1 and i = k of (1.1). Chapman [3] cleverly extends Fulman’s methods
to prove (1.1) in full generality. In [4], Cohen explicitly computes probability laws of p`-ranks
of finite abelian groups to give a group-theoretic proof of (1.1). For a generalization of this
computation, see [5]. In this note, we are interested in a recent probability computation with a
ring-theoretic flavor as it leads to an expression similar to the left-hand side of (1.1).

Let R be a finite chain ring with radical N , q be the order of the residue field R/N and
N be the index of nilpotency of N (for further details, see Section 2 in [10]). Recently, the
authors of [2] expressed the density ψ(n, k, q,N) of free submodules M of Rn (over R) of type
k := log|R|(|M|) as n→∞ as the reciprocal of the q-multisum (replacing 1/q in their notation

with q)
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BN (q) :=
∑

K2,...,KN≥0
N |K2+···+KN

qK
2
2+···+K2

N−(K2+···+KN )2/N

(q)k2 · · · (q)kN
, (1.2)

where N ≥ 2 is an integer and Ki =
∑i

j=2 kj . Upper and lower bounds for BN (q) are obtained

and then used to show (under suitable conditions) that ψ(n, k, q,N) is at least 1 − ε where
0 < ε < 1 (see Theorems 7 and 9, respectively, in [2]). Moreover, we have

B2(q) =
∞∏
s=1

s≡±2,±3,±4,±5 (mod 16)

1

1− qs
, (1.3)

which is (S.83) in [13]. In view of (1.1) and (1.3), the authors in [2] posed the following (slightly
rewritten) problem.

Problem 1.1. Determine whether BN (q) can be expressed as a product of q-Pochhammer sym-
bols.

The purpose of this note is to solve Problem 1.1. It turns out that the solution is slightly
more involved than either (1.1) or (1.3), namely BN (q) is a sum of N2 products of quotients
of theta functions (but not a single product of q-Pochhammer symbols, for general N). Before
stating our main result, we recall some further standard notation:

j(x; q) := (x)∞(q/x)∞(q)∞,

j(x1, x2, . . . , xn; q) := j(x1; q)j(x2; q) · · · j(xn; q),

Ja,m := j(qa; qm),

Ja,m := j(−qa; qm),

Jm := Jm,3m = (qm; qm)∞.

Note that these quantities are products of q-Pochhammer symbols. Our main result is now the
following.

Theorem 1.2. For all N ≥ 2, we have

BN (q) =
1

(q)2∞J0,N(N+2)

N−1∑
r=0

N−1∑
s=0

(−1)r+s+1q(
r
2)+(s+1

2 )+r(s+1)(N+1)+r+s+1J3
N2(N+2)

j((−1)NqN(N+2)r+N(N+3)/2; qN2(N+2))
(1.4)

× j(−qN(s−r); qN
2
)j(qN(N+2)(r+s)+N(N+3); qN

2(N+2))

j((−1)NqN(N+2)s+N(N+3)/2; qN2(N+2))
.

Formula (1.4) is very efficient in practice for computing explicit values of BN (q). Indeed,
contrarily to (1.2) which requires computing a (N − 1)-fold sum, (1.4) only involves a double
sum. As a comparison with Table 1 in [2], we compute BN (q) for 2 ≤ N ≤ 10 and N = 100 and
1/q = 2, 3, 5, 7, 11 to five decimals with Maple using (1.4). Table 1 below suggests that when
q → 0, the limiting value of BN (q) is 1. This statement is confirmed in [2, Corollary 11, (1)].

The paper is organized as follows. In Section 2, we recall one of the main results from [14],
then prove Theorem 1.2. In Section 3, we make some concluding remarks.
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N \ 1/q 2 3 5 7 11
2 0.59546 0.84191 0.95049 0.97627 0.99092
3 0.47084 0.79666 0.94102 0.97295 0.99010
4 0.42109 0.78230 0.93915 0.97248 0.99002
5 0.39877 0.77759 0.93877 0.97241 0.99002
6 0.38819 0.77603 0.93870 0.97240 0.99002
7 0.38304 0.77551 0.93868 0.97240 0.99002
8 0.38050 0.77533 0.93868 0.97240 0.99002
9 0.37924 0.77528 0.93868 0.97240 0.99002
10 0.37861 0.77526 0.93868 0.97240 0.99002

100 0.37798 0.77525 0.93868 0.97240 0.99002

(q)∞ 0.28879 0.56013 0.76033 0.83680 0.90083
Table 1. Values of BN (q)

2. Proof of Theorem 1.2

Before the proof of Theorem 1.2, we need to recall some background from the important work
of Hickerson and Mortenson [14]. First, we employ the Hecke-type series

fa,b,c(x, y, q) :=
(∑
r,s≥0

−
∑
r,s<0

)
(−1)r+sxrysqa(

r
2)+brs+c(s2). (2.1)

Next, consider the Appell-Lerch series

m(x, q, z) :=
1

j(z; q)

∑
r∈Z

(−1)rq(
r
2)zr

1− qr−1xz
, (2.2)

where x, z ∈ C∗ := C \ {0} with neither z nor xz an integral power of q in order to avoid poles.
One of the main results in [14] expresses (2.1) in terms of (2.2). Let

ga,b,c(x, y, q, z1, z0) :=
a−1∑
t=0

(−y)tqc(
t
2)j(qbtx; qa)m

(
−qa(

b+1
2 )−c(a+1

2 )−t(b2−ac) (−y)a

(−x)b
, qa(b

2−ac), z0

)
+

c−1∑
t=0

(−x)tqa(
t
2)j(qbty; qc)m

(
−qc(

b+1
2 )−a(c+1

2 )−t(b2−ac) (−x)c

(−y)b
, qc(b

2−ac), z1

)
.

(2.3)
Following [14], we use the term “generic” to mean that the parameters do not cause poles in the
Appell-Lerch sums or in the quotients of theta functions.

Theorem 2.1 ([14], Theorem 1.3). Let n and p be positive integers with (n, p) = 1. For generic
x, y ∈ C∗,

fn,n+p,n(x, y, q) = gn,n+p,n(x, y, q,−1,−1) +
1

J0,np(2n+p)

θn,p(x, y, q),
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where

θn,p(x, y, q) :=

p−1∑
r∗=0

p−1∑
s∗=0

qn(r−(n−1)/2
2 )+(n+p)(r−(n−1)/2)(s+(n+1)/2)+n(s+(n+1)/2

2 )(−x)r−(n−1)/2

×
(−y)s+(n+1)/2J3

p2(2n+p)j(−q
np(s−r) xn

yn ; qnp
2
)j(qp(2n+p)(r+s)+p(n+p)(xy)p; qp

2(2n+p))

j(qp(2n+p)r+p(n+p)/2 (−y)n+p

(−x)n , qp(2n+p)s+p(n+p)/2 (−x)n+p

(−y)n ; qp2(2n+p))
.

Here, r := r∗ + {(n− 1)/2} and s := s∗ + {(n− 1)/2} with 0 ≤ {α} < 1 denoting the fractional
part of α.

We can now prove Theorem 1.2.

Proof of Theorem 1.2. The first step is to recognize BN (q) in a different context. For N ≥ 1,

consider the string function of level N of the affine Lie algebra A
(1)
1 (e.g., see [12, 15])

CNm,`(q) =
q

m2−`2

4N

(q)∞

∑
n∈ZN−1

≥0
m+`
2N

+(C−1n)1∈Z

qnC
−1(n−e`)T

(q)n1 · · · (q)nN−1

, (2.4)

where n = (n1, . . . , nN−1), ei is the i-th standard unit vector in ZN−1 (with e0 = eN = 0), C is
the AN−1 Cartan matrix whose inverse C−1 is given by

(C−1)i,j = min(i, j)− ij

N
,

and (C−1n)1 is the first entry in the vector C−1n. A straightforward computation (see the proof
of Theorem 6 in [2]) yields

BN (q) =
∑

n∈ZN−1
≥0

(C−1n)1∈Z

qnC
−1nT

(q)n1 · · · (q)nN−1

. (2.5)

Comparing (2.4) when ` = 0 and m is divisible by 2N with (2.5), we have for all N ≥ 2,

BN (q) = q
−m2

4N (q)∞CNm,0(q). (2.6)

Next, by Example 1.3 on page 386 of [14], we have

CNm,0(q) =
1

(q)3∞
f1,N+1,1(q

1+m/2, q1−m/2, q).

Thus from (2.6), we deduce that for all N ≥ 2 and m divisible by 2N ,

BN (q) =
q

−m2

4N

(q)2∞
f1,N+1,1(q

1+m/2, q1−m/2, q). (2.7)

By Theorem 2.1, we have
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f1,N+1,1(q
1+m/2, q1−m/2, q) = g1,N+1,1(q

1+m/2, q1−m/2, q,−1,−1)

+
1

J0,N(N+2)

θ1,N (q1+m/2, q1−m/2, q).

Now, observe that

g1,N+1,1(q
1+m/2, q1−m/2, q,−1,−1) = 0

as there are no poles in the Appell-Lerch series

m(qN(N+1)/2+m(N+2)/2, qN(N+2),−1)

and

m(qN(N+1)/2−m(N+2)/2, qN(N+2),−1)

(indeed, this is true whenever m(N + 2)/2 6≡ ±N(N + 1)/2 (mod N(N + 2)), which is always

the case when m ≡ 0 (mod 2N)) and j(q1+m/2; q) = j(q1−m/2; q) = 0. Thus,

BN (q) =
q

−m2

4N

(q)2∞J0,N(N+2)

θ1,N (q1+m/2, q1−m/2, q).

We now take m = 0. The factor q
−m2

4N disappears and θ1,N (q, q, q) is given as in (1.4). This
proves the result.

�

3. Concluding remarks

There are several avenues for further study. First, Table 1 suggests that as N → ∞, the
limiting value of BN (q) is strictly larger than (q)∞. This contradicts [2, Corollary 11, (2)].
Thus, it would be desirable to compute both asymptotics for BN (q) and the correct limiting
value of ψ(n, k, q,N) as N → ∞. Second, for N = 2, 3 and 4, one can reduce the number of
products of quotients of theta functions occurring in Theorem 1.2 by first invoking Theorems 1.9–
1.11 in [14], then performing routine (yet possibly involved) simplifications [6]. In these cases,
we require that m ≡ 0 (mod 2N), m 6≡ 0 (mod N(N + 2)) and, if m is odd, m 6≡ ±(N + 1)
(mod 2(N + 2)). For example, one can recover (1.3) in this manner. The details are left to the
interested reader. Third, given that (2.6) is a key step in the proof of Theorem 1.2, it is natural
to wonder if string functions which generalize (2.4) (see [9, 11]) can also be realized in terms
of computing an appropriate probability. Finally, can Theorem 1.2 be understood via Markov
chains, group theory or, possibly, Hall-Littlewood functions [16]?
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