A ¢-MULTISUM IDENTITY ARISING FROM FINITE CHAIN RING
PROBABILITIES
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ABSTRACT. In this note, we prove a general identity between a g-multisum By (q) and a sum
of N? products of quotients of theta functions. The g-multisum By(q) recently arose in the
computation of a probability involving modules over finite chain rings.

1. INTRODUCTION

Probabilistic proofs of classical g-series identities constitute an intriguing part of the litera-
ture in combinatorics. A prominent example of this perspective concerns the Andrews-Gordon
identities [1, 8] which state for 1 <i <k and k > 2

NZ+-+N2_ +Ni++Np_q

q B = 1
2 - 1 5

N1, yp—1 >0 e (q)nk

s#0,+¢ (mod 2k+1)

where Nj = nj + --- 4+ nj_1. Here and throughout, we use the standard ¢-hypergeometric (or
“g-Pochhammer symbol”) notation

n—1

(a)n = (a;9)n = [ ] (1 - ad®),

k=0

valid for n € NU {co}. In [7], Fulman uses a Markov chain on the nonnegative integers to prove
the extreme cases ¢ = 1 and ¢ = k of (1.1). Chapman [3] cleverly extends Fulman’s methods
to prove (1.1) in full generality. In [4], Cohen explicitly computes probability laws of p’-ranks
of finite abelian groups to give a group-theoretic proof of (1.1). For a generalization of this
computation, see [5]. In this note, we are interested in a recent probability computation with a
ring-theoretic flavor as it leads to an expression similar to the left-hand side of (1.1).

Let R be a finite chain ring with radical N, ¢ be the order of the residue field R/N and
N be the index of nilpotency of N (for further details, see Section 2 in [10]). Recently, the
authors of [2] expressed the density ¥ (n, k, g, N) of free submodules M of R™ (over R) of type
k = logg|(|M[) as n — oo as the reciprocal of the g-multisum (replacing 1/q in their notation
with ¢)
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K2+ +K2%—(Kay++Ky)?/N

By(g)= . ¢

Ka,..,.KN>0 (@ks - (Q)k;N
N|Kz++Ky

, (1.2)

where N > 2 is an integer and K; = 2322 kj. Upper and lower bounds for By (q) are obtained
and then used to show (under suitable conditions) that ¥ (n,k,q,N) is at least 1 — € where
0 < e <1 (see Theorems 7 and 9, respectively, in [2]). Moreover, we have

oo

1
By(q) = H T4 (1.3)
=2 434445 (mod 16)
which is (S.83) in [13]. In view of (1.1) and (1.3), the authors in [2] posed the following (slightly
rewritten) problem.

Problem 1.1. Determine whether By(q) can be expressed as a product of q-Pochhammer sym-
bols.

The purpose of this note is to solve Problem 1.1. It turns out that the solution is slightly
more involved than either (1.1) or (1.3), namely By(q) is a sum of N? products of quotients
of theta functions (but not a single product of g-Pochhammer symbols, for general N). Before
stating our main result, we recall some further standard notation:

3 (@5 q) = (2)o0(4/2) 00 () o0,
J(@1, @2, w0 q) = J(2159)5 (22 9) -+ 3 (@3 q),
Jam = 7(q";:¢™),
Jam = 7(—q%q™),
I = Jm,Sm = (qm; qm)oo-
Note that these quantities are products of g-Pochhammer symbols. Our main result is now the
following.

Theorem 1.2. For all N > 2, we have

N-1N-1 (_1)r+s+1q(;)+(S§1)+r(s+1)(1\/+1)+r+s+1J3

_ 1 N2(N+2)
BN ) = (o Tamovs 2 2 H(C L) N NN, V) -4)
j(_qN(sfr); qN2)j(qN(N+2)(r+s)+N(N+3); qN2(N+2))

X G(—1)NgNNF2)s+N(N+3)/2, (N2 (N+2))
Formula (1.4) is very efficient in practice for computing explicit values of By(q). Indeed,
contrarily to (1.2) which requires computing a (N — 1)-fold sum, (1.4) only involves a double
sum. As a comparison with Table 1 in [2], we compute By(q) for 2 < N <10 and N = 100 and
1/q = 2,3,5,7,11 to five decimals with Maple using (1.4). Table 1 below suggests that when
g — 0, the limiting value of By(q) is 1. This statement is confirmed in [2, Corollary 11, (1)].
The paper is organized as follows. In Section 2, we recall one of the main results from [14],
then prove Theorem 1.2. In Section 3, we make some concluding remarks.
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N\ 1/q] 2 3 5 7 11

0.59546 | 0.84191 | 0.95049 | 0.97627 | 0.99092
0.47084 | 0.79666 | 0.94102 | 0.97295 | 0.99010
0.42109 | 0.78230 | 0.93915 | 0.97248 | 0.99002
0.39877 | 0.77759 | 0.93877 | 0.97241 | 0.99002
0.38819 | 0.77603 | 0.93870 | 0.97240 | 0.99002
0.38304 | 0.77551 | 0.93868 | 0.97240 | 0.99002
0.38050 | 0.77533 | 0.93868 | 0.97240 | 0.99002
0.37924 | 0.77528 | 0.93868 | 0.97240 | 0.99002
0.37861 | 0.77526 | 0.93868 | 0.97240 | 0.99002

| 100 [0.37798 | 0.77525 | 0.93868 | 0.97240 | 0.99002 |

’ (@)oo ‘ 0.28879 ‘ 0.56013 ‘ 0.76033 ‘ 0.83680 ‘ 0.90083 ‘
TABLE 1. Values of By(q)

OO J| O O = WD

—
o

2. PROOF OF THEOREM 1.2

Before the proof of Theorem 1.2, we need to recall some background from the important work
of Hickerson and Mortenson [14]. First, we employ the Hecke-type series

fape(®,y,q) (Z Z) 1)y Hrste(z), (2.1)

r,s>0 7,s<0

Next, consider the Appell-Lerch series

-1 (;)Zr
m(x,q,z) == - 1 Z( D) qf , (2.2)

i(z9) b 1—q ez

where z, z € C* := C\ {0} with neither z nor zz an integral power of ¢ in order to avoid poles.
One of the main results in [14] expresses (2.1) in terms of (2.2). Let

a—1 a
Gape(@,y,0,21,20) = > (—y) ¢ (" qa)m<—q“(bgl)_c(agl)_t(bk“) E:i))b g0, Zo)
t=0
c—1 c
+ 30 (=) C)j(gys gy (g5 o)) E_xib g 2
—y
t=0

(2.3)
Following [14], we use the term “generic” to mean that the parameters do not cause poles in the
Appell-Lerch sums or in the quotients of theta functions.

Theorem 2.1 ([14], Theorem 1.3). Let n and p be positive integers with (n,p) = 1. For generic
z,y € C,
1

fn,n-i—p,n(xa Y, Q) = gn,n+p,n(x7 Y,4q, _]-7 _1) + fien,p(x7 Y, Q)7
0,np(2n-+p)
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where
p—1 p—1
bupzy )= > ¢"(" O B ) (= (n=1)2) (s (1) /240 (OS2 (= (n1) /2
r*=0s*=0
§ ( y)s+(n+1)/2J32(2n+p)j< qnp(s ) n7qnp )] (qp(2n+p)(r+s)+p(n+p) (xy)p,qp2(2n+p))
. —y)n+ —z)nt+ :
j(qp(2n+p)r+p(n+p)/27((fl)np,qp(2n+p)s+p(n+p)/27(( L) b 2(2n+p))

Here, r:==7*+{(n—1)/2} and s := s* + {(n—1)/2} with 0 < {a} < 1 denoting the fractional
part of a.

We can now prove Theorem 1.2.

Proof of Theorem 1.2. The first step is to recognize By(q) in a different context. For N > 1,
consider the string function of level N of the affine Lie algebra Agl) (e.g., see [12, 15])

qmi;{ﬂ an—l(n—eg)T
e - > | 20
(@)oo N1 Dy ( Dy
n€Z>O
mtL4(Cn) €2
where n = (ny,...,nx_1), €; is the i-th standard unit vector in ZV~! (with ey = ey = 0), C' is

the Ay_; Cartan matrix whose inverse C~! is given by

ij

Na

and (C~'n)y is the first entry in the vector C~'n. A straightforward computation (see the proof
of Theorem 6 in [2]) yields

(C™Y);; = min(4, j) —

nC~nT

By(g)= > 1 . (2.5)

nGZN 1 (Q)nl T (q)nN_l
(c—1 )1€Z
Comparing (2.4) when ¢ = 0 and m is divisible by 2N with (2.5), we have for all N > 2,

2
By(q) = ¢ (9)ocCpr 0(9)- (2.6)
Next, by Example 1.3 on page 386 of [14], we have

1 _
mo(a) = (QTfl,NH,l(qu/Q,ql ™2 ).

oo

Thus from (2.6), we deduce that for all N > 2 and m divisible by 2N,

»

—_m*
q T4AN

By(q) = TE —5fin+11(g

[e.9]

/2 glemi2 ). (2.7)

By Theorem 2.1, we have
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fl,N+l,1 (q1+m/27 qlim/27 Q) = gl,NJrl,l (q1+m/27 qlim/Qa q, _17 _1)
1 _
+ —701,N(q1+m/27 ql m/27 Q)
Jo,N(N+2)

Now, observe that

91,N+1,1(q1+m/27 qlim/Qa q, _17 _1) =

as there are no poles in the Appell-Lerch series

77,L(qN(N+1)/2-i-m(N—i—2)/27 qN(N+2)’ _1)

and

m(gN(NHD/2-m(N+2)/2 (N(N+2) 1)
(indeed, this is true whenever m(N +2)/2 # +N(N + 1)/2 (mod N (N + 2)), which is always
the case when m =0 (mod 2N)) and j(¢'*™/2;q) = j(¢'~™/%;q) = 0. Thus,

2

—_m_
q4N

By (q) = 01 v (g T2 g mm2 ).

(Q)gojO,N(N+2)

2
We now take m = 0. The factor ¢~ disappears and 61 n(q,q,q) is given as in (1.4). This
proves the result.
O

3. CONCLUDING REMARKS

There are several avenues for further study. First, Table 1 suggests that as N — oo, the
limiting value of By(q) is strictly larger than (q)s. This contradicts [2, Corollary 11, (2)].
Thus, it would be desirable to compute both asymptotics for By(g) and the correct limiting
value of i(n,k,q,N) as N — oo. Second, for N = 2, 3 and 4, one can reduce the number of
products of quotients of theta functions occurring in Theorem 1.2 by first invoking Theorems 1.9—
1.11 in [14], then performing routine (yet possibly involved) simplifications [6]. In these cases,
we require that m = 0 (mod 2N), m # 0 (mod N(N + 2)) and, if m is odd, m # £(N + 1)
(mod 2(N + 2)). For example, one can recover (1.3) in this manner. The details are left to the
interested reader. Third, given that (2.6) is a key step in the proof of Theorem 1.2, it is natural
to wonder if string functions which generalize (2.4) (see [9, 11]) can also be realized in terms
of computing an appropriate probability. Finally, can Theorem 1.2 be understood via Markov
chains, group theory or, possibly, Hall-Littlewood functions [16]?

ACKNOWLEDGEMENTS

The authors thank Ole Warnaar for pointing out references [9, 11, 12]. The first author
was partially supported by ANR COMBINé ANR-19-CE48-0011 and the Impulsion grant of
IdexLyon. The second author was partially supported by Enterprise Ireland CS20212030.



6 JEHANNE DOUSSE AND ROBERT OSBURN

REFERENCES

[1] G.E. Andrews, An analytic generalization of the Rogers-Ramanujan identities for odd moduli, Proc. Nat.
Acad. Sci. U.S.A. 74 (1974), 4082-4085.

[2] E. Byrne, A-L Horlemann, K. Khathuria and V. Weger, Density of free modules over finite chain rings,
available at https://arxiv.org/abs/2106.09403

[3] R. Chapman, A probabilistic proof of the Andrews-Gordon identities, Discrete Math. 290 (2005), no. 1,
79-84.

[4] H. Cohen, On the p*-rank of finite abelian groups and Andrews’ generalization of the Rogers-Ramanujan
identities, Nederl. Akad. Wetensch. Indag. Math. 47 (1985), no. 4, 377-383.

[5] C. Delaunay, Averages of groups involving p‘-rank and combinatorial identities, J. Number Theory 131
(2011), no. 3, 536-551.

[6] J. Frye, F.G. Garvan, Automatic proof of theta-function identities, Elliptic integrals, elliptic functions and
modular forms in quantum field theory, 195-258, Texts Monogr. Symbol. Comput., Springer, Cham, 2019.

[7] J. Fulman, A probabilistic proof of the Rogers-Ramanujan identities, Bull. London Math. Soc. 33 (2001),

no. 4, 397-407.
[8] B. Gordon, A combinatorial generalization of the Rogers-Ramanujan identities, Amer. J. Math. 83 (1961),
393-399.

[9] G. Hatayama, A.N. Kirillov, A.. Kuniba, M. Okado, T. Takagi and Y. Yamada, Character formulae of
s/l;-modules and inhomogeneous paths, Nuclear Phys. B 536 (1999), no. 3, 575-616.

[10] T. Honold, I. Landjev, Linear codes over finite chain rings, Electron. J. Combin. 7 (2000), Research Paper
11, 22pp.

[11] A. Kuniba, T. Nakanishi and J. Suzuki, Characters in conformal field theories from thermodynamic Bethe
ansatz, Modern Phys. Lett. A 8 (1993), no. 18, 1649-1659.

[12] J. Lepowsky, M. Prime, Structure of the standard modules for the affine Lie algebra Agl), Contemporary
Mathematics, 46. American Mathematical Society, Providence, RI, 1985.

[13] J. McLaughlin, A. Sills and P. Zimmer, Rogers-Ramanujan-Slater type identities, Electron. J. Combin. 15
(1998), Dynamic Surveys 15, 59pp.

[14] E. Mortenson, D. Hickerson, Hecke-type double sums, Appell-Lerch sums, and mock theta functions, I, Proc.
Lond. Math. Soc. (3) 109 (2014), no. 2, 382-422.

[15] A. Schilling, O. Warnaar, Conjugate Bailey pairs: from configuration sums to fractional-level string functions
to Bailey’s lemma, Recent developments in infinite-dimensional Lie algebras and conformal field theory
(Charlottesville, VA, 2000), 227-255, Contemp. Math., 297, Amer. Math. Soc., Providence, RI, 2002.

[16] J. Stembridge, Hall-Littlewood functions, plane partitions, and the Rogers-Ramanujan identities, Trans.
Amer. Math. Soc. 319 (1990), no. 2, 469-498.

UNiv LyonN, CNRS, UNIVERSITE CLAUDE BERNARD LyonN 1, UMR5208, INSTITUT CAMILLE JORDAN, F-
69622 VILLEURBANNE, FRANCE

SCHOOL OF MATHEMATICS AND STATISTICS, UNIVERSITY COLLEGE DUBLIN, BELFIELD, DUBLIN 4, IRELAND
Email address: dousse@math.cnrs.fr
Email address: robert.osburn@ucd.ie



