
MST 10010: Calculus I

Exercise Set 5

Do only the following problems:

Section 4.1 (pages 284-285): 5, 7, 9, 13, 15, 17, 19, 21, 23, 25, 31, 33, 35, 37, 41, 43, 45, 47,
49, 51, 53, 55, 57, 59, 61, 63.

Section 4.2 (pages 289-289): 1, 3, 5, 7, 9, 13, 15, 17, 23, 25

Section 4.3 (pages 302-304): 3, 5, 7, 11, 13, 15, 17, 19, 21 and 23 (just use the First Derivative
Test), 25, 27, 29 (a)-(d), 31, 33, 35, 37, 39 (a)-(c), 43, 45 (a)-(d).

Section 4.5 (pages 321-322): 1, 3, 5, 7, 9, 11, 13, 15, 27, 45.

Section 4.4 (pages 311-312): 5, 9, 13, 17, 21, 25, 29, 33, 37, 41, 45, 49, 53, 57, 61.

Section 4.9 (page 349): 5, 7, 9, 11, 13.







288 CHAPTER 4 APPLICATIONS OF DIFFERENTIATION

Since for all , we have , and so Equation 6 becomes

Therefore has the same value at any two numbers and in . This means that
is constant on .

Corollary If for all in an interval , then is constant
on ; that is, where is a constant.

PROOF Let . Then

for all in . Thus, by Theorem 5, is constant; that is, is constant.

NOTE Care must be taken in applying Theorem 5. Let

The domain of is and for all in . But is obviously not a
constant function. This does not contradict Theorem 5 because is not an interval. Notice
that is constant on the interval and also on the interval .

Prove the identity .

SOLUTION Although calculus isn’t needed to prove this identity, the proof using calculus
is quite simple. If , then

for all values of . Therefore , a constant. To determine the value of , we put
[because we can evaluate exactly]. Then

Thus .

EXAMPLE 6

7

tan!1x " cot!1x ! #!2

C ! f "1# ! tan!1 1 " cot!1 1 !
#

4
"

#

4
!

#

2

f "1#x ! 1
Cf "x# ! Cx

f $"x# !
1

1 " x 2 !
1

1 " x 2 ! 0

f "x# ! tan!1x " cot!1x

tan!1x " cot!1x ! #!2

"!%, 0#"0, %#f
D

fDxf $"x# ! 0D ! $x % x " 0&f

f "x# !
x

% x % ! '1
!1

if x & 0
if x ' 0

f ! tF"a, b#x

F$"x# ! f $"x# ! t$"x# ! 0

F"x# ! f "x# ! t"x#

cf "x# ! t"x# " c"a, b#
f ! t"a, b#xf $"x# ! t$"x#

"a, b#
f"a, b#x2x1f

f "x2 # ! f "x1#orf "x2 # ! f "x1# ! 0

f $"c# ! 0xf $"x# ! 0

1–4 Verify that the function satisfies the three hypotheses of
Rolle’s Theorem on the given interval. Then find all numbers that
satisfy the conclusion of Rolle’s Theorem.

1.

2.

3. f "x# ! sx ! 1
3 x, (0, 9)

(0, 3)f "x# ! x 3 ! x 2 ! 6x " 2,

(1, 3)f "x# ! 5 ! 12x " 3x 2,

c
4.

5. Let . Show that but there is no
number in such that . Why does this not
contradict Rolle’s Theorem?

6. Let . Show that but there is no 
number in such that . Why does this not con-
tradict Rolle’s Theorem?

f "x# ! cos 2x, (#!8, 7#!8)

c "0, ## f $"c# ! 0
f "x# ! tan x f "0# ! f "##

c "!1, 1# f $"c# ! 0
f "!1# ! f "1#f "x# ! 1 ! x 2!3

4.2 Exercises

; Graphing calculator or computer required 1. Homework Hints available at stewartcalculus.com
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SECTION 4.2 THE MEAN VALUE THEOREM 289

7. Use the graph of to estimate the values of that satisfy the
conclusion of the Mean Value Theorem for the interval .

8. Use the graph of given in Exercise 7 to estimate the values
of that satisfy the conclusion of the Mean Value Theorem
for the interval .

9–12 Verify that the function satisfies the hypotheses of the Mean
Value Theorem on the given interval. Then find all numbers
that satisfy the conclusion of the Mean Value Theorem.

9. ,  

10. ,  

11. ,  

12. ,  

; 13–14 Find the number that satisfies the conclusion of the
Mean Value Theorem on the given interval. Graph the function,
the secant line through the endpoints, and the tangent line at

. Are the secant line and the tangent line parallel?

13. ,  14. ,  

15. Let . Show that there is no value of in
such that . Why does this

not contradict the Mean Value Theorem?

16. Let . Show that there is no value of
such that . Why does this not con-
tradict the Mean Value Theorem?

17–18 Show that the equation has exactly one real root.

17. 18.

19. Show that the equation has at most one
root in the interval .

20. Show that the equation has at most two 
real roots.

21. (a) Show that a polynomial of degree 3 has at most three 
real roots.

(b) Show that a polynomial of degree has at most real
roots.

22. (a) Suppose that is differentiable on and has two roots.
Show that has at least one root.f !

!f

nn

x 4 " 4x " c ! 0

!#2, 2"
x 3 # 15x " c ! 0

x 3 " e x ! 02x " cos x ! 0

f #3$ # f #0$ ! f !#c$#3 # 0$
cf #x$ ! 2 # %2x # 1%

f #4$ # f #1$ ! f !#c$#4 # 1$#1, 4$
cf #x$ ! #x # 3$#2

!0, 2"f #x$ ! e#x!0, 4"f #x$ ! sx

#c, f #c$$

c

!1, 3"f #x$ ! 1&x

!1, 4"f #x$ ! ln x

!#2, 2"f #x$ ! x 3 # 3x " 2

!0, 2"f #x$ ! 2x 2 # 3x " 1

c

!1, 7"
c

f

y

y =ƒ

1

x0 1

!0, 8"
f c (b) Suppose is twice differentiable on and has three

roots. Show that has at least one real root.
(c) Can you generalize parts (a) and (b)?

23. If and for , how small can
possibly be?

24. Suppose that for all values of . Show that
.

25. Does there exist a function such that , ,
and for all ?

26. Suppose that and are continuous on and differ-
enti able on . Suppose also that and

for . Prove that . [Hint:
Apply the Mean Value Theorem to the function .]

27. Show that if .

28. Suppose is an odd function and is differentiable every-
where. Prove that for every positive number , there exists 
a number in such that .

29. Use the Mean Value Theorem to prove the inequality

30. If (c a constant) for all , use Corollary 7 to show
that for some constant .

31. Let and

Show that for all in their domains. Can we
conclude from Corollary 7 that is constant?

32. Use the method of Example 6 to prove the identity 

33. Prove the identity

34. At 2:00 PM a car’s speedometer reads 30 mi&h. At 2:10 PM it
reads 50 mi&h. Show that at some time between 2:00 and
2:10 the acceleration is exactly 120 mi&h .

35. Two runners start a race at the same time and finish in a tie.
Prove that at some time during the race they have the same
speed. [Hint: Consider , where and are
the position functions of the two runners.]

36. A number a is called a fixed point of a function if
. Prove that if for all real numbers x, then

has at most one fixed point.f
f !#x$ " 1f #a$ ! a

f

htf #t$ ! t#t$ # h#t$

2

arcsin
x # 1
x " 1

! 2 arctan sx #
$

2

x % 02 sin#1x ! cos#1#1 # 2x 2 $

f # t
xf !#x$ ! t!#x$

t#x$ !

1
x

1 "
1
x

if

if

x & 0

x ' 0

f #x$ ! 1&x

df #x$ ! cx " d
xf !#x$ ! c

for all a and b% sin a # sin b % ( % a # b %

f !#c$ ! f #b$&b##b, b$c
b

f

x & 0s1 " x ' 1 " 1
2 x

h ! f # t
f #b$ ' t#b$a ' x ' bf !#x$ ' t!#x$

f #a$ ! t#a$#a, b$
!a, b"tf

xf !#x$ ( 2
f #2$ ! 4f #0$ ! #1f

18 ( f #8$ # f #2$ ( 30
x3 ( f !#x$ ( 5

f #4$
1 ( x ( 4f !#x$ % 2f #1$ ! 10

f )
!f
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