$$
\sum_{x \to \infty} x
$$
 $\lim_{x \to \infty} \frac{e^x}{x^2} = \frac{\infty}{\infty} = \frac{\lim_{x \to \infty} e^x}{\lim_{x \to \infty} 2x} = \frac{\infty}{\infty}$

$$
\frac{1}{2}
$$

$$
\frac{1
$$

$$
\frac{2}{x} + \frac{1}{x} \ln e^{-x} \ln(x) = e^{-x} \ln(\omega) = 0.00
$$
\n
$$
\frac{2}{x} \cdot \frac{1}{x} \cdot \frac{2x}{x} = \frac{1}{x} \cdot \frac{1}{x} \cdot \frac{1}{x} \cdot \frac{1}{x} = \frac{1}{x} \cdot \frac{1
$$

00-00: Rewrite expression in the form $\frac{\infty}{\infty}$ or $\frac{\infty}{\infty}$ i use L'Uspital E_X : $\lim_{x\to 1^+} (\frac{1}{\ln(x)} - \frac{1}{x-1})$ $(=\frac{1}{0} - \frac{1}{0} = \infty - \infty)$

$$
= \lim_{x \to 1^{+}} \left(\frac{x-1}{\ln(x)(x-1)} - \frac{\ln(x)}{\ln(x)(x-1)} \right)
$$

\n
$$
= \lim_{x \to 1^{+}} \frac{(x-1) - \ln(x)}{\ln(x)(x-1)} \left(= \frac{0}{0} \right)
$$

\n
$$
= \lim_{x \to 1^{+}} \frac{1 - \frac{1}{x}}{\ln(x)(1) + (\frac{1}{x})(x-1)}
$$

\n
$$
= \lim_{x \to 1^{+}} \frac{1 - \frac{1}{x}}{\ln(x)(1) + (\frac{1}{x})(x-1)}
$$

\n
$$
= \lim_{x \to 1^{+}} \frac{1 - \frac{1}{x}}{\ln(x)(1) + (\frac{1}{x})(x-1)}
$$

\n
$$
= \lim_{x \to 1^{+}} \frac{1 - \frac{1}{x}}{\ln(x)(1) + (\frac{1}{x})(x-1)}
$$

\n
$$
= \lim_{x \to 1^{+}} \frac{1 - \frac{1}{x}}{\ln(x)(1) + (\frac{1}{x})(x-1)}
$$

\n
$$
= \lim_{x \to 1^{+}} \frac{1 - \frac{1}{x}}{\ln(x)(1) + (\frac{1}{x})(x-1)}
$$

\n
$$
= \lim_{x \to 1^{+}} \frac{1 - \frac{1}{x}}{\ln(x)(1) + (\frac{1}{x})(x-1)}
$$

\n
$$
= \lim_{x \to 1^{+}} \frac{1 - \frac{1}{x}}{\ln(x)(1) + (\frac{1}{x})(x-1)}
$$

\n
$$
= \lim_{x \to 1^{+}} \frac{1 - \frac{1}{x}}{\ln(x)(1) + (\frac{1}{x})(x-1)}
$$

\n
$$
= \lim_{x \to 1^{+}} \frac{1 - \frac{1}{x}}{\ln(x)(1) + (\frac{1}{x})(x-1)}
$$

\n
$$
= \lim_{x \to 1^{+}} \frac{1 - \frac{1}{x}}{\ln(x)(1) + (\frac{1}{x})(x-1)}
$$

\n
$$
= \lim_{x \to 1^{+}} \frac{1 - \frac{1}{x}}{\ln(x)(1) + (\frac{1}{x})(x-1)}
$$

\n
$$
= \lim_{x \to
$$

① Let
$$
y = f_{(x)}^{3(x)}
$$
. Take the odd both sides do $3x^2$

\nAny $y = 3(x)$ kn(f(x))

\n② Limit of the RHS will be

\n① - ∞, ∞.0. Rewrite the $y + 1$

\n④ or $\frac{∞}{∞}$

\n③ We L'Hs y if y be the odd.

\n① - ∞, ∞.0. Rewrite the y if y is the odd.

\n① - ∞, $\frac{∞}{∞}$

\n③ - ∞, $\frac{∞}{∞}$

\n③ - √ √ ∂

\n③ - √ √ ∂

\n① - ∑

\n② - √ √ √

\n① - ∞, ∞.0. Rewrite the y if y is the odd.

\n① - √

\n① - √

\n① - √

\n① - √

\n② - √

\n③ - √

\n③ - √

\n③ - √

\n③ - √

\n② - √

\n① - ∼

\n② - √

\n② - √

\n① - √

\n② - √

\n② - √

\n③ - √

\n③ - √

\n② - √

\n② - √

\n② - ∼

\n① - ∼

\n② - ∼

\n② - ∼

\n③ - √

\n② - √

\n③ - √

\n③ - √

\n① - ∼

\n① - ∼

\n① - √

\n③ - √

\n① - √

\n① - √

\n① - √

\n① - √

$$
L = lim_{x\to\infty} (e^{x} + x)^{\frac{1}{x}} = \int ln(L) = lim_{x\to\infty} \frac{1}{x} ln(e^{x} + x)
$$

$$
x \rightarrow \infty
$$

= $\int_{x \rightarrow \infty} ln(e^{x} + x)$ $(= \frac{\infty}{\infty})$ $\frac{L'U}{=lim_{x \rightarrow \infty}} \frac{e^{x} + 1}{e^{x} + x}$

$$
(=\frac{\infty}{\infty})\stackrel{L'H}{=}lim_{x\to\infty}\frac{e^{x}}{e^{x}+1}= \frac{\infty}{\infty}\bigg)=lim_{x\to\infty}\frac{e^{x}}{e^{x}}
$$

$$
= \lim_{x \to \infty} 1 = 1 = ln (L)
$$

$$
=
$$
 $\begin{vmatrix} e = e^{x} = e^{t_{m}(L)} = \lim_{x \to \infty} (e^{x} + x)^{1/x} \\ 0 \end{vmatrix}$

$$
\sum_{x=0}^{x} x e^{ix} e^{ix} = \lim_{x \to 0^{+}} x^{x} \qquad (x = 1)
$$

Q: Which is larger, e^{π} or π ^e?

 $Consider f(x) = x^{\frac{1}{x}}$ $f'(x)$: $y = x^{\frac{1}{x}}$ $ln(y) = ln(x^{\frac{1}{x}}) = \frac{1}{x} ln(x)$ $\frac{d}{dx}$
=> $\frac{y'}{y}$ = $\left(\frac{l_{n1}x_{1}}{x}\right)'$ = $\frac{l_{n1}x_{1}-1}{x^{2}}$ => $y' = y (\frac{ln(x)-1}{x^2}) = x^{\frac{1}{x}} lim(x)-1$ Where is this moximized? \bigcirc G e So e^{'re} is a meximum od $x^{\prime\prime}x$ $=5$ $e^{1/e}$ = $f(e)$ > $f(\pi) = \pi^{1/\pi}$ Rosse both sides to the etc power to \sim $\frac{1}{2}$...

$$
e^{\pi} = (e^{i\prime e})^{\pi e} > (\pi^{i\prime \pi})^{\pi e} = \pi^{e}
$$