Q: > Curve Sketching L'Hospital's Rule

Recall: Second Derivative Test for Concsivity
\nLet
$$
y = f(x)
$$
 be twice differentiable on I
\n 0 If $f''(x) > 0$ on I, f is concave up on I
\n 0 If $f''(x) > 0$ on I, f is concave down on I
\n $\sum x$: Graph $y=f(x)=x^3 + 6x^2 + 9x = x(x+3)^2$
\n $\sqrt[3]{e^2}$: Graph $y=f(x)=x^3 + 6x^2 + 9x = x(x+3)^2$
\n $\sqrt[3]{e^2}$: Domain: $(-\infty, \infty)$ H. A. : None
\n x -intercepts: $x = -3$, o Local Max: $(-3, f(-3))$
\n y -intercept: $y = 0$ Local Max: $(-1, f(-1))$
\nIncreasing: $(-\infty, -3)$ U(-1, $\infty)$
\n $f' = \frac{1}{1 - 1 - 1 + 1}$

$$
\frac{30!}{20!}
$$
 D_{emain} : $\gamma = \frac{x}{(x-3)(x+3)}$ = $\frac{1}{2}$ $D = 3$ 2 m m $3 \text{ or } +3$
 40 = $\frac{(-\infty, -3)(1-3,3)(13,0)}{2}$

$$
y_{\text{inferred}}
$$
 + $y = \frac{x}{x^{2}-9} = \frac{0}{0-9} = 0$ = > $y = 0$

$$
X\cdot \text{intercept}: O = \frac{X}{X^2-9} \Rightarrow O = X \Rightarrow \frac{X=0}{X}
$$

$$
H.A. \frac{1}{x+y} = 0 = \lim_{x \to \infty} \frac{x}{x^2-9} = 0 = \lim_{x \to \infty} \frac{x}{x^2-9} = 0
$$

Since $dy(x)=1 \le 2 = \frac{1}{3} \times 12 - 9$

V.A. : Then will occur when
$$
x^2-9 = (x-3)(x+3) = 0
$$

=> $x \pm 3$

$$
\lim_{x\to 3^{+}} \frac{x}{(x-3)(x+3)} = \frac{(p\circ i)}{(p\circ i)} = +\infty
$$
\n
$$
\lim_{x\to 3^{-}} \frac{x}{(x-3)(x+3)} = \frac{(p\circ i)}{(p\circ i)} = -\infty
$$
\n
$$
\lim_{x\to 3^{-}} \frac{x}{(x-3)(x+3)} = \frac{(p\circ i)}{(p\circ i)} = -\infty
$$
\n
$$
\lim_{x\to 3^{-}} \frac{x}{(x-3)(x+3)} = \frac{(p\circ i)}{(p\circ i)} = -\infty
$$
\n
$$
\lim_{x\to -3^{-}} \frac{x}{(x-3)(x+3)} = \frac{(p\circ i)}{(p\circ i)} = -\infty
$$
\n
$$
\lim_{x\to -3^{-}} \frac{x}{(x-3)(x+3)} = \frac{(p\circ i)}{(p\circ i)} = -\infty
$$
\n
$$
\lim_{x\to -3^{-}} \frac{x}{(x-3)(x+3)} = \frac{(p\circ i)}{(p\circ i)} = -\infty
$$

 $(X^2-9)^2$

 $(x^2 - 9)^2$

Indeterminate Forms & L'Hôpital's Rule

$$
\sum_{x=1}^{n} x \cdot \sum_{x=1}^{n} x^{n} y^{n} = \sum_{x=1
$$

$$
\lim_{x\to 1} \frac{(x+3)(x-1)}{(x-1)} = \lim_{x\to 1} x+3 = 1+3 = 4
$$

$$
\sum_{x \to 0}^{x} \frac{1}{x} \lim_{x \to 0} \frac{x + \tan(x)}{sin(x)} = \frac{9 \tan 3x}{9 + \tan (0)} = \frac{0}{0}.
$$
 Now what?

$$
\sum x : \lim_{x \to \infty} \frac{e^x}{x^2}
$$

$$
\frac{p\ln y + \ln y}{e^{\infty}} = \frac{\infty}{\infty}
$$

$$
\lim_{x \to \infty} \frac{e^x}{x^2} = \frac{\infty}{\infty}
$$

$$
\lim_{x \to \infty} \frac{e^x}{x^2} = \frac{\infty}{\infty}
$$

Idea: Use derivatives to calculate limits

Suppose
$$
f(x)
$$
 is $g(x)$ are differentiable functions
\n $f(x) = 0$ max a. Suppose
\n $\int \lim_{x \to c} f(x) = 0$ AND $\lim_{x \to c} g(x) = 0$
\n $\int \lim_{x \to c} f(x) = \frac{1}{\infty} \sin \frac{f'(x)}{x}$
\n $\int \lim_{x \to c} \frac{f(x)}{g(x)} = \lim_{x \to c} \frac{f'(x)}{g'(x)}$
\n $\int f'(x) = \lim_{x \to c} \frac{f(x)}{g'(x)} = \lim_{x \to c} \frac{f'(x)}{g'(x)}$
\n $\int f'(x) = \lim_{x \to c} \frac{f(x)}{g'(x)} = \lim_{x \to c} \frac{f'(x)}{g'(x)}$
\n $\int f'(x) = \lim_{x \to c} \frac{f(x)}{g'(x)} = \lim_{x \to c} \frac{f'(x)}{g'(x)}$
\n $\int f'(x) = \lim_{x \to c} \frac{f(x)}{g'(x)} = \lim_{x \to c} \frac{f(x)}{g'($