Q: -> Wrap up Mean Value Theorem
-> First Derivative Test for Maxs/Mins
Recall: Mean Value Theorem (MVT)
Suppose y=f(x) is continuous on closed (a,b)
i differentiable on open (a,b). Then there exists
at least one c in (a,b) with
f'(c) =
$$\frac{f(b) - f(a)}{b - a} = Average Value
f'(c) = $\frac{f(b) - f(a)}{b - a} = A f on (a,b)$
Some Consequences A MVT
- If f'(x)=0 at each x in open (a,b),
then f(x)=k for all x in [a,b] where $f(c)$
k is a constant $\frac{f(c) - f(a)}{b - a} = f'(c) = 0 \Rightarrow c f(a)$
A · If f'(x)=g'(x) for all x in open (a,b), &
then there exist a constant k with $f(c) = g'(x) + k$ for all x in [a,b] $f(c) = 0 = c + f(a)$
A · If f'(x)=g'(x) for all x in [a,b] $f(c) = 0 = c + f(a)$
A · If f'(x)=g'(x) for all x in [a,b] $f(c) = 0 = c + f(a)$
A · If f'(x)=g'(x) for all x in [a,b] $f(c) = 0 = c + f(a)$
A · If f(x)=g'(x) = b - all x in [a,b] $f(c) = 0 = c + f(a)$
A · If f(x)=g(x) + k for all x in [a,b] $f(c) = 0 = c + f(a) - f(c) = 0 = c + f(a)$
A · If f(x)=g'(x) = b - all x in [a,b] $f(c) = 0 = c + f(a) - f(a) = c + f(a) - f(a) = c + f(a) = c + f(a) - f(a) = c + f(a) = c + f(a) - f(a) = c + f(a) = f(a) = f(a) = c + f(a) = c + f(a) = c + f(a) = f(a) = c + f(a) = f(a$$$

When hooking at $f'(c) = \frac{f(b) - f(a)}{b - a}$, a < bwe see is b > a so b - a > 0 so the value of f(b) - f(a) tells us something about f'!

•
$$f(x)$$
 is increasing if $f(b) > f(a)$
 $\langle = > f'(c) = \frac{f(b) - f(a)}{b - a} > 0$

•
$$f(x)$$
 is decreasing if $f(b) < f(a)$
 $\chi = \int f'(c) = \frac{f(b) - f(a)}{b - a} < 0$

f(x) is increasing on I <=> f'(x)>0 on I
f(x) is decreasing on I <=> f'(x) <0 on I
where I = interval

Ex: Find where
$$f(x) = 3x^4 - 4x^3 - 12x^2 + 7$$

is increasing & where it is decreasing.

Sol: By above ideas, we need to see when f'(x) is >0 or <0.

$$f'(x) = 3 \cdot 4x^{3} - 4 \cdot 3x^{2} - 12 \cdot 2x + 0$$

= 12 x³ - 12 x² - 24 x

=> $f'(x) = 12 \times (x^2 - x - 2) = 12 \times (x - 2)(x + 1)$

() If f' changer from (-) to (+) at c,
then f has a local minimum at c
(3) If f' changer from (+) to (-) at c,
then f has a local maximum at c
(3) If f' despit change argen at c,
then f has no local extremum at c
e.g. fixed x³ wi f'(x) = 3x² i (° x=0,
f' does not change argen
Key: Use a sign chart
$$p = \frac{x^{3}c}{-\frac{1}{c} + \frac{1}{c} - \frac{1}{c} + \frac{1}{c}}$$

e.g. fixed a sign chart $p = \frac{x^{3}c}{-\frac{1}{c} + \frac{1}{c} - \frac{1}{c} + \frac{1}{c}}$
is increasing or decreasing. Find local maxs mind.
 $\frac{301:}{1} f'(x) = \frac{(1+x)^{3}}{(1+x)^{2}} = \frac{1-x}{(1+x)^{3}}$

Critical Points:
$$f'(x) = 0$$
 when $1 - x = 0$
 $= 5 \quad x = 1$
 $f'(x) DNE$ when $(1 + x)^{3} = 0 = 5 \quad 1 + x = 0$
 $= 5 \quad x = -1$
Sign Chart $(-\infty, -1) \quad (-1, 1) \quad (1, \infty)$
 $1 - x \quad + \quad + \quad + \quad -$
 $(1 + x)^{3} \quad - \quad + \quad + \quad +$
 $f' = \frac{(1 - x)}{(1 + x)^{3}} \quad - \quad + \quad + \quad -$

Ef has Local max @ X=1 BUT No min @ X=-1 since f is NOT DEFINED there!

Local Max:
$$f(1) = \frac{1}{4} = \frac{1}{(1+1)^2}$$