
RESURGENCE, HABIRO ELEMENTS AND STRANGE IDENTITIES

SAMUEL CREW, VERONICA FANTINI, ANKUSH GOSWAMI, ROBERT OSBURN,
AND CAMPBELL WHEELER

Abstract. We prove resurgence properties for the Borel transform of a formal power series
associated to elements in the Habiro ring that come from radial limits of partial theta series via
strange identities. As an application, we prove a conjecture in quantum topology due to Costin
and Garoufalidis for two families of torus knots.

1. Introduction

The modern theory of resurgence began with the voluminous works of Écalle in 1981 [16,17]
and 1985 [18]. This theory now plays a vital rôle in a remarkable number of diverse areas, to
name just a few examples: nonlinear systems of ODEs and difference equations [11,42], algebraic
combinatorics [9,10], enumerative combinatorics and quantum field theory [8,46], period integrals
and string theory scattering amplitudes [15], wall-crossing phenomena [43] and matrix models
[48]. In this paper, we are interested in a conjecture due to Costin and Garoufalidis [13] which
connects resurgence and quantum topology. For other such interactions, see [3, 19, 24–26] and
the references therein.

Let us recall the general setup from [13]. For further details, see [12,14,47,49] or [52, Section
2] for an excellent concise review of the basic notions of resurgence and alien calculus. A formal
power series

F(x) =

∞∑
n=0

anx
−n ∈ C[[1/x]] (1.1)

is called Gevrey-1 if there exists positive real numbers A, B such that

|an| ≤ ABnn!

for all n ≥ 0. Consider a Gevrey-1 formal power series given by (1.1) and its Borel transform
B : C[[1/x]] −→ C[[p]] defined by

B

( ∞∑
n=0

anx
−n

)
= a0δ +

∞∑
n=1

an
pn−1

(n− 1)!
=: a0δ +G(p) (1.2)

where δ is a formal symbol that has Laplace transform given by the constant function 1. For
simplicity, we write B[F ](p) for the transform (1.2). Here, G(p) has a positive radius of conver-
gence as it arose from a Gevrey-1 power series. In a standard abuse of notation, G(p) denotes the
formal power series in (1.2) (and is also commonly referred to in the literature as the Borel trans-
form of F(x)) and the analytic continuation of the associated germ at the origin. In addition,
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G(p) is called a resurgent function if it is endlessly analytically continuable [49]. This property
means G(p) extends to a (possibly multi-valued) holomorphic function along unbounded paths
that need only circumvent a discrete set of singularities. In the present work, we consider the
case where G(p) defines a multi-valued function on C \N , with N a discrete set of singularities

lying on the ray R>0, e.g., N =
{
n2π2

6 : n ∈ Z>0

}
.

Assuming G(p) satisfies suitable growth conditions, the left and right Borel resummations of
F(x) are defined as

S+[F ](x) =

∫
γl

e−pxB[F ](p) dp

and

S−[F ](x) =

∫
γr

e−pxB[F ](p) dp

where x ∈ C and γl and γr are contours in C \N from 0 to ∞ that turn left (respectively, right)
at each singularity in N (see Figure 1). In addition, the left and right Borel resummations give
analytic functions on a sector of opening angle π in the complex x-plane.

γl

γr

N

Figure 1. A singularity set N ⊂ C and the contours γl and γr.

Following [13, Sections 4.2–4.3], the median resummation of F is given by

Smed(x) = Smed[F ](x) :=
1

2

(
S+[F ](x) + S−[F ](x)

)
. (1.3)

In general, care is required when defining median summations, see [32, Section 2]. Under fa-
vorable circumstances, for example when G(p) is the Borel transform of a formal (Gevrey-1)
solution in powers of 1/x to a linear differential equation, each of S±[F ](x) (and thus, of course,
Smed(x)) is a well-defined homomorphic solution. This is one incarnation of the terminology
“resummation”.

In this paper, we will study the median resummation of the Borel transform for certain formal
power series associated to knots.

Let K be a knot and JN (K; q) be the usual colored Jones polynomial, normalized to be 1
for the unknot. If N = 2, then we recover the Jones polynomial [39]. As a knot invariant, the
colored Jones polynomial is of fundamental importance in several open problems in quantum
topology (see, e.g., [20, 22,40,51,55]). We now recall the Habiro ring [31]

H := lim←−
n

Z[q]/〈(q)n〉

where

(a)n = (a; q)n :=
n∏
k=1

(1− aqk−1)
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is the standard q-Pochhammer symbol. Every element of H may be written as
∞∑
n=0

bn(q)(q)n

where bn(q) ∈ Z[q]. Given K, there exists an element ΦK(q) ∈ H called the Kashaev invari-

ant [41] which matches JN (K; q) (up to a prefactor) when q = ζN := e
2πi
N [38, Theorem 2]. To

illustrate, for the trefoil knot K = 31, we have [30,44]

JN (31; q) = q1−N
∞∑
n=0

q−nN (q1−N )n. (1.4)

In this case, the Kontsevich-Zagier series [55]

Φ31(q) :=

∞∑
n=0

(q)n ∈ H (1.5)

gives the Kashaev invariant for the trefoil [41] and so from (1.4) and (1.5), we observe

Φ31(ζN )ζN = JN (31; ζN ).

Now, a crucial aspect of the computations in [13] is the “strange identity”

Φ31(q)“ = ”− 1

2

∞∑
n=1

n
(12

n

)
q
n2−1
24 (1.6)

where “ = ” means that both sides agree to infinite order at any root of unity and
(

12
∗
)

is the
quadratic character of conductor 12. More precisely, replacing q by the product of a root of
unity and e−x, then letting x→ 0+, the right-hand side has an asymptotic expansion as a power
series in x and this power series is given by the left-hand side at q. For further details, see [2,54].
If q = e2πix, x ∈ H, then (1.6) implies for 0 6= α ∈ Q

e
πiα
12 Φ31(e2πiα) = −1

2

∞∑
n=1

n
(12

n

)
e
n2πiα

12 (1.7)

where the right-hand side of (1.7) is interpreted as the radial limit x → α. The significance of
“identities” akin to (1.6) is evident in various applications, e.g., asymptotics and congruences
for Fishburn and generalized Fishburn numbers modulo prime powers [1,2,4,6,27,28,53,54], the
quantum modularity of Φ31(q) [29, 55] and expressing WRT invariants of Brieskorn homology
spheres in terms of limiting values of Eichler integrals [33–35]. For a recent advance using the
“Bailey machinery” which not only recovers (1.6), but produces a wealth of new examples,
see [45].

Elements of H can also be formally expanded around any root of unity. Therefore, we let

FK(x) := ΦK(e−
1
x ) ∈ C[[1/x]]. (1.8)

To emphasize the dependence on K, we denote the Borel transform of FK(x) by GK(p) and its
conjecturally well-defined median resummation by Smed

K (x). Finally, we use the notation
.

= to
denote equality up to a prefactor which depends on K. We can now state the main conjecture
from [13] (slightly edited for clarity) which is part of a larger program to understand the analytic
continuation of invariants of “knotted objects” arising in Chern-Simons theory [21,23].
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Conjecture 1.1. For every knot K,

(1) FK(x) has a resurgent Borel transform GK(p).

(2) Smed
K (x) is an analytic function defined on <(x) > 0 with radial limits at the points 1

2πiQ
of its natural boundary.

(3) If (2) is true, then consider the radial limit

Smed
K

(
− 1

2πiα

)
:= lim

x→− 1
2πiα

Smed
K (x)

where <(x) > 0. For 0 6= α ∈ Q, we have Smed
K

(
− 1

2πiα

) .
= ΦK(e2πiα).

In [13, Theorem 2.5, Theorem 3.1], Conjecture 1.1 (1) and (2) were proven for K = 31. Here,

F31(x) = e−
1

24x

∞∑
n=0

(e−
1
x )n

where an adjustment of (1.8) has been made. The Borel transform G31(p) of F31(x) is explicitly
given by [13, Theorem 3.1]

G31(p) =
3π

2
√

2

∞∑
n=1

n
(

12
n

)(
−p+ n2π2

6

)5/2 . (1.9)

Moreover, a close inspection of the proofs of Theorems 2.5 and 3.1 in [13] reveals that it is
actually (1.6) and the periodic function

(
12
∗
)

which determine the analytic nature of G31(p) and

Smed
31

(x). Our main goal in this paper is to prove resurgence properties for formal power series
associated to elements in H that satisfy a general type of strange identity motivated by (1.6).
Here, we emphasize the importance of periodic functions. Before stating our main result, we
introduce some notation.

Let M ≥ 2 be an integer and k1, k2 ∈ Z with 0 < k1 < k2 <
M
2 . Let 0 6= c ∈ R and f be the

function

f(n) :=


c if n ≡ k1,M − k1 (mod M),

−c if n ≡ k2,M − k2 (mod M),

0 otherwise.

(1.10)

Note that under the conditions on k1 and k2, f is a well-defined even function of period M with
mean value zero. For integers a ≥ 0 and b > 0, consider the partial theta series

θ
(ν)
a,b,f (q) :=

∞∑
n=0

nνf(n)q
n2−a
b (1.11)

where q = e2πix, x ∈ H, and ν ∈ {0, 1}. For ` ∈ Z, set

f̃(`) := (−1)` sin

(
(k2 − k1)`π

M

)
sin

(
(M − k1 − k2)`π

M

)
. (1.12)
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Suppose there exists

Φf (q) :=
∞∑
n=0

An,f (q)(q)n ∈ H

where An,f (q) ∈ Z[q] such that

Φf (q)“ = ”θ
(1)
a,b,f (q). (1.13)

Finally, define

Ff (x) := e−
a
bxΦf (e−

1
x ) =

∞∑
n=0

Cn,f
n!

(
1

bx

)n
. (1.14)

The asymptotics of the partial theta series θ
(1)
a,b,f (q) around q = 1, which by the strange identity

in (1.13) gives the expansion of Φf (q), can be computed by L-values. By standard calculations
using the Mellin transform (see, e.g., [2, 28,55]), we find that

Cn,f = (−1)nL(−2n− 1, f)

where

L(s, f) :=
∞∑
n=1

f(n)

ns

is the L-series associated to f . In particular, using [2, Lemma 3.2], we obtain that

Cn,f = (−1)n+1M
2n+1

2n+ 2

M∑
m=1

f(m)B2n+2

(m
M

)
(1.15)

where for k ≥ 0, Bk(x) denotes the kth Bernoulli polynomial. By (1.14) and (1.15), we have

Ff
(

1

x

)
=
∞∑
n=0

(−1)n+1M2n+1

(2n+ 2)n!

M∑
m=1

f(m)B2n+2

(m
M

)(x
b

)n
. (1.16)

We will denote the Borel transform of Ff (x) by Gf (p). Here, we write Smed
f (x) for Smed(x),

Smed
f

(
− 1

2πiα

)
:= lim

x→− 1
2πiα

Smed
f (x),

θ
(ν)
a,b,f (x) for θ

(ν)
a,b,f (q) = θ

(ν)
a,b,f (e2πix) and θ

(ν)
a,b,f (α) := lim

x→α
θ

(ν)
a,b,f (x) where 0 6= α ∈ Q. Our main

result is now the following.

Theorem 1.2. For f given by (1.10) and Ff (x) as in (1.16), we have the following:

(1) Ff (x) has a resurgent Borel transform Gf (p).

(2) Smed
f (x) is an analytic function defined on <(x) > 0 with radial limits at the points 1

2πiQ
of its natural boundary.

(3) For 0 6= α ∈ Q, we have

Smed
f

(
− 1

2πiα

)
=

cbeπi/4

Mπ(iα)3/2

∫ +i∞

0

θ
(0)

0,4M2,f̃
(bp)(

1
α + p

)3/2 dp+

(
b

iα

)3/2 √2c

M2
θ

(1)

0,4M2,f̃

(
− b
α

)
. (1.17)
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Remark 1.3. The proof of Theorem 1.2 demonstrates resurgence properties for the normal-

ized partial theta series e−
a
bx θ

(1)
a,b,f (e−

1
x ) without assuming (1.13). Our results and those in the

announcement [32] appear to be related; however, we give a proof that can be used to prove
Conjecture 1.1 for our cases of interest (see Corollary 1.5).

We give two applications of Theorem 1.2. The first result explicitly computes (1.17) in the
following situation. For coprime positive integers s and t, 1 ≤ m ≤ t − 1 and 1 ≤ n ≤ s − 1,

let χ
(n,m)
s,t (k) be the periodic function obtained by choosing c = 1, M = 2st, k1 = |nt−ms| and

k2 = nt+ms in (1.10), i.e.,

χ
(n,m)
s,t (k) =


1 if k ≡ ±(nt−ms) (mod 2st),

−1 if k ≡ ±(nt+ms) (mod 2st),

0 otherwise.

(1.18)

For coprime odd integers s, t, define the sets

D1(s, t) :=

{
(n,m) : 1 ≤ n ≤ s− 1

2
, 1 ≤ m ≤ t− 1

}
(1.19)

and

D2(s, t) :=

{
(n,m) : 1 ≤ n ≤ s− 1, 1 ≤ m ≤ t− 1

2

}
. (1.20)

There is a bijection between D1(s, t) and D2(s, t) (see Lemma 3.1 and (3.2)). For s and t coprime
and of opposite parities, we consider

D3(s, t) :=

{{
(n,m) : 1 ≤ n ≤ s−1

2 , 1 ≤ m ≤ t− 1
}

if s ≡ 1 (mod 2),{
(n,m) : 1 ≤ n ≤ s− 1, 1 ≤ m ≤ t−1

2

}
if s ≡ 0 (mod 2).

Finally, define the set D(s, t) of pairs which yield distinct characters in (1.18) as follows:

D(s, t) :=

{
D1(s, t) or D2(s, t) if s ≡ t ≡ 1 (mod 2),

D3(s, t) if s 6≡ t (mod 2).
(1.21)

One sees that D(s, t) := |D(s, t)| = (s−1)(t−1)
2 .

Theorem 1.4. Let s and t be coprime positive integers and (n,m) ∈ D(s, t). For 0 6= α ∈ Q,
we have

Smed

χ
(n,m)
s,t

(
− 1

2πiα

)
= θ

(1)

0,4st,χ
(n,m)
s,t

(α). (1.22)

The second result verifies Conjecture 1.1 for two families of torus knots.

Corollary 1.5. Let u, k ∈ Z≥1. Conjecture 1.1 is true for the families of torus knots T (2, 2u+1)
and T (3, 2k).

Corollary 1.5 generalizes Theorems 2.5 and 3.1 in [13] and upon taking either u = 1 or k = 1
confirms Conjecture 1.1 for the trefoil knot 31 = T (2, 3) = T (3, 2).

The paper is organized as follows. In Section 2, we prove Theorem 1.2 by first providing
an explicit evaluation of Gf (p) in (2.9), which generalizes (1.9), and then computing Smed

f (x)
directly via a careful contour deformation argument. In Section 3, we prove Theorem 1.4 and
Corollary 1.5. In Section 4, we make some concluding remarks.
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2. Proof of Theorem 1.2

Proof of Theorem 1.2. The Borel transform of Ff (1/x) from (1.16) is given by

B[Ff ](p) = CMδ +Gf (p)

where

CM = −M
2

M∑
m=1

f(m)B2

(m
M

)
and

Gf (p) =

∞∑
n=1

(−1)n+1M2n+1

(2n+ 2)n!

M∑
m=1

f(m)B2n+2

(m
M

) pn−1

(n− 1)!bn

= M
∞∑
n=0

M∑
m=1

(−1)nf(m)B2n+4

(m
M

)
(2n+ 4)!

(2n+ 3)!

n!(n+ 1)!

(
M2

b

)n+1

pn.

(2.1)

From the generating function

xext

ex − 1
=
∞∑
n=0

Bn(t)

n!
xn,

where |x| < 2π, we deduce
∞∑
n=0

B2n(t)

(2n)!
x2n =

x

2

(
ext

ex − 1
− e−xt

e−x − 1

)
=
x(ext + e−(t−1)x)

2(ex − 1)
. (2.2)

Assuming |y| < 2π
M , x = iMy, and taking t = m

M , where 1 ≤ m ≤M , we use (2.2) to obtain

1

My

M∑
m=1

f(m)

∞∑
n=0

B2n+2

(
m
M

)
(2n+ 2)!

(iMy)2n+2 =
i

2(eiMy − 1)

M∑
m=1

f(m)
(
eimy + e−i(m−M)y

)

= −2c ·
sin
(

(k2−k1)y
2

)
sin
(

(M−k1−k2)y
2

)
sin
(
My
2

) . (2.3)

If we let y =
√
p in (2.3), then

g1,f (p) := M3
∞∑
n=0

M∑
m=1

f(m)
B2n+4

(
m
M

)
(2n+ 4)!

(−M2p)n

=
1

Mp2

∞∑
n=0

M∑
m=1

f(m)
B2n+2

(
m
M

)
(2n+ 2)!

(−M2p)n+1 − CM
p

= − 1

p3/2

2c ·
sin
(

(k2−k1)
√
p

2

)
sin
(

(M−k1−k2)
√
p

2

)
sin
(
M
√
p

2

) + CM
√
p

 . (2.4)

We conclude

Gf (p) = (g1,f ~ g2,f )(p)
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where g1,f was computed in (2.4) and

g2,f (p) :=

∞∑
n=0

(2n+ 3)!

n!(n+ 1)!

(1

b

)n+1
pn =

1

b

6(
1− 4pb

)5/2
and ~ denotes the Hadamard product of two formal power series( ∞∑

n=0

anp
n

)
~

( ∞∑
n=0

bnp
n

)
:=

∞∑
n=0

anbnp
n.

It now follows that

Gf (p) =
1

2πi

∫
−γ
g1,f (s)g2,f

(p
s

) ds
s

(2.5)

where γ is a circle with center at the origin and a small radius oriented clockwise (see Figure
2).

γR

γ

Figure 2. Contour deformation of γR − γ

Now, we consider the poles of g1,f (s). Note that there is no pole at s = 0. By (2.4), they are

supported where p = 4`2π2

M2 , ` ∈ Z. However,

sin

(
(k2 − k1)

√
p

2

)
sin

(
(M − k1 − k2)

√
p

2

)
= 0

when p =
4k2π2

(k2 − k1)2
or p =

4k2π2

(M − k2 − k1)2
for k ∈ Z. Thus, if for some k, ` ∈ Z

` =
Mk

k2 − k1
or ` =

Mk

M − k2 − k1

which is true if and only if

` =

M
gcd(M,k2−k1)k

(k2−k1)
gcd(M,k2−k1)

or ` =

M
gcd(M,M−k2−k1)k

(M−k2−k1)
gcd(M,M−k2−k1)

,
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then g1,f (s) does not have poles at p = 4`2π2

M2 . Thus, the set of poles of g1,f (s) is given by

N1,f =

{
4`2π2

M2
: ` ∈ N,

M

gcd(M,k2 − k1)
- ` or

M

gcd(M,M − k2 − k1)
- `
}
. (2.6)

We next carefully calculate the residues of the poles of the integrand (2.5) which are given by
(2.6). Take a circle γR with center at the origin and of large radius R which encloses a finite
number of points N in N1,f . Thus,

1

2πi

∫
γR ∪ γ

g1,f (s)g2,f

(p
s

) ds
s

=
∑

pi∈N1,f

1≤i≤N

Ress→pi

(
g1,f (s)g2,f (ps )

s

)

=
∑N

`∈N

g2,f

(
pM2

4`2π2

)
(

4`2π2

M2

)
× lim
s→ 4`2π2

M2

(
s− 4`2π2

M2

)− 1

s3/2

2c ·
sin
(

(k2−k1)
√
s

2

)
sin
(

(M−k1−k2)
√
s

2

)
sin
(
M
√
s

2

) + CM
√
s


= − 3πc

bM2

∑N

`∈N

`f̃(`)(
`2π2

M2 − p
b

)5/2
(2.7)

where
∑N

means that ` runs over the first N elements 4`2π2

M2 of N1,f and f̃(`) is given by (1.12).

It follows that ∣∣∣∣∫
γR

g1,f (s)g2,f

(p
s

) ds
s

∣∣∣∣→ 0 (2.8)

as R→∞. Thus, (2.5), (2.7), (2.8) and the contour deformation given in Figure 2 imply that

Gf (p) =
3πc

M2b

∞∑
`=1

`f̃(`)(
`2π2

M2 − p
b

)5/2
. (2.9)

The set of poles of Gf (p) is then

N :=

{
b`2π2

M2
: ` ∈ N,

M

gcd(M,k2 − k1)
- ` or

M

gcd(M,M − k2 − k1)
- `
}
.

Since Gf (p) has two branches, by considering the cut complex plane C \ N , it can be made
analytic in this region. This implies (1). We now compute S±[Ff ](x):

S±[Ff ](x) =

∫ e±iθ∞

0
e−pxB[Ff ](p) dp = CM +

3πc

M2b

∞∑
`=1

`f̃(`)

∫ e±iθ∞

0

e−px(
`2π2

M2 − p
b

)5/2
dp (2.10)

where the integral
∫ e+iθ∞

0 agrees with
∫ +i∞

0 if =(x) > 0 and the integral
∫ e−iθ∞

0 agrees with∫ −i∞
0 if =(x) < 0. To prove the first part of (2), we start with the following formula, valid for
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<(x) > 0: ∫
γ

e−px

(1− p)
5
2

dp = −4

3
+

8

3

√
πE(
√
x) (2.11)

where γ = [0, eiθ∞) ∪ [0, e−iθ∞) and

E(y) :=
2y3e−y

2

√
π

∫ y

0
et

2
dt− y2

√
π
.

From (1.3) and (2.10), we have

Smed
f (x) = CM +

1

2

3πc

M2b

∞∑
`=1

`f̃(`)

∫
γ

e−px(
`2π2

M2 − p
b

)5/2
dp

= CM + b

(
M

π

)3 3πc

2M2b

∞∑
`=1

f̃(`)

`

∫
γ

e−
bp`2π2x

M2

(1− p)5/2
dp (2.12)

where we have made the change of variable p→ bp`2π2

M2 . Thus, (2.11) and (2.12) imply

Smed
f (x) = CM +

3Mc

2π2

∞∑
`=1

f̃(`)

`

{
−4

3
+

8

3

√
πE
(
`π

M

√
bx

)}

=
4Mc

π3/2

∞∑
`=1

f̃(`)

`
E
(
`π

M

√
bx

)
where one can check that

CM =
2Mc

π2

∞∑
`=1

f̃(`)

`2
. (2.13)

This implies that Smed
f (x) is analytic on <(x) > 0.

To prove the existence of the radial limit and part (3), we begin with rewriting the integral on

the right-hand side of (2.10) as an integral of the partial theta function θ
(0)

0,4M2,f̃
(x). This requires

some attention due to the branch cut singularity of the resulting square root. Integration by
parts yields

∫ e±iθ∞

0

e−px(
`2π2

M2 − p
b

)5/2
dp =

2b

3

e−px(
`2π2

M2 − p
b

)3/2


e±iθ∞

0

+
2bx

3

∫ e±iθ∞

0

e−px(
`2π2

M2 − p
b

)3/2
dp

=
2b

3

− M3

`3π3
+ x

∫ xe±iθ∞

0

e−
`2π2b
M2 p(

`2π2

M2 − `2π2

M2x
p
)3/2

d

(
`2π2b

M2x
p

)
= −2bM3

3`3π3
+

2b2M

3`π

∫ xe±iθ∞

0

e−
`2π2b
M2 p(

1− p
x

)3/2
dp. (2.14)
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The change of coordinate x→ − 1
2πiα where 0 6= α ∈ C to (2.14) yields

−2bM3

3`3π3
+

2b2M

3`π

∫ xe±iθ∞

0

e−
`2π2b
M2 p(

1− p
x

)3/2
dp = −2bM3

3`3π3
+

2b2M

3`π

∫ − 1
2πiα

e±iθ∞

0

e2πi `
22πib
4M2 p(

1 + 2πipα
)3/2dp

= −2bM3

3`3π3
+
b2M

3i`π2

∫ − 1
α
e±iθ∞

0

e2πi `
2b

4M2 p(
1 + pα

)3/2dp. (2.15)

Now (1 + pα)3/2 has a branch cut at p = −1/α, hence we distinguish between <(α) > 0 and

<(α) < 0 (see Figure 3). If <(α) > 0, then (1 + pα)3/2 = α3/2(1/α + p)3/2, and the integral at

angle −iθ will not change sign as the path is not crossing the branch cut, i.e.,
∫ − 1

α
e−iθ∞

0 =
∫ +i∞

0 .

If <(α) < 0, then (1 + pα)3/2 = α3/2(1/α+ p)3/2, but the integral at angle +iθ will change sign

as the path is crossing the branch cut, i.e.,
∫ − 1

α
e+iθ∞

0 = −
∫ +i∞

0 .

J

J

− 1
α• I

I
− 1
α•

Figure 3. Branch cut of (1 + pα)3/2. On the left for <(α) < 0 and on the right
for <(α) > 0.

By (2.10), (2.13) and (2.15), we have for α ∈ Q>0∫ e−iθ∞

0
e

p
2πiα B[Ff ](p) dp = −i cb

Mπ

∞∑
`=1

f̃(`)

∫ − 1
α
e−iθ∞

0

e2πi `
2b

4M2 p(
1 + pα

)3/2dp
= −i cb

Mπα3/2

∞∑
`=1

f̃(`)

∫ +i∞

0

e2πi `
2b

4M2 p(
1/α+ p

)3/2dp
= −i cb

Mπα3/2

∫ +i∞

0

θ
(0)

0,4M2,f̃
(bp)(

1/α+ p
)3/2dp

while for α ∈ Q<0, we obtain∫ e+iθ∞

0
e

p
2πiα B[Ff ](p) dp = −i cb

Mπ

∞∑
`=1

f̃(`)

∫ − 1
α
e+iθ∞

0

e2πi `
2b

4M2 p(
1 + pα

)3/2dp
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= i
cb

Mπα3/2

∞∑
`=1

f̃(`)

∫ +i∞

0

e2πi `
2b

4M2 p(
1/α+ p

)3/2dp
= i

cb

Mπα3/2

∫ +i∞

0

θ
(0)

0,4M2,f̃
(bp)(

1/α+ p
)3/2dp.

We now compute the discontinuity disc0(x) across the positive real axis:

disc0(x) := S+[Ff ](x)− S−[Ff ](x)

=
3πc

M2b

∞∑
`=1

`f̃(`)

[∫ e+iθ∞

0

e−px(
`2π2

M2 − p
b

)5/2dp− ∫ e−iθ∞

0

e−px(
`2π2

M2 − p
b

)5/2dp
]

=
3πc

M2b

∞∑
`=1

`f̃(`)

∫
C

e−px(
`2π2

M2 − p
b

)5/2dp
=

3πcb3/2

M2

∞∑
`=1

`f̃(`)e−
`2π2b
M2 x

∫
C`

e−px

(−p)5/2
dp

=
3πcb3/2

M2

∞∑
`=1

`f̃(`)e−
`2π2b
M2 x

∫
C`

e−px

(−xp)5/2
d(xp)x3/2

=
2πi

Γ
(

5
2

)x3/2 3πcb3/2

M2

∞∑
`=1

`f̃(`)e−
`2π2b
M2 x

= 2i (2bπx)3/2

√
2c

M2

∞∑
`=1

`f̃(`)e−
`2π2b
M2 x

= 2i (2bπx)3/2

√
2c

M2
θ

(1)

0,4M2,f̃
(2πix).

(2.16)

Here, C` = C− `2π2b
M2 where C is the Hankel contour enclosing the branch point singularity arising

from the second line in (2.16), as in Figure 4. The radial limit x → − 1
2πiα of the partial theta

series appearing in the last line of (2.16) exists by [2, Proposition 3.1] and so

disc0
(
− 1

2πiα

)
= 2i

( ib
α

)3/2
√

2c

M2
θ

(1)

0,4M2,f̃

(
− b
α

)
.

In addition, the radial limit x→ − 1
2πiα also exists for S±[Ff ](x) since they are analytic functions

on the half-planes <(e±iθx) > 0, respectively (see the change of coordinates after (2.14)). Thus,
the second part of (2) follows. Summarizing, we find that

Smed
f

(
− 1

2πiα

)
=


S+

(
− 1

2πiα

)
+
( b
α

)3/2
eπi/4

√
2c

M2
θ

(1)

0,4M2,f̃

(
− b
α

)
if α ∈ Q>0,

S−
(
− 1

2πiα

)
−
( b
α

)3/2
eπi/4

√
2c

M2
θ

(1)

0,4M2,f̃

(
− b
α

)
if α ∈ Q<0
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• • •
<

<

S+[Ff ]

S−[Ff ]

• • •
<

>

C

Figure 4. The Hankel contour C for the discontinuity disc0(x).

with

S±
(
− 1

2πiα

)
= ∓i cb

Mπα3/2

∫ +i∞

0

θ
(0)

0,4M2,f̃
(bp)(

1/α+ p
)3/2dp.

Finally, noticing that (iα)−3/2 = ∓eπi/4α−3/2 depending on the sign of α and on our choice of
the branch of the square root, part (3) follows. �

3. Proof of Theorem 1.4 and Corollary 1.5

In order to prove Theorem 1.4 and Corollary 1.5, we require some general preliminaries. Recall

the periodic function χ
(n,m)
s,t (k) given by (1.18).

Lemma 3.1. For all k ∈ Z, 1 ≤ m ≤ t− 1 and 1 ≤ n ≤ s− 1, we have

χ
(n,m)
s,t (k) = χ

(s−n,t−m)
s,t (k).

Proof. By replacing n→ s− n and m→ t−m, we see that

±((s− n)t− (t−m)s) = ±(ms− nt) = ∓(nt−ms) ,
±((s− n)t+ (t−m)s) = ±(2st−ms− nt) ≡ ∓(nt+ms) (mod 2st) ,

(3.1)

and thus the result follows from (3.1). �

In view of Lemma 3.1, the map

(n,m) −→

{
(n,m) if 1 ≤ n ≤ s−1

2 , 1 ≤ m ≤ t−1
2 ,

(s− n, t−m) otherwise.
(3.2)

is a bijection between the pairs defined by D1(s, t) and D2(s, t) in (1.19) and (1.20), respectively.

Lemma 3.2. Let s and t be coprime positive integers and D(s, t) be the set given by (1.21).
Then the integers in the set

S = {±(nt±ms) : (n,m) ∈ D(s, t)}

are distinct and thus |S| = 2(s− 1)(t− 1).
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Proof. We assume that s and t are coprime odd integers. A similar argument applies when s
and t are of opposite parities. Let us consider two integers of the forms n1t+m1s and n2t+m2s
where − s−1

2 ≤ n1, n2 ≤ s−1
2 and −(t− 1) ≤ m1,m2 ≤ t− 1. Then

n1t+m1s = n2t+m2s ⇐⇒ (n1 − n2)t+ (m1 −m2)s = 0. (3.3)

Since s and t are coprime, (3.3) implies that s | (n1 − n2), which yields |n1 − n2| ≥ s. On the
other hand, since − s−1

2 ≤ n1, n2 ≤ s−1
2 , we obtain −(s− 1) ≤ n1 − n2 ≤ s− 1, or equivalently,

|n1 − n2| ≤ s − 1, a contradiction. This shows that n1 = n2 and thus (3.3) implies that
m1 = m2. �

Define

Sn
′,m′

n,m =

√
8

st
(−1)nm

′+mn′+1 sin

(
nn′t

s
π

)
sin

(
mm′s

t
π

)
.

Proposition 3.3. For all k ∈ Z, and (n,m) ∈ D(s, t), we have

χ̃
(n,m)
s,t (k) = −

√
st

8

∑
(n′,m′)∈D(s,t)

Sn
′,m′

n,m χ
(n′,m′)
s,t (k). (3.4)

Proof. We assume that nt−ms > 0. A similar argument holds for nt−ms < 0. By (1.12), we
have

χ̃
(n,m)
s,t (k) = (−1)k sin

(
(nt+ms− |nt−ms|)kπ

2st

)
sin

(
(2st− |nt−ms| − (nt+ms))kπ

2st

)
= (−1)k sin

(
mkπ

t

)
sin

(
(s− n)kπ

s

)
= − sin

(
mkπ

t

)
sin

(
nkπ

s

)
. (3.5)

Clearly, the support of χ̃
(n,m)
s,t is contained within the set of integers k such that s - k and t - k.

By inclusion-exclusion, the total number of integers between 0 and 2st − 1 which are either
multiples of s or t is 2s+2t−2. By Lemma 3.2, the number of distinct integers k = ±(m′s±n′t)
between 0 and 2st − 1, where (n′,m′) ∈ D(s, t) is 2(s − 1)(t − 1). Since χ̃

(n,m)
s,t has period 2st,

this implies that the support of χ̃
(n,m)
s,t is contained in the following set of distinct integers

T = {±(m′s± n′t) (mod 2st) : (n′,m′) ∈ D(s, t)}. (3.6)

Thus it suffices to prove (3.4) for integers in T. From (3.5), we have

χ̃
(n,m)
s,t (±(m′s± n′t)) = − sin

(
±m(m′s± n′t)π

t

)
sin

(
±n(m′s± n′t)π

s

)
= − sin

(
±mn′π +

mm′s

t
π

)
sin

(
nm′π ± nn′t

s
π

)
= ±(−1)mn

′+nm′+1 sin

(
mm′s

t
π

)
sin

(
nn′t

s
π

)
= (−1)mn

′+nm′ sin

(
mm′s

t
π

)
sin

(
nn′t

s
π

)
χ

(n′,m′)
s,t (±(m′s± n′t)) (3.7)
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where in the last step we use that the sign ± depends on the sign of (m′s ± n′t), and it is

−χ(n′,m′)
s,t (±(m′s± n′t)). Since the integers in T are distinct, then from (3.7) we find:

χ̃
(n,m)
s,t (±(m′s± n′t)) = −

√
st

8

∑
(n′′,m′′)∈D(s,t)

Sn
′′,m′′

n,m χ
(n′′,m′′)
s,t (±(m′s± n′t)). (3.8)

It follows from (3.8) that (3.4) is true for integers k given by (3.6), which are non-multiples of s
or t and between 0 and 2st− 1. It remains to show that (3.4) remains true when k is a multiple
of s or t. Without loss of generality, we assume that k is a multiple of s. Then (3.5) implies that

χ̃
(n,m)
s,t (k) = 0. Thus, it suffices to show that χ

(n′,m′)
s,t (k) = 0 for all (n′,m′) ∈ D(s, t). To this

end, we note that since s and t are coprime, s | ±(n′t±m′s) if and only if s | n′, which implies
that n′ ≥ s, a contradiction. Thus, for (n′,m′) ∈ D(s, t), it follows ±(n′t ±m′s) 6≡ 0 (mod s).

Hence k 6= ±(n′t±m′s), and χ
(n′,m′)
s,t (k) = 0. �

Finally, we recall two key properties for the non-holomorphic Eichler integral

Φ̂(n,m)(z) :=

√
sti

8π2

∫ +i∞

z̄

θ
(0)

0,4st,χ
(n,m)
s,t

(τ)

(τ − z)3/2
dτ

where z ∈ H− [37, Eqn. (16)]. For z ∈ H− and α ∈ Q, consider the period function

r(n,m)(z;α) :=

√
sti

8π2

∫ +i∞

α

θ
(0)

0,4st,χ
(n,m)
s,t

(τ)

(τ − z)3/2
dτ ,

as defined in [37, Eqn. (18)]. Then, we have

Φ̂(n,m)(z) +

(
1

iz

)3/2 ∑
(n′,m′)∈D(s,t)

Sn
′,m′

n,m Φ̂(n′,m′)

(
−1

z

)
= r(n,m)(z; 0) (3.9)

and

Φ̂(n,m)(α) = −1

2
θ

(1)

0,4st,χ
(n,m)
s,t

(α) (3.10)

where (3.9) is [37, Eqn. (17)] and (3.10) is [37, below Eqn. (19)].

Proof of Theorem 1.4. By Proposition 3.3, we have

θ
(ν)

0,4(2st)2,χ̃
(n,m)
s,t

(4stz) = −
√
st

8

∑
(n′,m′)∈D(s,t)

Sn
′,m′

n,m θ
(ν)

0,4st,χ
(n′,m′)
s,t

(z). (3.11)

Also, [37, Eqn. (10)] states

θ
(0)

0,4st,χ
(n′,m′)
s,t

(z) =

√
i

z

∑
(n′,m′)∈D(s,t)

Sn
′,m′

n,m θ
(0)

0,4st,χ
(n′,m′)
s,t

(
−1

z

)
. (3.12)

Applying Theorem 1.2 part (3) and (3.11) gives

Smed

χ
(n,m)
s,t

(
− 1

2πiα

)
= − 2eπi/4

π(iα)3/2

√
st

8

∫ +i∞

0

∑
(n′,m′)∈D(s,t) S

n′,m′
n,m θ

(0)

0,4st,χ
(n′,m′)
s,t

(p)(
1
α + p

)3/2 dp
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− 1

(iα)3/2

∑
(n′,m′)∈D(s,t)

Sn
′,m′

n,m θ
(1)

0,4st,χ
(n′,m′)
s,t

(
− 1

α

)
. (3.13)

Then, by (3.12), we rewrite (3.13) as follows:

Smed

χ
(n,m)
s,t

(
− 1

2πiα

)
= − 2eπi/4

π(iα)3/2

√
sti

8

∫ +i∞

0

θ
(0)

0,4st,χ
(n,m)
s,t

(−1/p)

√
p
(

1
α + p

)3/2 dp

− (iα)−3/2
∑

(n′,m′)∈D(s,t)

Sn
′,m′

n,m θ
(1)

0,4st,χ
(n′,m′)
s,t

(
− 1

α

)
. (3.14)

We now perform the change of coordinates p → −1/p to the integral in (3.14) and simplify to
obtain

2eπi/4

π(iα)3/2

√
sti

8

∫ +i∞

0

θ
(0)

0,4st,χ
(n,m)
s,t

(−1/p)

√
p
(

1
α + p

)3/2 dp = 2

√
sti

8π2

∫ +i∞

0

θ
(0)

0,4st,χ
(n,m)
s,t

(p)

(p− α)3/2
dp .

Then, going back to (3.14) we find

Smed

χ
(n,m)
s,t

(
− 1

2πiα

)
= −2

√
sti

8π2

∫ +i∞

0

θ
(0)

0,4st,χ
(n,m)
s,t

(p)

(p− α)3/2
dp

− (iα)−3/2
∑

(n′,m′)∈D(s,t)

Sn
′,m′

n,m θ
(1)

0,4st,χ
(n′,m′)
s,t

(
− 1

α

)
= θ

(1)

0,4st,χ
(n,m)
s,t

(α)

(3.15)

where the last line of (3.15) follows from (3.9) and (3.10). This proves the result. �

Proof of Corollary 1.5. Let u ∈ Z≥1. For 0 ≤ ` ≤ u− 1, define

X(`)
u (q) :=

∞∑
k1,k2,...,ku=0

(q)kuq
k21+···+k2u−1+k`+1+···+ku−1

u−1∏
i=1

[
ki+1 + δi,`

ki

]
(3.16)

where δi,` is the characteristic function; see [36, Eqn. (11)]. The expression X
(`)
u (q) matches the

Nth colored Jones polynomial for T (2, 2u+ 1) when ` = 0 and q = ζN and is an element of H;
see [36, Proposition 16]. Take s = 2, t = 2u+ 1, n = 1 and m = `+ 1 in (1.18). Then Hikami’s
strange identity [36, Eqn. (15)]1 reads

X(`)
u (q)“ = ”− 1

2
θ

(1)

(2u−2`−1)2,2(8u+4),χ
(1,`+1)
2,2u+1

(q). (3.17)

Claims (1) and (2) of Conjecture 1.1 follow from Theorem 1.2 parts (1) and (2), namely the
formal series F

χ
(1,`+1)
2,2u+1

(x) has a resurgent Borel transform and its median resummation is an

1Taking u = 1 and ` = 0 in (3.16) and (3.17) yields (1.6).
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analytic function for <(x) > 0 with radial limits at points 1
2πiQ. In particular, this is true for

FT (2,2u+1)(x) = F
χ
(1,1)
2,2u+1

(x) .

Then, part (3) of Conjecture 1.1 follows by Theorem 1.4 applying (3.17) for ` = 0. In fact, we
can prove a stronger result:

Smed

χ
(1,`+1)
2,2u+1

(
− 1

2πiα

)
.

= F
χ
(1,`+1)
2,2u+1

(e2πiα) (3.18)

for every 0 6= α ∈ Q and 0 ≤ ` ≤ u− 1.
Let k ∈ Z≥1 and Fk(q) denote the element in H that matches the Nth colored Jones polyno-

mial for T (3, 2k) at a root of unity q = e
2πi
N (see [6, Eqn. (1.8)] for an explicit q-hypergeometric

expression). Choose s = 3, t = 2k, n = 2 and m = 1 in (1.18). Then the strange identity

Fk(q)“ = ”− 1

2
θ

(1)

(2k+1−3)2,3·2k+2,χ
(2,1)

3,2k

(q) (3.19)

was proved in [6, Theorem 2.4]2. Claims (1) and (2) of Conjecture 1.1 follow from Theorem 1.2
parts (1) and (2), namely the formal series

FT (3,2k)(x) = F
χ
(2,1)

3,2k

(x)

has a resurgent Borel transform and its median resummation is an analytic function for <(x) > 0
with radial limits at points 1

2πiQ. Then, part (3) of Conjecture 1.1 follows by Theorem 1.4
applying (3.19). �

4. Concluding Remarks

In order to apply Theorems 1.2 and 1.4 and thus verify Conjecture 1.1 for all torus knots
T (s, t), one needs to prove the relevant strange identity in (1.13). The first obstruction in this
task is finding an explicit “non-cyclotomic” expansion for JN (T (s, t); q) from which an element
in H such as the one in (3.16) can be extracted. The Rosso-Jones formula for JN (T (s, t); q) does
not appear to be sufficient [50, page 132]. Instead, one should consider the walks along braids
method in [5,7]. The second obstruction is in determining the underlying q-series identity which
implies the strange identity. Thus, it would be of substantial interest to further develop the
techniques in [45]. Finally, what can one say about Conjecture 1.1 for satellite or hyperbolic
knots?
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Finally, the authors thank David Sauzin for his helpful comments on median resummation and
the referees for their critiques which substantially improved the paper.

References

[1] S. Ahlgren, B. Kim, Dissections of a “strange” function, Int. J. Number Theory 11 (2015), no. 5, 1557–1562.
[2] S. Ahlgren, B. Kim and J. Lovejoy, Dissections of strange q-series, Ann. Comb. 23 (2019), no. 3-4, 427–442.
[3] J. Andersen, W. Misteg̊ard, Resurgence analysis of quantum invariants of Seifert fibered homology spheres,

J. Lond. Math. Soc. (2) 105 (2022), no. 2, 709–764.
[4] G. E. Andrews, J. Sellers, Congruences for the Fishburn numbers, J. Number Theory 161 (2016), 298–310.
[5] C. Armond, Walks along braids and the colored Jones polynomial, J. Knot Theory Ramifications 23 (2014),

no. 2, 1450007, 15pp.
[6] C. Bijaoui, H.U. Boden, B. Myers, R. Osburn, W. Rushworth, A. Tronsgard and S. Zhou, Generalized

Fishburn numbers and torus knots, J. Combin. Theory Ser. A 178 (2021), 105355.
[7] H.U. Boden, M. Shimoda, Braid representatives minimizing the number of simple walks, Ars Math. Contemp.

23 (2023), no. 1, Paper No. 10, 27 pp.
[8] M. Borinsky, G. V. Dunne, Non-perturbative completion of Hopf-algebraic Dyson-Schwinger equations, Nu-

clear Phys. B 957 (2020), 115096, 17 pp.
[9] F. Chapoton, F. Fauvet, C. Malvenuto and J-Y, Thibon, Algebraic combinatorics, resurgence, moulds and

applications (CARMA). Volume 1, IRMA Lectures in Mathematics and Theoretical Physics, 31. EMS
Publishing House, Berlin 2020.

[10] F. Chapoton, F. Fauvet, C. Malvenuto and J-Y, Thibon, Algebraic combinatorics, resurgence, moulds and
applications (CARMA). Volume 2, IRMA Lectures in Mathematics and Theoretical Physics, 32. EMS
Publishing House, Berlin 2020.

[11] O. Costin, On Borel summation and Stokes phenomena for rank-1 nonlinear systems of ordinary differential
equations, Duke Math. J. 93 (1998), no. 2, 289–344.

[12] O. Costin, Asymptotics and Borel summability, Champman & Hall/CRC Monographs and Surveys in Pure
and Applied Mathematics, 141 CRC Press, Boca Raton, FL, 2009.

[13] O. Costin, S. Garoufalidis, Resurgence of the Kontsevich-Zagier series, Ann. Inst. Fourier (Grenoble) 61
(2011), no. 3, 1225–1258.

[14] E. Delabaere, F. Pham, Resurgent methods in semi-classical asymptotics, Ann. Inst. H. Poincaré Phys.
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