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Abstract. Using a result of Takata, we prove a formula for the colored Jones polynomial of the
double twist knots K(−m,−p) and K(−m,p) where m and p are positive integers. In the (−m,−p)
case, this leads to new families of q-hypergeometric series generalizing the Kontsevich-Zagier
series. Comparing with the cyclotomic expansion of the colored Jones polynomials of K(m,p)

gives a generalization of a duality at roots of unity between the Kontsevich-Zagier function and
the generating function for strongly unimodal sequences.

1. Introduction

Let K be a knot and JN (K; q) be the usual Nth colored Jones polynomial, normalized to be
1 for the unknot. It is often useful to determine a q-hypergeometric expression for JN (K; q),
and such expressions have been computed for a variety of knots (e.g., [10, 11, 12, 18, 19, 24]).
These have applications to the AJ conjecture [11], the generalized Volume conjecture [9, 13],
the computation of WRT invariants [3, 14] and quantum modular and mock modular forms
[15, 16, 26].

Consider the family of double twist knots K(m,p), where 2m and 2p are nonzero integers
denoting the number of half-twists in each respective region of Figure 1. Positive integers
correspond to right-handed half-twists and negative integers correspond to left-handed half-
twists.

2m 

2p 

Figure 1. Double twist knots
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Using ideas of Habiro [10] and Masbaum [19], Lauridsen [17, Section 6] gave the cyclotomic
expansion of JN (K(m,p); q) for all nonzero m and p (cf. [6, 24]). For example, when m and p are
positive integers we have

JN (K(m,p); q) =
∑
n≥0

n=nm≥nm−1≥···≥n1≥0
n=sp≥sp−1≥···≥s1≥0

(q1+N )n(q1−N )nq
n
m−1∏
i=1

qn
2
i +ni

[
ni+1

ni

] p−1∏
j=1

qs
2
j+sj

[
sj+1

sj

]

(1.1)
and

JN (K(m,−p); q)

=
∑
n≥0

n=nm≥nm−1≥···≥n1≥0
n=sp≥sp−1≥···≥s1≥0

(q1+N )n(q1−N )n(−1)nq−(n+1
2 )

m−1∏
i=1

qn
2
i +ni

[
ni+1

ni

] p−1∏
j=1

q−sj−sj+1sj

[
sj+1

sj

]
.

(1.2)

Here we have used the usual q-binomial coefficient[
n
k

]
=

[
n
k

]
q

:=
(q)n

(q)n−k(q)k
(1.3)

with the standard q-hypergeometric notation

(a)n = (a; q)n :=

n−1∏
k=0

(1− aqk).

Recall that

JN (K; q−1) = JN (K∗; q), (1.4)

where K∗ denotes the mirror image of the knot K. Thus, since K(m,p) = K(p,m) and K(−m,−p)
is the mirror image of K(m,p), equations (1.1) and (1.2) cover all of the double twist knots, up

to a substitution of q by q−1.
In this paper, we use a result of Takata [22] to prove q-hypergeometric formulas for the colored

Jones polynomial of the double twist knots K(−m,−p) and K(−m,p) which are different from those
corresponding to (1.1) and (1.2). To state the first case, define the functions εi,j,m and γi,m by

εi,j,m =


1, if j ≡ −i or −i− 1 (mod 2m),

−1, if j ≡ i or i− 1 (mod 2m),

0, otherwise

(1.5)

where 1 ≤ i < j ≤ 2mp− 1 with m - i and

γi,m =

{
1, if i ≡ 1, . . . ,m− 1 (mod 2m),

−1 otherwise
(1.6)

where 1 ≤ i ≤ 2mp− 2. Our first main result is the following.
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Theorem 1.1. For positive integers m and p, we have

JN (K(−m,−p); q)

= q1−N
∑

N−1≥n2mp−1≥···≥n1≥0

(q1−N )n2mp−1(−1)n2mp−1q−(n2mp−1+1

2 )
∏

1≤i<j≤2mp−1
m-i

qεi,j,mninj

×
2p−1∏
i=1

(−1)nmiq(−1)iNnmi+(nim+1
2 )

2mp−2∏
i=1

q−nini+1+γi,mni

[
ni+1

ni

]
. (1.7)

The case m = 1 of Theorem 1.1 was proved by Takata [22]1. Here K(1,p) = Kp>0, the usual
pth twist knot. As K(−1,−p) is the mirror image of K(1,p), one recovers JN (K∗p>0; q) by taking

m = 1 in (1.7) and simplifying. Namely, we have (cf. equation (15) in [22])

JN (K∗p>0; q)

= q1−N
∑

N−1≥n2p−1≥···≥n1≥0

(q1−N )n2p−1q
−Nn2p−1

2p−2∏
i=1

(−1)niq(−1)iNni+(ni
2 )−nini+1

[
ni+1

ni

]
.

(1.8)

For an example with m > 1, take m = p = 2. Then we have

JN (K(−2,−2); q)

= q1−N
∑

N−1≥n7≥n6≥n5≥n4≥n3≥n2≥n1≥0

(q1−N )n7(−1)n2+n4+n6+n7qN(−n2+n4−n6)

× q−(n7+1
2 )+(n6+1

2 )+(n4+1
2 )+(n2+1

2 )+n1(n3−n4−n5+n6+n7)+n3(n5−n6−n7)+n5n7

× q−n2n3−n4n5−n6n7+n1−n2−n3−n4+n5−n6

[
n7

n6

] [
n6

n5

] [
n5

n4

] [
n4

n3

] [
n3

n2

] [
n2

n1

]
.

For the case of K(−m,p), define the functions ∆i,j,m and βi,m by

∆i,j,m =


1, if j ≡ −i or −i+ 1 (mod 2m),

−1, if j ≡ i or i+ 1 (mod 2m),

0, otherwise

(1.9)

where 1 ≤ i < j ≤ 2mp with m - i and

βi,m =


1, if i ≡ 1, . . . ,m− 1 (mod 2m),

−1 if i ≡ m+ 1, . . . , 2m− 1 (mod 2m),

0, otherwise

(1.10)

where 1 ≤ i ≤ 2mp− 1. Our second main result is the following.

1Note that Takata’s q-hypergeometric notation differs slightly from the standard one we use here
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Theorem 1.2. For positive integers m and p, we have

JN (K(−m,p); q)

=
∑

N−1≥n2mp≥···≥n1≥0

(q1−N )n2mp(−1)n2mpq−(n2mp+1

2 )
∏

1≤i<j≤2mp
m-i

q∆i,j,mninj

×
2p−1∏
i=1

(−1)nmiq(−1)i+1Nnmi+(nim+1
2 )

2mp−1∏
i=1

qβi,mni

[
ni+1

ni

]
. (1.11)

Again, the case m = 1 was established by Takata [22]. As K(1,−p) = Kp<0 and K(−1,p) is the
mirror image of K(1,−p), one recovers JN (K∗p<0; q) by taking m = 1 in (1.11) and simplifying.

Namely, we have (cf. equation (14) in [22])

JN (K∗p<0; q)

=
∑

N−1≥n2p≥···≥n1≥0

(q1−N )n2p(−1)n2pq−(n2p+1

2 )
2p−1∏
i=1

(−1)niq(−1)i+1Nni+(ni+1
2 )
[
ni+1

ni

]
. (1.12)

For an example with m > 1, take m = 3 and p = 1. Then we have

JN (K(−3,1); q)

=
∑

N−1≥n6≥n5≥n4≥n3≥n2≥n1≥0

(q1−N )n6(−1)n3+n6qNn3−(n6+1
2 )+(n3+1

2 )

× qn1(−n2+n5+n6)+n2(−n3+n4+n5)−n4n5−n5n6

× qn1+n2−n4−n5

[
n6

n5

] [
n5

n4

] [
n4

n3

] [
n3

n2

] [
n2

n1

]
.

Motivated by the expressions in (1.7) and (1.1), we define the q-series Fm,p(q) and Um,p(x; q)
by

Fm,p(q) = q
∑

n2mp−1≥···≥n1≥0

(q)n2mp−1(−1)n2mp−1q−(n2mp−1+1

2 )
∏

1≤i<j≤2mp−1
m-i

qεi,j,mninj

×
2p−1∏
i=1

(−1)nmiq(
nim+1

2 )
2mp−2∏
i=1

q−nini+1+γi.mni

[
ni+1

ni

]
(1.13)

and

Um,p(x; q) =
∑
n≥0

n=nm≥nm−1≥···≥n1≥0
n=sp≥sp−1≥···≥s1≥0

(−xq)n(−x−1q)nq
n
m−1∏
i=1

qn
2
i +ni

[
ni+1

ni

] p−1∏
j=1

qs
2
j+sj

[
sj+1

sj

]
.

(1.14)
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Note that if ζN is any Nth root of unity, we have

Fm,p(ζN ) = JN (K(−m,−p); ζN ) (1.15)

and

Um,p(−1; ζN ) = JN (K(m,p); ζN ). (1.16)

The base case F1,1(q) is q times the Kontsevich-Zagier series,

F (q) :=
∑
n≥0

(q)n, (1.17)

one of the foundational examples of Zagier’s quantum modular forms [25, 26], while

U1,1(x; q) = q−1U(x; q), (1.18)

where U(x; q) is the generating function for strongly unimodal sequences [4],

U(x; q) :=
∞∑
n=0

(−xq)n(−x−1q)nq
n+1. (1.19)

For this reason, we call the series Fm,p(q) the generalized Kontsevich-Zagier functions for double
twist knots and the Um,p(x; q) the generalized U -functions for double twist knots. Note that
while Um,p(x; q) is well-defined for |q| < 1 and for q a root of unity when x = −1, the generalized
Kontsevich-Zagier functions Fm,p(q) are only defined at roots of unity.

The original Kontsevich-Zagier series F (q) and the generating function for strongly unimodal
sequences U(x; q) when x = −1 are dual at roots of unity via

F (ζ−1
N ) = U(−1; ζN ). (1.20)

This was first shown by Bryson, Ono, Pitman and Rhoades [4]. It also follows at once from
(1.4) and the case m = p = 1 of (1.15) and (1.16), which was first observed in [15]. Using (1.4)
and the general case of (1.15) and (1.16), we immediately have the following generalization of
(1.20).

Corollary 1.3. If ζN is any N th root of unity, then we have

Fm,p(ζN ) = Um,p(−1; ζ−1
N ). (1.21)

Next we turn our attention to (1.11) and (1.2). Motivated by these expressions, we define
Fm,p(q) and Um,p(x; q) by

Fm,p(q) =
∑

n2mp≥···≥n1≥0

(q)n2mp(−1)n2mpq−(n2mp+1

2 )
∏

1≤i<j≤2mp
m-i

q∆i,j,mninj

×
2p−1∏
i=1

(−1)nmiq(
nmi+1

2 )
2mp−1∏
i=1

qβi,mni

[
ni+1

ni

]
(1.22)

and
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Um,p(x; q)

=
∑
n≥0

n=nm≥nm−1≥···≥n1≥0
n=sp≥sp−1≥···≥s1≥0

(−xq)n(−x−1q)n(−1)nq−(n+1
2 )

m−1∏
i=1

qn
2
i +ni

[
ni+1

ni

] p−1∏
j=1

q−sj−sj+1sj

[
sj+1

sj

]
.

(1.23)

Neither Fm,p(q) nor Um,p(x; q) is defined anywhere except at roots of unity. Note that

Fm,p(ζN ) = JN (K(−m,p); ζN ) (1.24)

and
Um,p(−1; ζN ) = JN (K(m,−p); ζN ). (1.25)

As a result of (1.4), (1.24) and (1.25), we immediately obtain the following duality at roots of
unity.

Corollary 1.4. If ζN is any N th root of unity, then we have

Fm,p(ζN ) = Um,p(−1; ζ−1
N ). (1.26)

The paper is organized as follows. In Section 2, we recall Takata’s main theorem and provide
some preliminaries. In Section 3, we prove Theorems 1.1 and 1.2. We conclude in Section 4 with
a discussion of the generalized Kontsevich-Zagier functions and the generalized U -functions for
the torus knots T(2,2t+1), along with some related questions.

2. Preliminaries

We begin by recalling the setup from [22]. Let l and t be coprime odd integers with l > t ≥ 1
and p′ := l−1

2 . For 1 ≤ j ≤ p′, define integers r(j) such that r(j) ≡ (2j − 1)t (mod 2l) and

−l < r(j) < l. We put σj := (−1)b
(2j−1)t

l
c, r′(j) := |r(j)|+1

2 and ir′(j) = j (and thus ik = j if
and only if r′(j) = k). For an integer i, sgn(i) denotes the sign of i. Let n = (n1, . . . , np′) and
ns = 0 for s ≤ 0. Finally, define

κ(p′) =

{
−Nnp′ if σp′ = −1,
0 if σp′ = 1

(2.1)

and

τ(j) =

{
(−1)nj−nj−1 if σj = −1,

q(
nj−nj−1+1

2
) if σj = 1.

(2.2)

Consider the family of 2-bridge knots b(l, t) [5]. The main result in [22] is an explicit formula
for the colored Jones polynomial of b(l, t)∗.

Theorem 2.1. We have

JN (b(l, t)∗; q) =
∑

N−1≥np′≥...≥n1≥0

qq
a(n)N+b1(n)+b2(n)

X(n) (2.3)

where2

2Note that there is a misprint in the definition of X(n) in [22]. Each q in the prefactor should be q.
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a(n) = −1

2

p′∑
j=1

(
p′∑

k=r′(j)

(σik + σip′+1−k
)

)
(nj − nj−1)− 1

2

p′−1∑
j=1

(σj+1 + σp′+1−j)nj

− 1

2
(σp′ + 1)np′ −

p′∑
j=1

σj ,

b1(n) = −a(n) +

l−t
2∑

k=1

1− σik
2

nik−1 −
p′∑

k= l−t
2

+1

nik−1 +

p′∑
k= l−t

2
+1

1 + σik
2

nik − (1 + σp′)np′

+
1

2

p′−1∑
j=1

(σj+1 − σj)nj

− 1

2

p′−1∑
k=1

p′∑
k′=k+1

1 + sgn(ik − ik′)
2

(σik − σik′ )(nik − nik−1)(nik′ − nik′−1)

+

p′∑
j=1

σj

(r′(j)∑
k=1

(nik − nik−1)
)
nj−1,

b2(n) =



t−1
2∑

k= l−t
2

+1

1 + σik
2

nik−1 if l < 2t,

−

l−t
2∑

k= t+1
2

+1

1 + σik
2

nik−1 if l > 2t,

X(n) = (−1)np′ qκ(p′)
(q)N−1(q)np′

(q)N−np′−1

p′∏
j=1

τ(j)

(q)nj−nj−1

.

As the mirror image of the torus knots T(2,2t+1) is b(2t + 1, 1) (cf. [5, 20, 23]), one can
check that Theorem 2.1 recovers the q-hypergeometric expression for JN (T(2,2t+1); q) given in
[11, 12]. Our interest will be to apply Theorem 2.1 to the case of the double twist knots
K(m,p) = b(4mp− 1, 4mp− 2p− 1) and K(m,−p) = b(4mp+ 1, 4mp− 2p+ 1) (cf. [23]). In order
to facilitate these computations, we need the following results concerning σj , ik and σik . We
omit the proofs as they are straightforward generalizations of Lemmas 6–9 in [22].

Lemma 2.2. For l = 4mp− 1 and t = 4mp− 2p− 1, we have

(i) σj =

{
1 if j ≡ 1, 2, . . . ,m (mod 2m),
−1 if j ≡ 0,m+ 1, . . . , 2m− 1 (mod 2m).

(ii) To compute ik, apply the following algorithm. Divide the integers from 1 to p′ into
2m − 1 intervals, each of length p, and a final interval of length p − 1. The value of ik
is 2m(p − k) + m in the first interval and 1 − (2m(p − k) + m) in the second. If j > 1
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is odd, then to obtain the value of ik in the jth interval, add 4mp− 1 to the formula for
ik in the (j − 2)th interval. If j > 2 is even, then to obtain the value of ik in the jth
interval, subtract 4mp− 1 from the formula for ik in the (j − 2)th interval.

(iii) To compute σik , apply the following algorithm. Divide the integers from 1 to p′ into
2m− 1 intervals, each of length p, and a final interval of length p− 1. The value of σik
alternates between 1 and −1 starting with 1 in the first interval.

Lemma 2.3. Let l = 4mp− 1 and t = 4mp− 2p− 1. Then for 1 ≤ k ≤ p′ and 1 ≤ j ≤ p′ − 1
we have

(i) σik + σip′+1−k
=

 2 if k = p, 3p, . . . , (2m− 1)p,
−2 if k = 2p, . . . , (2m− 2)p,
0 otherwise.

(ii) σj+1 + σp′+1−j = 0.

Lemma 2.4. For l = 4mp+ 1 and t = 4mp− 2p+ 1, we have

(i) σj =

{
1 if j ≡ 1, 2, . . . ,m (mod 2m),
−1 if j ≡ 0,m+ 1, . . . , 2m− 1 (mod 2m).

(ii) To compute ik, apply the following algorithm. Divide the integers from 1 to p′ into 2m
intervals of length p. The value of ik is 2m(p − k) + m + 1 in the first interval and
1− (2m(p− k) +m+ 1) in the second. If j > 1 is odd, then to obtain the value of ik in
the jth interval, add 4mp+ 1 to the formula for ik in the (j − 2)th interval. If j > 2 is
even, then to obtain the value of ik in the jth interval, subtract 4mp+1 from the formula
for ik in the (j − 2)th interval.

(iii) To compute σik , apply the following algorithm. Divide the integers from 1 to p′ into 2m
intervals of length p. The value of σik alternates between −1 and 1 starting with −1 in
the first interval.

Lemma 2.5. Let l = 4mp + 1 and t = 4mp− 2p + 1. Then for 1 ≤ k ≤ p′ and 1 ≤ j ≤ p′ − 1
we have

(i) σik + σip′+1−k
= 0.

(ii) σj+1 + σp′+1−j =

 2 if j ≡ 0 (mod 2m),
−2 if j ≡ m (mod 2m),
0 otherwise.

We now illustrate the computation of a(n) and b1(n) + b2(n) for l = 8p − 1 and t = 6p − 1.
The routine evaluation of X(n) is left to the reader. First, we take m = 2 in Lemmas 2.2 and
2.3 to obtain

σj =

{
1 if j ≡ 1, 2 (mod 4),
−1 if j ≡ 0, 3 (mod 4),

(2.4)
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ik =


4(p− k) + 2 if 1 ≤ k ≤ p,
4(k − p)− 1 if p+ 1 ≤ k ≤ 2p,
12p− 4k + 1 if 2p+ 1 ≤ k ≤ 3p,
4k − 12p if 3p+ 1 ≤ k ≤ 4p− 1,

(2.5)

σik =


1 if 1 ≤ k ≤ p,
−1 if p+ 1 ≤ k ≤ 2p,
1 if 2p+ 1 ≤ k ≤ 3p,
−1 if 3p+ 1 ≤ k ≤ 4p− 1,

(2.6)

σik + σi4p−k
=

 2 if k = p, 3p,
−2 if k = 2p,
0 otherwise

(2.7)

and
σj+1 + σ4p−j = 0. (2.8)

Applying (2.4), (2.5), (2.7), (2.8) and reindexing yields that a(n) equals

− 1

2

4p−1∑
j=1

(
4p−1∑
k=r′(j)

(σik + σi4p−k
)

)
(nj − nj−1)− 1

= −1

2

[
p∑
j=1

(
4p−1∑

k=3p−j+1

(σik + σi4p−k
)

)
(n4j−3 − n4j−4)

+

p∑
j=1

(
4p−1∑

k=p−j+1

(σik + σi4p−k
)

)
(n4j−2 − n4j−3)

+

p−1∑
j=1

(
4p−1∑
k=3p+j

(σik + σi4p−k
)

)
(n4j − n4j−1) +

p∑
j=1

(
4p−1∑
k=p+j

(σik + σi4p−k
)

)
(n4j−1 − n4j−2)

]
− 1

=

2p−1∑
j=1

(−1)jn2j − 1. (2.9)

By (2.4) and (2.6), the second and fifth sums in b1(n) are zero. We then use (2.4)–(2.6) and
reindex to obtain

−
4p−1∑
k=p+1

nik−1 = −

(
2p∑

k=p+1

nik−1 +

3p∑
k=2p+1

nik−1 +

4p−1∑
k=3p+1

nik−1

)

= −

(
p∑
j=1

(n4j−2 + n4j−4) +

p−1∑
j−1

n4j−1

)
, (2.10)

4p−1∑
k=p+1

1 + σik
2

nik =

3p∑
k=2p+1

nik =

p∑
j=1

n4j−3, (2.11)
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1

2

4p−2∑
j=1

(σj+1 − σj)nj =

2p−1∑
j=1

(−1)jn2j (2.12)

and

b2(n) =

3p−1∑
k=p+1

1 + σik
2

nik−1 =

3p−1∑
k=2p+1

nik−1 =

p∑
j=2

n4j−4. (2.13)

By (2.9)–(2.13), the sum of b2(n) and the first six terms in b1(n) equals

1 + n4p−1 +

p∑
j=1

(n4j−3 − n4j−2 − n4j−1). (2.14)

To compute the seventh term in b1(n), we use (2.5) and (2.6) to observe that k < k′ and σik 6= σik′
if and only if either 1 ≤ k ≤ p and p + 1 ≤ k′ ≤ 2p or 1 ≤ k ≤ p and 3p + 1 ≤ k′ ≤ 4p − 1
or p + 1 ≤ k ≤ 2p and 2p + 1 ≤ k′ ≤ 3p or 2p + 1 ≤ k ≤ 3p and 3p + 1 ≤ k′ ≤ 4p − 1.
Also, sgn(ik − ik′) = 1 if and only if ik > ik′ and either ik = 4p − 4k + 2 for 1 ≤ k ≤ p and
ik′ = 4k′ − 4p − 1 for p + 1 ≤ k′ ≤ 2p or ik = 4p − 4k + 2 for 1 ≤ k ≤ p and ik′ = 4k′ − 12p
for 3p + 1 ≤ k′ ≤ 4p − 1 or ik = 4k − 4p − 1 for p + 1 ≤ k ≤ 2p and ik′ = 12p − 4k′ + 1
for 2p + 1 ≤ k′ ≤ 3p or ik = 12p − 4k + 1 for 2p + 1 ≤ k ≤ 3p and ik′ = 4k′ − 12p for
3p+ 1 ≤ k′ ≤ 4p− 1. Taking these cases into account and reindexing, we have

− 1

2

4p−2∑
k=1

4p−1∑
k′=k+1

1 + sgn(ik − ik′)
2

(σik − σik′ )(nik − nik−1)(nik′ − nik′−1)

= −
p∑

k=1

2p−k∑
k′=p+1

(nik − nik−1)(nik′ − nik′−1)−
p∑

k=1

4p−k∑
k′=3p+1

(nik − nik−1)(nik′ − nik′−1)

+

2p∑
k=p+1

3p∑
k′=4p−k+1

(nik − nik−1)(nik′ − nik′−1)−
3p∑

k=2p+1

6p−k∑
k′=3p+1

(nik − nik−1)(nik′ − nik′−1)

= −
p∑
j=1

j∑
j′=2

(n4j−2 − n4j−3)(n4j′−5 − n4j′−6)−
p∑
j=1

j∑
j′=2

(n4j−2 − n4j−3)(n4j′−4 − n4j′−5)

+

p∑
j=1

j∑
j′=1

(n4j−1 − n4j−2)(n4j′−3 − n4j′−4)−
p∑
j=1

j∑
j′=2

(n4j−3 − n4j−4)(n4j′−4 − n4j′−5). (2.15)

Finally, using (2.4) and (2.5), then reindexing and simplifying gives the eighth term in b1(n),

4p−1∑
j=1

σj

(r′(j)∑
k=1

(nik − nik−1)
)
nj−1



THE COLORED JONES POLYNOMIAL FOR DOUBLE TWIST KNOTS 11

=

p∑
j=1

σ4j−3

(3p−j+1∑
k=1

(nik − nik−1)
)
n4j−4 +

p∑
j=1

σ4j−2

(p−j+1∑
k=1

(nik − nik−1)
)
n4j−3

+

p−1∑
j=1

σ4j

(3p+j∑
k=1

(nik − nik−1)
)
n4j−1 +

p∑
j=1

σ4j−1

(p+j∑
k=1

(nik − nik−1)
)
n4j−2

=

p∑
j=1

(
p∑

k=1

(n4p−4k+2 − n4p−4k+1) +

2p∑
k=p+1

(n4k−4p−1 − n4k−4p−2)

+

3p−j+1∑
k=2p+1

(n12p−4k+1 − n12p−4k)

)
n4j−4 +

p∑
j=1

(
p−j+1∑
k=1

(n4p−4k+2 − n4p−4k+1)

)
n4j−3

−
p−1∑
j=1

(
p∑

k=1

(n4p−4k+2 − n4p−4k+1) +

2p∑
k=p+1

(n4k−4p−1 − n4k−4p−2)

+

3p∑
k=2p+1

(n12p−4k+1 − n12p−4k) +

3p+j∑
k=3p+1

(n4k−12p − n4k−12p−1)

)
n4j−1

−
p∑
j=1

(
p∑

k=1

(n4p−4k+2 − n4p−4k+1) +

p+j∑
k=p+1

(n4k−4p−1 − n4k−4p−2)

)
n4j−2

=

p∑
j=1

(
j−1∑
j′=1

(n4j′−1 − n4j′−3) +

p∑
j=j′

(n4j′−1 − n4j′−4)

)
n4j−4 +

p∑
j=1

(
p∑

j′=j

(n4j′−2 − n4j′−3)

)
n4j−3

−
p−1∑
j=1

(
p∑

j′=j+1

(n4j′−1 − n4j′−4) + n4j

)
n4j−1

−
p∑
j=1

(
j∑

j′=1

(n4j′−1 − n4j′−3) +

p∑
j′=j+1

(n4j′−2 − n4j′−3)

)
n4j−2. (2.16)

Thus, combining (2.9)–(2.16) implies that b1(n) + b2(n) equals

1 + n4p−1 +

p∑
j=1

(n4j−3 − n4j−2 − n4j−1)

−
p∑
j=1

j∑
j′=2

(n4j−2 − n4j−3)(n4j′−5 − n4j′−6)−
p∑
j=1

j∑
j′=2

(n4j−2 − n4j−3)(n4j′−4 − n4j′−5)

+

p∑
j=1

j∑
j′=1

(n4j−1 − n4j−2)(n4j′−3 − n4j′−4)−
p∑
j=1

j∑
j′=2

(n4j−3 − n4j−4)(n4j′−4 − n4j′−5)
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+

p∑
j=1

(
j−1∑
j′=1

(n4j′−1 − n4j′−3) +

p∑
j=j′

(n4j′−1 − n4j′−4)

)
n4j−4 +

p∑
j=1

(
p∑

j′=j

(n4j′−2 − n4j′−3)

)
n4j−3

−
p−1∑
j=1

(
p∑

j′=j+1

(n4j′−1 − n4j′−4) + n4j

)
n4j−1

−
p∑
j=1

(
j∑

j′=1

(n4j′−1 − n4j′−3) +

p∑
j′=j+1

(n4j′−2 − n4j′−3)

)
n4j−2.

3. Proofs of Theorems 1.1 and 1.2

Proof of Theorem 1.1. As (1.7) reduces to (1.8) when m = 1 and this case was proven in [22],
we assume m ≥ 2. Using Lemmas 2.2 and 2.3, one can check that for l = 4mp − 1 and
t = 4mp− 2p− 1

a(n) =

2p−1∑
j=1

(−1)jnmj − 1 (3.1)

and b1(n) + b2(n) equals

1 + n2mp−1 +

p∑
j=1

(
m−1∑
i=1

n2mj−2m+i −
2m−1∑
i=m

n2mj−2m+i

)

+

p∑
j=1

j∑
j′=1

m−1∑
k=1

k∑
k′=1

(n2mj−k − n2mj−k−1)(n2mj′−2m+k−k′+1 − n2mj′−2m+k−k′)

−
p∑
j=1

j∑
j′=1

m∑
k=1

m−k+1∑
k′=1

(n2mj−m−k+1 − n2mj−m−k)(n2mj′−2m−k′+1 − n2mj′−2m−k′)

+
m−1∑
s=1

p∑
j=1

(
j−1∑
j′=1

(n2mj′−s − n2mj′−2m+s) +

p∑
j′=j

(n2mj′−s − n2mj′−2m+s−1)

)
n2mj−2m+s−1

+

p∑
j=1

(
p∑

j′=j

(n2mj′−m − n2mj′−m−1)

)
n2mj−m−1

−
p−1∑
j=1

(
p∑

j′=j+1

(n2mj′−1 − n2mj′−2m) + n2mj

)
n2mj−1

−
m−1∑
s=1

p∑
j=1

(
j∑

j′=1

(n2mj′−m+s − n2mj′−m−s) +

p∑
j′=j+1

(n2mj′−m+s−1 − n2mj′−m−s)

)
n2mj−m+s−1.

(3.2)

Also, by (2.1) and (2.2)
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X(n) = (−1)n2mp−1q−Nn2mp−1
(q)N−1(q)n2mp−1

(q)N−n2mp−1−1

×
p∏
j=1

(−1)n2mj−1−n2mj−mq
1
2

m∑
s=1

(n2mj−2m+s−n2mj−2m+s−1)(n2mj−2m+s−n2mj−2m+s−1+1)

2m−1∏
s=1

(q)n2mj−2m+s−n2mj−2m+s−1

×
p−1∏
j=1

(−1)n2mj−n2mj−1

(q)n2mj−n2mj−1

. (3.3)

Upon comparing (2.3) and (3.1)–(3.3) with (1.7) and then simplifying, it suffices to prove that
for m ≥ 2

p∑
j=1

j∑
j′=1

m−1∑
k=1

k∑
k′=1

(n2mj−k − n2mj−k−1)(n2mj′−2m+k−k′+1 − n2mj′−2m+k−k′)

−
p∑
j=1

j∑
j′=1

m∑
k=1

m−k+1∑
k′=1

(n2mj−m−k+1 − n2mj−m−k)(n2mj′−2m−k′+1 − n2mj′−2m−k′)

+

m−1∑
s=1

p∑
j=1

(
j−1∑
j′=1

(n2mj′−s − n2mj′−2m+s) +

p∑
j′=j

(n2mj′−s − n2mj′−2m+s−1)

)
n2mj−2m+s−1

+

p∑
j=1

(
p∑

j′=j

(n2mj′−m − n2mj′−m−1)

)
n2mj−m−1

−
p−1∑
j=1

(
p∑

j′=j+1

(n2mj′−1 − n2mj′−2m) + n2mj

)
n2mj−1

−
m−1∑
s=1

p∑
j=1

(
j∑

j′=1

(n2mj′−m+s − n2mj′−m−s) +

p∑
j′=j+1

(n2mj′−m+s−1 − n2mj′−m−s)

)
n2mj−m+s−1

+

p∑
j=1

[(
n2mj−2m+1 + 1

2

)
− n2mj−2m+1n2mj−2m +

(
n2mj−m−1

2

)
− n2mj−mn2mj−m−1

+
1

2

m−1∑
s=2

(n2mj−2m+s − n2mj−2m+s−1)(n2mj−2m+s − n2mj−2m+s−1 + 1)

]
(3.4)

equals

∑
1≤i<j≤2mp−1

m-i

εi,j,mninj −
2mp−2∑
i=1

nini+1 (3.5)
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where εi,j,m is given by (1.5). Here, we have used the fact that

p∑
j=1

(
m−1∑
i=1

n2mj−2m+i −
2m−2∑
i=m

n2mj−2m+i

)
−

p−1∑
j=1

n2mj−1 =

2mp−2∑
i=1

γi,mni +

p−1∑
i=1

n2mi, (3.6)

where γi,m is given by (1.6), together with the identities

1

2

p∑
j=1

m∑
s=1

(n2mj−2m+s − n2mj−2m+s−1)(n2mj−2m+s − n2mj−2m+s−1 + 1)

=

p∑
j=1

(
n2mj−2m

2

)
+

(
n2mj−m + 1

2

)

+

p∑
j=1

[(
n2mj−2m+1 + 1

2

)
− n2mj−2m+1n2mj−2m +

(
n2mj−m−1

2

)
− n2mj−mn2mj−m−1

+

m∑
s=2

(n2mj−2m+s − n2mj−2m+s−1)(n2mj−2m+s − n2mj−2m+s−1 + 1)

]
(3.7)

and

p∑
j=1

(
n2mj−2m

2

)
+

(
n2mj−m + 1

2

)
+

p−1∑
i=1

n2mi =

2p−1∑
i=1

(
nim + 1

2

)
. (3.8)

We now sketch how to proceed from (3.4) to (3.5). Let Li denote the ith line of (3.4). First,
note that

L7 + L8 =

p−1∑
j=0

m−1∑
i=1

n2
2mj+i −

p−1∑
j=0

m∑
i=1

n2mj+i−1n2mj+i. (3.9)

Next, observe that both L1 and L2 simplify as the sum on k′ telescopes in each case. Thus,

L1 =

m−1∑
k=1

p∑
j=1

j∑
j′=1

(n2mj−k − n2mj−k−1)(n2mj′−2m+k − n2mj′−2m) (3.10)

L2 = −
m∑
k=1

p∑
j=1

j∑
j′=1

(n2mj−m−k+1 − n2mj−m−k)(n2mj′−2m − n2mj′−3m+k−1). (3.11)

Now, splitting L1 into two sums according to the second factor and then using the fact that the
resulting second sum telescopes gives

L1 =

m−1∑
k=1

p∑
j=1

j∑
j′=1

(n2mj−k − n2mj−k−1)n2mj′−2m+k +

p∑
j=1

j∑
j′=1

(n2mj−m − n2mj−1)n2mj′−2m
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=
m−1∑
k=1

p∑
j=1

j∑
j′=1

n2mj−kn2mj′−2m+k −
m−1∑
k=1

p∑
j=1

j∑
j′=1

n2mj−k−1n2mj′−2m+k

+

p∑
j=1

j∑
j′=1

n2mj−mn2mj′−2m −
p∑
j=1

j∑
j′=1

n2mj−1n2mj′−2m. (3.12)

A similar simplification for (3.11) yields

L2 = −
p∑
j=1

j∑
j′=1

(n2mj−m − n2mj−2m)n2mj′−2m

+

m∑
k=1

p∑
j=1

j∑
j′=1

(n2mj−m−k+1 − n2mj−m−k)n2mj′−3m+k−1

= −
p∑
j=1

j∑
j′=1

n2mj−mn2mj′−2m +

p∑
j=1

j∑
j′=1

n2mj−2mn2mj′−2m

+
m∑
k=1

p∑
j=1

j∑
j′=1

n2mj−m−k+1n2mj′−3m+k−1 −
m∑
k=1

p∑
j=1

j∑
j′=1

n2mj−m−kn2mj′−3m+k−1. (3.13)

Observe that the third sum in (3.12) cancels with the first sum in (3.13). Also, if we take s = 1
in the second triple sum of L3,

m−1∑
s=1

p∑
j=1

p∑
j′=j

(n2mj′−s − n2mj′−2m+s−1)n2mj−2m+s−1,

then this cancels with the fourth sum of (3.12) and the second sum of (3.13). Putting all of this
together and expanding sums we have that (3.4) equals

m−1∑
k=1

p∑
j=1

j∑
j′=1

n2mj−kn2mj′−2m+k −
m−1∑
k=1

p∑
j=1

j∑
j′=1

n2mj−k−1n2mj′−2m+k

+
m∑
k=1

p∑
j=1

j∑
j′=1

n2mj−m−k+1n2mj′−3m+k−1 −
m∑
k=1

p∑
j=1

j∑
j′=1

n2mj−m−kn2mj′−3m+k−1

+
m−1∑
s=1

p∑
j=1

j−1∑
j′=1

n2mj′−sn2mj−2m+s−1 −
m−1∑
s=1

p∑
j=1

j−1∑
j′=1

n2mj′−2m+sn2mj−2m+s−1

+

m−1∑
s=2

p∑
j=1

p∑
j′=j

n2mj′−sn2mj−2m+s−1 −
m−1∑
s=2

p∑
j=1

p∑
j′=j

n2mj′−2m+s−1n2mj−2m+s−1

+

p∑
j=1

p∑
j′=j

n2mj′−mn2mj−m−1 −
p∑
j=1

p∑
j′=j

n2mj′−m−1n2mj−m−1



16 JEREMY LOVEJOY AND ROBERT OSBURN

−
p−1∑
j=1

p∑
j′=j+1

n2mj′−1n2mj−1 +

p−1∑
j=1

p∑
j′=j+1

n2mj′−2mn2mj−1 −
p−1∑
j=1

n2mjn2mj−1

−
m−1∑
s=1

p∑
j=1

j∑
j′=1

n2mj′−m+sn2mj−m+s−1 +
m−1∑
s=1

p∑
j=1

j∑
j′=1

n2mj′−m−sn2mj−m+s−1

−
m−1∑
s=1

p∑
j=1

p∑
j′=j+1

n2mj′−m+s−1n2mj−m+s−1 +

m−1∑
s=1

p∑
j=1

p∑
j′=j+1

n2mj′−m−sn2mj−m+s−1

+

p−1∑
j=0

m−1∑
i=1

n2
2mj+i −

p−1∑
j=0

m∑
i=1

n2mj+i−1n2mj+i. (3.14)

The second sum on the fifth line of (3.14) can now be taken into the second sum of the fourth
line, increasing the upper limit of summation there to m. In this sum, we can then exchange j
and j′ and reindex, giving

−
m∑
s=2

p∑
j=1

j∑
j′=1

n2mj−2m+s−1n2mj′−2m+s−1.

Now take out the term j′ = j and shift the indices in this term by j → j + 1 and s→ s+ 1 to
cancel with the first sum on the last line of (3.14). Finally, in the second line of (3.14), perform
the shift j′ → j′ + 1 and start the sum at j′ = 1 (as j′ = 0 gives 0) to obtain

m∑
k=1

p∑
j=1

j−1∑
j′=1

n2mj−m−k+1n2mj′−m+k−1 −
m∑
k=1

p∑
j=1

j−1∑
j′=1

n2mj−m−kn2mj′−m+k−1. (3.15)

We now remove the k = m term from the second sum in (3.15) and note that what remains
cancels with the second sum in the penultimate line of (3.14). In total, this yields that (3.4)
equals

m−1∑
k=1

p∑
j=1

j∑
j′=1

n2mj−kn2mj′−2m+k −
m−1∑
k=1

p∑
j=1

j∑
j′=1

n2mj−k−1n2mj′−2m+k

+

m∑
k=1

p∑
j=1

j−1∑
j′=1

n2mj−m−k+1n2mj′−m+k−1 −
p∑
j=1

j−1∑
j′=1

n2mj−2mn2mj′−1

+
m−1∑
s=1

p∑
j=1

j−1∑
j′=1

n2mj′−sn2mj−2m+s−1 −
m−1∑
s=1

p∑
j=1

j−1∑
j′=1

n2mj′−2m+sn2mj−2m+s−1

+
m−1∑
s=2

p∑
j=1

p∑
j′=j

n2mj′−sn2mj−2m+s−1 −
m∑
s=2

p∑
j=1

j−1∑
j′=1

n2mj−2m+s−1n2mj′−2m+s−1
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+

p∑
j=1

p∑
j′=j

n2mj′−mn2mj−m−1

−
p−1∑
j=1

p∑
j′=j+1

n2mj′−1n2mj−1 +

p−1∑
j=1

p∑
j′=j+1

n2mj′−2mn2mj−1 −
p−1∑
j=1

n2mjn2mj−1

−
m−1∑
s=1

p∑
j=1

j∑
j′=1

n2mj′−m+sn2mj−m+s−1 +
m−1∑
s=1

p∑
j=1

j∑
j′=1

n2mj′−m−sn2mj−m+s−1

−
m−1∑
s=1

p∑
j=1

p∑
j′=j+1

n2mj′−m+s−1n2mj−m+s−1

−
p−1∑
j=0

m∑
i=1

n2mj+i−1n2mj+i. (3.16)

We now simplify further. The k = 1 term of the first sum in the second line cancels with the
s = 1 term of the sum in the penulitimate line. The first sum on the fourth line cancels with
the second sum of the first line once we remove the k = m− 1 term. This k = m− 1 term then
cancels with the fifth line. The first sum in the sixth line is the s = m term of the sum in the
penultimate line. The second sum in the sixth line cancels with the second sum in the second
line. The last sum in the sixth line is the i = 0 term in the last line. Finally, we remove the
j′ = j term from the first sum in the seventh line and write it in the last line. Thus, (3.4) equals

m−1∑
k=1

p∑
j=1

j∑
j′=1

n2mj′−2m+kn2mj−k +

m∑
k=2

p∑
j=1

j−1∑
j′=1

n2mj′−m+k−1n2mj−m−k+1

+
m−1∑
s=1

p∑
j=1

j−1∑
j′=1

n2mj′−sn2mj−2m+s−1 +
m−1∑
s=1

p∑
j=1

j∑
j′=1

n2mj′−m−sn2mj−m+s−1

−
m−1∑
s=1

p∑
j=1

j−1∑
j′=1

n2mj′−2m+sn2mj−2m+s−1 −
m−1∑
s=1

p∑
j=1

j−1∑
j′=1

n2mj′−m+sn2mj−m+s−1

−
m∑
s=2

p∑
j′=1

j−1∑
j′=1

n2mj′−2m+s−1n2mj−2m+s−1 −
m∑
s=2

p−1∑
j=1

p∑
j′=j+1

n2mj−m+s−1n2mj′−m+s−1

−
m−1∑
s=1

p∑
j=1

n2mj−m+sn2mj−m+s−1 −
p−1∑
j=0

m∑
i=0

n2mj+i−1n2mj+i. (3.17)

Now we see that this is equal to (3.5) as follows. The first four lines of (3.17) correspond to the
first term in (3.5); namely, the first line of (3.17) corresponds to (i, j) ≡ (i,−i) mod 2m, the
second line to (i, j) ≡ (i,−i− 1) mod 2m, the third line to (i, j) ≡ (i, i− 1) mod 2m and the
fourth line to (i, j) ≡ (i, i) mod 2m. Finally, the fifth line of (3.17) matches the second sum of
(3.5). Thus, we have proven that (3.4) equals (3.5). �
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Proof of Theorem 1.2. As (1.11) reduces to (1.12) when m = 1 and this case was proven in
[22], we assume m ≥ 2. Using Lemmas 2.4 and 2.5, one can check that for l = 4mp + 1 and
t = 4mp− 2p+ 1

a(n) = −
2p−1∑
j=1

(−1)jnmj (3.18)

and b1(n) + b2(n) equals

p∑
j=1

[
m−1∑
i=0

n2mj−2m+i −
2m−1∑
i=m+1

n2mj−2m+i

]

+
m∑
k=1

p∑
j=1

j∑
j′=1

(n2mj−k+1 − n2mj−k)(n2mj′−2m+k − n2mj′−2m)

−
m−1∑
s=1

p∑
j=2

j∑
j′=2

(n2mj−m−s+1 − n2mj−m−s)(n2mj′−2m − n2mj′−3m+s)

+

p∑
j=1

(
p∑

j′=j

(n2mj′ − n2mj′−2m+1) + n2mj−2m+1

)
n2mj−2m

+
m−1∑
s=1

p∑
j=1

(
j∑

j′=1

(n2mj′−s − n2mj′−2m+s) +

p∑
j′=j+1

(n2mj′−s − n2mj′−2m+s+1)

)
n2mj−2m+s

−
p∑
j=1

(
p∑

j′=j

(n2mj′−m+1 − n2mj′−m)

)
n2mj−m

−
m−1∑
s=1

p∑
j=1

(
j−1∑
j′=1

(n2mj′−m+s − n2mj′−m−s) +

p∑
j′=j

(n2mj′−m+s+1 − n2mj′−m−s)

)
n2mj−m+s.

(3.19)

Also, by (2.1) and (2.2)

X(n) = (−1)n2mpq−Nn2mp
(q)N−1(q)n2mp

(q)N−n2mp−1

×
p∏
j=1

(−1)n2mj−n2mj−mq
1
2

m∑
s=1

(n2mj−2m+s−n2mj−2m+s−1)(n2mj−2m+s−n2mj−2m+s−1+1)

2m∏
s=1

(q)n2mj−2m+s−n2mj−2m+s−1

. (3.20)

Upon comparing (2.3) and (3.18)–(3.20) with (1.11) and then simplifying, it suffices to prove
that for m ≥ 2
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m∑
k=1

p∑
j=1

j∑
j′=1

(n2mj−k+1 − n2mj−k)(n2mj′−2m+k − n2mj′−2m)

−
m−1∑
s=1

p∑
j=2

j∑
j′=2

(n2mj−m−s+1 − n2mj−m−s)(n2mj′−2m − n2mj′−3m+s)

+

p∑
j=1

p∑
j′=j

(n2mj′ − n2mj′−2m+1)n2mj−2m +

p∑
j=1

n2mj−2m+1n2mj−2m

+
m−1∑
s=1

p∑
j=1

(
j∑

j′=1

(n2mj′−s − n2mj′−2m+s) +

p∑
j′=j+1

(n2mj′−s − n2mj′−2m+s+1)

)
n2mj−2m+s

−
p∑
j=1

(
p∑

j′=j

(n2mj′−m+1 − n2mj′−m)

)
n2mj−m

−
m−1∑
s=1

p∑
j=1

(
j−1∑
j′=1

(n2mj′−m+s − n2mj′−m−s) +

p∑
j′=j

(n2mj′−m+s+1 − n2mj′−m−s)

)
n2mj−m+s

+

p∑
j=1

[(
n2mj−2m+1 + 1

2

)
− n2mj−2m+1n2mj−2m +

(
n2mj−m−1

2

)
− n2mj−mn2mj−m−1

+
1

2

m−1∑
s=2

(n2mj−2m+s − n2mj−2m+s−1)(n2mj−2m+s − n2mj−2m+s−1 + 1)

]
(3.21)

equals ∑
1≤i<j≤2mp

m-i

∆i,j,mninj (3.22)

where ∆i,j,m is given by (1.9). Here, we have used (3.7), (3.8) and the fact that

p∑
j=1

[
m−1∑
i=0

n2mj−2m+i −
2m−1∑
i=m+1

n2mj−2m+i

]
=

2mp−1∑
i=1

βi,mni +

p−1∑
i=1

n2mi (3.23)

where βi,m is given by (1.10).

We now sketch how to go from (3.21) to (3.22). Let L̂i denote the ith line of (3.21). We first

split L̂1 into two parts according to the second factor and note that the sum on k in the second
part telescopes. Thus,

L̂1 =

m∑
k=1

p∑
j=1

j∑
j′=1

(n2mj−k+1 − n2mj−k)n2mj′−2m+k +

p∑
j=1

j∑
j′=1

(n2mj−m − n2mj)n2mj′−2m. (3.24)
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Similarly, we split L̂2 into two parts according to the second factor and note that the sum on s
in the first part telescopes. Thus,

L̂2 = −
p∑
j=1

j∑
j′=1

(n2mj−m − n2mj−2m+1)n2mj′−2m

+
m−1∑
s=1

p∑
j=2

j∑
j′=2

(n2mj−m−s+1 − n2mj−m−s)n2mj−3m+s.

(3.25)

Here, we have used the fact that n0 := 0. Now, the k = m term of the first sum in (3.24) cancels

with L̂5. If we combine the double sum of (3.24) with the double sum in L̂3, then the resulting

sum cancels with the first sum in (3.25). Note that L̂i = Li for i = 7 and 8. Hence, the single

sum in L̂3 cancels with the i = 1 term of the second sum in (3.9). Putting this together and
expanding sums we now have that (3.21) equals

m−1∑
k=1

p∑
j=1

j∑
j′=1

n2mj−k+1n2mj′−2m+k −
m−1∑
k=1

p∑
j=1

j∑
j′=1

n2mj−kn2mj′−2m+k

+

m−1∑
s=1

p∑
j=2

j∑
j′=2

n2mj−m−s+1n2mj′−3m+s −
m−1∑
s=1

p∑
j=2

j∑
j′=2

n2mj−m−sn2mj′−3m+s

+
m−1∑
s=1

p∑
j=1

j∑
j′=1

n2mj′−sn2mj−2m+s −
m−1∑
s=1

p∑
j=1

j∑
j′=1

n2mj′−2m+sn2mj−2m+s

+

m−1∑
s=1

p∑
j=1

p∑
j′=j+1

n2mj′−sn2mj−2m+s −
m−1∑
s=1

p∑
j=1

p∑
j′=j+1

n2mj′−2m+s+1n2mj−2m+s

−
m−1∑
s=1

p∑
j=1

j−1∑
j′=1

n2mj′−m+sn2mj−m+s +
m−1∑
s=1

p∑
j=1

j−1∑
j′=1

n2mj′−m−sn2mj−m+s

−
m−1∑
s=1

p∑
j=1

p∑
j′=j

n2mj′−m+s+1n2mj−m+s +
m−1∑
s=1

p∑
j=1

p∑
j′=j

n2mj′−m−sn2mj−m+s

+

p−1∑
j=0

m−1∑
i=1

n2
2mj+i −

p−1∑
j=0

m∑
i=2

n2mj+i−1n2mj+i. (3.26)

We combine the j′ = j term from the first sum of the third line in (3.26) with the first sum
on the fourth line, and then cancel this with the second sum in the first line. Next, the j′ = j
term in the second sum of the third line cancels with the first sum in the last line. Thus, (3.21)
equals
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m−1∑
k=1

p∑
j=1

j∑
j′=1

n2mj−k+1n2mj′−2m+k

+
m−1∑
s=1

p∑
j=2

j∑
j′=2

n2mj−m−s+1n2mj′−3m+s −
m−1∑
s=1

p∑
j=2

j∑
j′=2

n2mj−m−sn2mj′−3m+s

+

m−1∑
s=1

p∑
j=1

j−1∑
j′=1

n2mj′−sn2mj−2m+s −
m−1∑
s=1

p∑
j=1

j−1∑
j′=1

n2mj′−2m+sn2mj−2m+s

−
m−1∑
s=1

p∑
j=1

p∑
j′=j+1

n2mj′−2m+s+1n2mj−2m+s

−
m−1∑
s=1

p∑
j=1

j−1∑
j′=1

n2mj′−m+sn2mj−m+s +
m−1∑
s=1

p∑
j=1

j−1∑
j′=1

n2mj′−m−sn2mj−m+s

−
m−1∑
s=1

p∑
j=1

p∑
j′=j

n2mj′−m+s+1n2mj−m+s +

m−1∑
s=1

p∑
j=1

p∑
j′=j

n2mj′−m−sn2mj−m+s

−
p−1∑
j=0

m∑
i=2

n2mj+i−1n2mj+i. (3.27)

Now, the last line of (3.27) is just the j′ = j term of the fourth line. In the second line,
perform the shift j′ → j′ + 1 and start the sum at j = 1. The second sum on this line then
cancels with the second sum of penultimate line, except for the j′ = j term. But this term now
becomes the j′ = j term for the second sum in the fifth line. After simplifying and gathering
terms, we have

m−1∑
k=1

p∑
j=1

j∑
j′=1

n2mj′−2m+kn2mj−k+1 +
m−1∑
s=1

p∑
j=1

j−1∑
j′=1

n2mj′−m+sn2mj−m−s+1

+

m−1∑
s=1

p∑
j=1

j−1∑
j′=1

n2mj′−sn2mj−2m+s +
m−1∑
s=1

p∑
j=1

j∑
j′=1

n2mj′−m−sn2mj−m+s

−
m−1∑
s=1

p∑
j=1

j−1∑
j′=1

n2mj′−2m+sn2mj−2m+s −
m−1∑
s=1

p∑
j=1

j−1∑
j′=1

n2mj′−m+sn2mj−m+s

−
m−1∑
s=1

p∑
j=1

j∑
j′=1

n2mj′−2m+sn2mj−2m+s+1 −
m−1∑
s=1

p∑
j=1

j∑
j′=1

n2mj′−m+sn2mj−m+s+1. (3.28)

Now we see that this is equal to (3.22) as follows. Namely, the first line of (3.28) corresponds
to (i, j) ≡ (i,−i + 1) mod 2m, the second line to (i, j) ≡ (i,−i) mod 2m, the third line to
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(i, j) ≡ (i, i) mod 2m and the fourth line to (i, j) ≡ (i, i+ 1) mod 2m. This completes the proof
that (3.21) is equal to (3.22). �

4. Concluding remarks and questions

The work in this paper may be compared with that of Hikami and the first author in [11, 12,
15], where one finds generalized Kontsevich-Zagier functions Ft(q) and generalized U -functions
Ut(x; q) for torus knots T(2,2t+1). In the context of this family of torus knots, we have

Ft(q) := qt
∞∑

kt≥···≥k1≥0

(q)kt

t−1∏
i=1

qki(ki+1)

[
ki+1

ki

]
(4.1)

and

Ut(x; q) := q−t
∑

kt≥···≥k1≥1

(−xq)kt−1(−x−1q)kt−1 q
kt

t−1∏
i=1

qk
2
i

[
ki+1 + ki − i+ 2

∑i−1
j=1 kj

ki+1 − ki

]
. (4.2)

(Note that F1(q) = F1,1(q) and U1(x; q) = U1,1(x; q) since the underlying knot in each case is the
trefoil). While both the torus knot and double twist knot families of functions satisfy the duality
in Theorem 1.3, much more is known in the case of torus knots. For example, the functions
Ft(q) have explicit quantum modular properties which were given by Hikami [12]. As for (4.2),
it can be written in terms of indefinite ternary theta series [15]. It is natural to ask whether the
Fm,p(q) (and/or Fm,p(q)) have quantum modularity or other related properties, and whether
the Um,p(x; q) (and/or the Um,p(x; q)) have any nice representation in terms of indefinite theta
series.

We close with two further questions. First, for torus knots T(2,2t+1), the q-hypergeometric
series expressions for JN (T(2,2t+1); q) which led to the generalized Kontsevich-Zagier functions
Ft(q) were computed in [11, 12] using difference equations. Can one prove Theorems 1.1 and
1.2 using this technique? Second, both U1,1(x; q) and F1,1(q) are interesting combinatorial
generating functions and the coefficients of F1,1(1−q) and U1,1(1; q) satisfy intriguing congruences
[1, 2, 4, 7, 8, 21]. It would be worthwhile to determine if the same is true for Um,p(x; q) and
Fm,p(q).
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