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Abstract. Andrews and Sellers recently initiated the study of arithmetic properties of Fish-
burn numbers. In this paper we prove prime power congruences for generalized Fishburn num-
bers. These numbers are the coefficients in the 1 − q expansion of the Kontsevich-Zagier series
Ft(q) for the torus knots T (3, 2t), t ≥ 2. The proof uses a strong divisibility result of Ahlgren,
Kim and Lovejoy and a new “strange identity” for Ft(q).

1. Introduction

The Fishburn numbers ξ(n) are the coefficients in the formal power series expansion

F (1− q) =:
∑
n≥0

ξ(n)qn = 1 + q + 2q2 + 5q3 + 15q4 + 53q5 + · · · (1.1)

where F (q) :=
∑

n≥0(q)n is the Kontsevich-Zagier “strange” series [31] and

(a1, a2, . . . , aj)n = (a1, a2, . . . , aj ; q)n :=
n∏
k=1

(1− a1qk−1)(1− a2qk−1) · · · (1− ajqk−1)

is the standard q-hypergeometric notation, valid for n ∈ N∪ {∞}. Here, the moniker “strange”
is used as F (q) does not converge on any open subset of C, but is well-defined when q is a root of
unity (where it is finite) and when q is replaced by 1− q as in (1.1). The Fishburn numbers are
of interest for their numerous combinatorial variants (see A022493 in [26]), asymptotics [27, 31]
and arithmetic properties [1, 3, 7, 10, 28]. In their marvelous paper, Andrews and Sellers [3]
proved congruences for ξ(n) modulo primes which were then extended to prime powers [1, 28].
For example, we have

ξ(5rm− 1) ≡ ξ(5rm− 2) ≡ 0 (mod 5r), (1.2)

ξ(7rm− 1) ≡ 0 (mod 7r) (1.3)

and
ξ(11rm− 1) ≡ ξ(11rm− 2) ≡ ξ(11rm− 3) ≡ 0 (mod 11r) (1.4)

for all natural numbers r and m. Our interest in this paper lies in the knot theoretic interpre-
tation of F (q) as it leads to a natural generalization of the coefficients ξ(n).

Let K be a knot and JN (K; q) be the usual colored Jones polynomial, normalized to be 1 for
the unknot. As a knot invariant, the colored Jones polynomial plays the lead role in many open
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problems in quantum topology. The sequence {JN (K; q)}N∈N appears to encode many subtle
geometric and topological properties of the knot K at a remarkably deep level. For example,
the Volume Conjecture [17, 23, 24] relates the value at ζN = e2πi/N of the Nth colored Jones
polynomial (or, equivalently, the Nth Kashaev invariant) of a knot to its hyperbolic volume; the
Strong Slope Conjecture [6, 16] posits that the maximal and minimal degrees of JN (K; q) in q
contain information about essential surfaces in knot exteriors; the AJ Conjecture [5] connects
the recurrence relation for JN (K; q) to the A-polynomial of the knot [4], a plane curve describing
the SL(2,C) character variety of the knot complement. Explicit formulas for JN (K; q) in terms
of q-hypergeometric series are also of importance and have been proven for various families of
knots [11, 13, 14, 19, 20, 21, 22, 29, 30]. For example, if T (3, 2) = T (2, 3) is the right-handed
trefoil knot as in Figure 1, then [11, 19]

JN (T (3, 2); q) = q1−N
∑
n≥0

q−nN (q1−N )n. (1.5)

Figure 1. T (3, 2)

Observe that the Kontsevich-Zagier series F (q) matches the colored Jones polynomial for T (3, 2)
at roots of unity, that is, for q = ζN we have

ζNF (ζN ) = JN (T (3, 2); ζN ). (1.6)

Consider the family of torus knots T (3, 2t) for t ≥ 2 as in Figures 2 and 3.

Figure 2. T (3, 4)

2t repetitions

repeated
unit

Figure 3. T (3, 2t)

In this case, a q-hypergeometric expression for the colored Jones polynomial has been computed,
namely (see page 41, Théorème 3.2 in [18])
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JN (T (3, 2t); q) = (−1)h
′′(t)q2

t−1−h′(t)−N
∑
n≥0

(q1−N )nq
−Nnm(t)

×
∑

3
∑m(t)−1
`=1 j``≡1 (mod m(t))

(−q−N )
∑m(t)−1
`=1 j`q

−a(t)+
∑m(t)−1
`=1

j``

m(t)
+
∑m(t)−1
`=1 (j`2 )

×
m(t)−1∑
k=0

q−kN
m(t)−1∏
`=1

[
n+ I(` ≤ k)

j`

]
(1.7)

where

h′′(t) =

{
2t−1
3 if t is even,

2t−2
3 if t is odd,

h′(t) =

{
2t−4
3 if t is even,

2t−5
3 if t is odd,

a(t) =

{
2t−1+1

3 if t is even,
2t+1
3 if t is odd,

m(t) = 2t−1, I(∗) is the characteristic function and[
n
k

]
=

[
n
k

]
q

:=
(q)n

(q)n−k(q)k

is the q-binomial coefficient. We note that the t = 2 case of (1.7) recovers equation (16) in [13].
We now define the Kontsevich-Zagier series for torus knots T (3, 2t) as1

Ft(q) = (−1)h
′′(t)q−h

′(t)
∑
n≥0

(q)n
∑

3
∑m(t)−1
`=1 j``≡1 (mod m(t))

q
−a(t)+

∑m(t)−1
`=1

j``

m(t)
+
∑m(t)−1
`=1 (j`2 )

×
m(t)−1∑
k=0

m(t)−1∏
`=1

[
n+ I(` ≤ k)

j`

]
(1.8)

and notice that, similar to (1.6), we have

ζ2
t−1
N Ft(ζN ) = JN (T (3, 2t); ζN ).

As with the original Kontsevich-Zagier series, Ft(q) does not converge on any open subset of C,
but is well-defined when q is a root of unity (where it is finite) and when q is replaced by 1− q.
Thus, we may write

Ft(1− q) =:
∑
n≥0

ξt(n)qn.

For example,

F2(1− q) = 1 + 3q + 11q2 + 50q3 + 280q4 + 1890q5 + · · ·
and

F3(1− q) = 1 + 7q + 49q2 + 420q3 + 4515q4 + 59367q5 + · · · .
1For t = 1, one may define the sum over the j` to be 1 in (1.7) and (1.8) to recover (1.5) and F (q).
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The purpose of this paper to illustrate how a recent result of Ahlgren, Kim and Lovejoy [2]
combined with a new “strange identity” for Ft(q) allow one to prove prime power congruences
akin to (1.2)–(1.4) for the generalized Fishburn numbers ξt(n). For natural numbers s and t ≥ 2
and the periodic function

χt(n) = χ3·2t+1(n) :=


1 if n ≡ 2t+1 − 3, 3 + 2t+2 (mod 3 · 2t+1),

−1 if n ≡ 2t+1 + 3, 2t+2 − 3 (mod 3 · 2t+1),

0 otherwise,

(1.9)

we define the set

St,χt(s) =
{

0 ≤ j ≤ s− 1 : j ≡ n2 − (2t+1 − 3)2

3 · 2t+2
(mod s) where χt(n) 6= 0

}
.

Our main result is now the following.

Theorem 1.1. If p ≥ 5 is a prime and j ∈ {1, 2, . . . , p− 1−max St,χt(p)}, then

ξt(p
rm− j) ≡ 0 (mod pr)

for all natural numbers r, m and t ≥ 2.

One can check that S2,χ2(5) = {0, 2, 3}, S2,χ2(17) = {0, 2, 3, 4, 7, 8, 9, 11, 14}, S3,χ3(7) = {0, 2, 3, 4}
and S3,χ3(13) = {0, 2, 5, 6, 7, 8, 11}. Thus, by Theorem 1.1, we have

ξ2(5
rm− 1) ≡ 0 (mod 5r),

ξ2(17rm− 1) ≡ ξ2(17rm− 2) ≡ 0 (mod 17r),

ξ3(7
rm− 1) ≡ ξ3(7rm− 2) ≡ 0 (mod 7r)

and
ξ3(13rm− 1) ≡ 0 (mod 13r)

for all natural numbers r and m.
The paper is organized as follows. In Section 2, we recall the main result from [2] and then

record some preliminaries, including the new “strange identity” (see Theorem 2.4). Theorem
2.4 is of independent interest for at least three reasons. First, there seem to be few such explicit
instances in which the underlying identity has been proven (for example, see equation (70) in
[14] and Theorem 2 in [31]). Second, this result implies (via Theorem 2.1) a strong divisibility
property for the coefficients of the partial sums of the dissection of Ft(q). This is used in turn
to prove Theorem 1.1. Third, it is a key component in determining the quantum modularity for
Ft(q) [9]. In Section 3, we prove Theorem 1.1. Finally, in Section 4, we discuss some possibilities
for future work.

2. Preliminaries

Our first step is to recall the setup from [2]. Let F be a function of the form

F(q) =
∑
n≥0

(q)nfn(q) (2.1)

where fn(q) ∈ Z[q]. For positive integers s and N , consider the partial sum
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F(q;N) :=
N∑
n=0

(q)nfn(q)

and its s-dissection

F(q;N) =
s−1∑
i=0

qiAF ,s(N, i, q
s)

where AF ,s(N, i, q) ∈ Z[q]. Now, consider the partial theta functions

P
(ν)
a,b,χ(q) :=

∑
n≥0

nνχ(n)q
n2−a
b (2.2)

where ν ∈ {0, 1}, a ≥ 0, b > 0 are integers and χ : Z → C is a function satisfying the following
two conditions:

χ(n) 6= 0 only if
n2 − a
b
∈ Z (2.3)

and for each root of unity ζ,

the function n→ ζ
n2−a
b χ(n) is periodic and has mean value zero. (2.4)

Finally, define the set Sa,b,χ(s) by

Sa,b,χ(s) =

{
0 ≤ j ≤ s− 1 : j ≡ n2 − a

b
(mod s) where χ(n) 6= 0

}
.

We can now state the main result in [2].

Theorem 2.1. Suppose that F and P
(ν)
a,b,χ are functions as in (2.1) and (2.2) and for each root

of unity ζ, we have the asymptotic expansion

F(ζe−t) ∼ P (ν)
a,b,χ(ζe−t)

as t→ 0+. Suppose that s and N are positive integers and i 6∈ Sa,b,χ(s). Then

(q)λ(N,s) | AF ,s(N, i, q)
where λ(N, s) :=

⌊
N+1
s

⌋
.

We now turn to our situation and record the following result. Throughout, we assume that
t ≥ 2.

Proposition 2.2. The periodic function χt (as defined by (1.9)) satisfies (2.3) and (2.4).

Proof. A straightforward calculation using (1.9) confirms (2.3) with a = (2t+1 − 3)2 and b =
3 · 2t+2. Suppose ζ is a root of unity of order M and define

ψt(n) = ζ
n2−(2t+1−3)2

3·2t+2 χt.

Note that ψt has period M(3 · 2t+1). We now claim that
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M(3·2t+1)∑
n=1

ψt(n) = 0. (2.5)

Suppose M is even. By (1.9), we obtain

χt(n+ 3 · 2tM) = χt(n) (2.6)

for all n. We also have

ζ
(n+3·2tM)2−(2t+1−3)2

3·2t+2 = ζ
M(n+3·2t−1M2)

2 ζ
n2−(2t+1−3)2

3·2t+2 . (2.7)

As ψt is supported on odd integers, we can assume that n is odd. Then M(n + 3 · 2t−1M2) is

an odd multiple of M and so (2.7) equals −ζ
n2−(2t+1−3)2

3·2t+2 . This fact and (2.6) imply

M(3·2t+1)∑
n=1

ψt(n) =

M(3·2t)∑
n=1

(ψt(n) + ψt(n+ 3 · 2tM)) = 0.

Now, suppose M is odd. We break up (2.5) into four sums, one for each congruence class
modulo 3 · 2t+1 in (1.9). Specifically,

M(3·2t+1)∑
n=1

ψt(n) =
M−1∑
m=0

ζ3·2
tm2+(2t+2+3)m+2t+3 −

M−1∑
m=0

ζ3·2
tm2+(2t+2−3)m+2t−1

+
M−1∑
m=0

ζ3·2
tm2+(2t+1−3)m −

M−1∑
m=0

ζ3·2
tm2+(2t+1+3)m+2. (2.8)

Let it,M be the unique solution to 2ti ≡ 1 (mod M). Performing the shift m → m + it,M
(respectively, m → m − it,M ) to the second (respectively, fourth) sum in (2.8) followed by a
routine simplification implies (2.5). The result now follows. �

For χt as in (1.9), consider the series

Ht(x) = Ht(x, q) =
∑
n≥0

χt(n)q
n2−(2t+1−3)2

3·2t+2 x
n−(2t+1−3)

2 .

Proposition 2.3. Let h(t) = 2t − 2. We have

Ht(x) = (−1)h
′′(t)q−h

′(t)x−h(t)
∑
n≥0

(x)n+1x
nm(t)

×
∑

3
∑m(t)−1
`=1 j``≡1 (mod m(t))

(−x)
∑m(t)−1
`=1 j`q

−a(t)+
∑m(t)−1
`=1

j``

m(t)
+
∑m(t)−1
`=1 (j`2 )

×
m(t)−1∑
k=0

xk
m(t)−1∏
`=1

[
n+ I(` ≤ k)

j`

]
. (2.9)
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Proof. Let ft(x) denote the right-hand side of (2.9). Then ft(x) satisfies the difference equation
(see (3.3.11) in [18])

ft(x) = 1− q2x3 − q2t−1x2t + q3+2tx3+2t + q5·2
t−3x3·2

t
ft(q

2x). (2.10)

One can directly verify that Ht(x) also satisfies (2.10) using (1.9). The result now easily follows.
�

Recall that the Kontsevich-Zagier series F (q) satisfies the “strange identity”

F (q)“ = ”− 1

2

∑
n≥1

n
(12

n

)
q
n2−1
24 (2.11)

where “ = ” means that the two sides agree to all orders at every root of unity (for further
details, see Sections 2 and 5 in [31]) and

(
12
∗
)

is the quadratic character of conductor 12. We
now prove the following new strange identity for the Kontsevich-Zagier series for torus knots
T (3, 2t)2.

Theorem 2.4. For each root of unity ζ, we have the asymptotic expansion

Ft(ζe
−u) ∼ −1

2
P

(1)
(2t+1−3)2,3·2t+2,χt

(ζe−u) (2.12)

as u→ 0+.

Proof of Theorem 2.4. For ease of notation, let
′

denote the condition

3

m(t)−1∑
`=1

j`` ≡ 1 (mod m(t))

occurring in the second sum in (1.7) on the j`,

v = v(j1, . . . , jm(t)−1) :=
−a(t) +

∑m(t)−1
`=1 j``

m(t)
+

m(t)−1∑
`=1

(
j`
2

)
and c the reduction of an integer c modulo m(t). The following identity3 implies (2.12) upon
setting q = ζe−u, then letting u→ 0+:

1

2

∑
n≥0

nχt(n)q
n2−(2t+1−3)2

3·2t+2 − 2t+1 − 3

2
(q2

t−1, q2
t+1, q2

t+1
; q2

t+1
)∞(q2, q2

t+2−2; q2
t+2

)∞

= (−1)h
′′(t)+1q−h

′(t)
∑
n≥0

[
(q)n − (q)∞

]

×
∑′

j1,...,jm(t)−1

(−1)
∑m(t)−1
`=1 j`qv

m(t)−1∑
k=0

m(t)−1∏
`=1

[
n+ I(` ≤ k)

j`

]
2Using the convention in footnote 1, we can take t = 1 in (1.9) and (2.12) to recover (2.11).
3The t = 2 case of (2.13) gives an alternative (and corrected) version of Proposition 5 in [15].
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+ (−1)h
′′(t)+1q−h

′(t)(q)∞

( ∞∑
i=1

qi

1− qi

)∑
n≥0

bn,t(q) + (−1)h
′′(t)q−h

′(t)(q)∞
∑
n≥0

(n− h(t))bn,t(q)

(2.13)

where

bn,t(q) = an,t(q)− an−1,t(q) (2.14)

and

an,t(q) =
∑′

j1,...,jm(t)−1

(−1)
∑m(t)−1
`=1 j`qv

m(t)−1∏
`=1

[
n−

∑m(t)−1
`=1 j`−(n−

∑m(t)−1
`=1 j`)

m(t) + I(` ≤ n−
∑m(t)−1

`=1 j`)

j`

]
.

(2.15)
To prove (2.13), we begin by rewriting (2.9) as

Ht(x) = (−1)h
′′(t)q−h

′(t)(1− x)
∑
n≥0

[
(qx)n − (qx)∞

]
xnm(t)

×
∑′

j1,...,jm(t)−1

(−1)
∑m(t)−1
`=1 j`x−h(t)+

∑m(t)−1
`=1 j`qv

m(t)−1∑
k=0

xk
m(t)−1∏
`=1

[
n+ I(` ≤ k)

j`

]
+ (qx)∞(−1)h

′′(t)q−h
′(t)x−h(t)(1− x)Mt(x, q) (2.16)

where

Mt(x, q) :=
∑
n≥0

xnm(t)
∑′

j1,...,jm(t)−1

(−x)
∑m(t)−1
`=1 j`qv

m(t)−1∑
k=0

xk
m(t)−1∏
`=1

[
n+ I(` ≤ k)

j`

]
. (2.17)

We now claim that

(1− x)Mt(x, q) =
∑
n≥0

bn,t(q)x
n (2.18)

where bn,t(q) is given by (2.14) and (2.15). To see (2.18), we first write

m(t)−1∑
`=1

j` = m(t)

⌊∑m(t)−1
`=1 j`
m(t)

⌋
+

m(t)−1∑
`=1

j`. (2.19)

We now have that Mt(x, q) equals

∑′

j1,...,jm(t)−1

m(t)−1∑
k=0

∑
n≥0

(−1)
∑m(t)−1
`=1 j`x

m(t)

(
n+

⌊∑m(t)−1
`=1

j`
m(t)

⌋)
+k+

∑m(t)−1
`=1 j`

qv
m(t)−1∏
`=1

[
n+ I(` ≤ k)

j`

]
(using (2.17) and (2.19))
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=
∑′

j1,...,jm(t)−1

m(t)−1∑
k=0

∑
n≥0

(−1)
∑m(t)−1
`=1 j`xm(t)n+k+

∑m(t)−1
`=1 j`qv

m(t)−1∏
`=1

[
n−

⌊∑m(t)−1
`=1 j`
m(t)

⌋
+ I(` ≤ k)

j`

]
(

letting n→ n−

⌊∑m(t)−1
`=1 j`
m(t)

⌋)

=

m(t)−1∑
k=0

∑′

j1,...,jm(t)−1

∑
n≡k+

∑m(t)−1
`=1 j` (mod m(t))

(−1)
∑m(t)−1
`=1 j`xnqv

m(t)−1∏
`=1

[
n−k−

∑m(t)−1
`=1 j`

m(t) + I(` ≤ k)

j`

]
(

letting n→
n− k −

∑m(t)−1
`=1 j`

m(t)
and using (2.19)

)

=
∑
n≥0

∑′

j1,...,jm(t)−1

xn(−1)
∑m(t)−1
`=1 j`qv

m(t)−1∏
`=1

[
n−

∑m(t)−1
`=1 j`−(n−

∑m(t)−1
`=1 j`)

m(t) + I(` ≤ n−
∑m(t)−1

`=1 j`)

j`

]
(

combining the outer and innermost sum and replacing k with n−
m(t)−1∑
`=1

j`

)
=
∑
n≥0

an,t(q)x
n.

Thus, we obtain (2.18) via (2.14). We now substitute (2.18) into (2.16), then take the derivative
of both sides of (2.16) with respect to x and set x = 1. This yields the right-hand side of (2.13).
To obtain the left-hand side of (2.13), we additionally break up the resulting second sum into
four sums, one for each congruence class modulo 3 · 2t+1 in (1.9). Namely,

∑
n≥0

χt(n)q
n2−(2t+1−3)2

3·2t+2 =
∑
k≥0

(
q3·2

tk2+(2t+1−3)k − q3·2tk2+(2t+2−3)k+2t−1
)

+
∑
k≥0

(
q3·2

tk2+(2t+2+3)k+2t+3 − q3·2tk2+(2t+1+3)k+2
)
. (2.20)

Let k → k− 1, then replace k with −k in the third and fourth sums of (2.20) and combine with
the first and second sums in (2.20) to obtain

∑
k∈Z

(
q3·2

tk2+(2t+1−3)k − q3·2tk2+(2t+2−3)k+2t−1
)
. (2.21)

We now apply Watson’s quintiple product identity

∑
k∈Z

q
k(3k−1)

2 x3k(1− xqk) = (q, x, qx−1)∞(qx2, qx−2; q2)∞

with q → q2
t+1

and x = q2
t−1 to (2.21). This proves the result. �
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Remark 2.5. If we take x = 1 in (2.16), apply Watson’s quintiple product identity as above
and use the fact that the sum in (2.18) telescopes, then we have

(q)∞(−1)h
′′(t)q−h

′(t)
∑′

j1,...,jm(t)−1

(−1)
∑m(t)−1
`=1 j`

qv

(q)j1 · · · (q)jm(t)−1

= (q2
t−1, q2

t+1, q2
t+1

; q2
t+1

)∞(q2, q2
t+2−2; q2

t+2
)∞. (2.22)

This recovers Slater’s identity (see (86) in [25])

(q)∞
∑
n≥0

q2n(n+1)

(q)2n+1
= (q3, q5, q8; q8)∞(q2, q14; q16)∞

upon taking t = 2 in (2.22) and simplifying. It would be interesting to give an alternative proof
of (2.22), possibly using Bailey pairs or a combinatorial interpretation.

3. Proof of Theorem 1.1

Proof of Theorem 1.1. Let p be a prime ≥ 5 and n ≥ r be an integer. Consider the truncation
Ft(q; pn− 1) of (1.8) and its p-dissection

Ft(q; pn− 1) =

p−1∑
i=0

qiAFt,p(pn− 1, i, qp).

We have

Ft(1−q; pn−1) =
∑

i∈St,χt (p)

(1−q)iAFt,p(pn−1, i, (1−q)p)+
∑

i 6∈St,χt (p)

(1−q)iAFt,p(pn−1, i, (1−q)p).

By Theorem 2.1, Proposition 2.2 and Theorem 2.4, we can write

Ft(1− q; pn− 1) =
∑

i∈St,χt (p)

(1− q)iAFt,p(pn− 1, i, (1− q)p) + (1− (1− q)p)n
∑

i 6∈St,χt (p)

(1− q)igi(q)

for gi(q) ∈ Z[q]. By Lemma 3.3 in [28],

(1− (1− q)p)n ≡ O(qpn−(p−1)(r−1)) (mod pr)

and so

Ft(1− q; pn− 1) =
∑

i∈St,χt (p)

(1− q)iAFt,p(pn− 1, i, (1− q)p) +O(qpn−(p−1)(r−1)) (mod pr).

Choosing n large enough, it suffices to show that the coefficient of qp
rm−j in (1− q)iAFt,p(pn−

1, i, (1 − q)p) vanishes modulo pr for all i ∈ St,χt(p). Since AFt,p(pn − 1, i, (1 − q)p) ∈ Z[q], it
suffices to show that (

i+ lp

prm− j

)
≡ 0 (mod pr) (3.1)
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for natural numbers l and j ∈ {1, 2, . . . , p− 1−max St,χt(p)}. The condition on j implies that
j < p− i and so (3.1) follows from Lemma 3.4 in [28]. This proves the result. �

4. Further comments

There are several avenues for further study. First, one could investigate combinatorial descrip-
tions and asymptotic properties for the numbers ξt(n). Second, the colored Jones polynomial of
a knot K satisfies a cyclotomic expansion of the form

JN (K; q) =
∑
n≥0

(q1+N )n(q1−N )nCn(K; q),

where the cyclotomic coefficients Cn(K; q) are Laurent polynomials independent of N [12]. It
is highly desirable to find the cyclotomic expansion for the torus knots T (3, 2t), t ≥ 2. For
t = 1, the cyclotomic expansion has been found by Masbaum [22]. However, it is unclear if
his techniques are sufficient when t ≥ 2. They require finding a link whose components are
unknots, from which T (3, 2) can be recovered by introducing twists into a single region of one
of the components. Employing this process for t ≥ 2 appears to require extending it to allow for
multiple twist regions. Third, in relation to Theorem 2.4, a strange identity for the Kontsevich-
Zagier series associated to the torus knots T (2, 2t+1) for t ≥ 1 has also been computed (see (15)
in [14]). Do strange-type identities exist for similar q-series associated to satellite or hyperbolic
knots? Fourth, as the Kontsevich-Zagier series F (q) is a foundational example of a quantum
modular form [32], it is natural to wonder if the same is true for Ft(q). This is the subject of the
paper [9]. Finally, we are pleased to report that the techniques in this paper have recently been
extended in [8] to prove prime power congruences for additional families of generalized Fishburn
numbers.
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[12] K. Habiro, A unified Witten-Reshetikhin-Turaev invariant for homology spheres, Invent. Math. 171 (2008),
no. 1, 1–81.

[13] K. Hikami, Difference equation of the colored Jones polynomial for torus knot, Internat. J. Math. 15 (2004),
no. 9, 959–965.

[14] K. Hikami, q-series and L-functions related to half-derivates of the Andrews-Gordon identity, Ramanujan
J. 11 (2006), no. 2, 175–197.

[15] K. Hikami, A. Kirillov, Hypergeometric generating function of L-function, Slater’s identities, and quantum
invariant, St. Petersburg Math. J. 17 (2006), no. 1, 143–156.

[16] E. Kalfagianni, A. T. Tran, Knot cabling and the degree of the colored Jones polynomial, New York J. Math.
21 (2015), 905–941.

[17] R. M. Kashaev, The hyperbolic volume of knots from the quantum dilogarithm, Lett. Math. Phys. 39 (1997)
no. 3, 269–275.
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