
UNIMODAL SEQUENCES AND MIXED FALSE THETA FUNCTIONS

KEVIN ALLEN AND ROBERT OSBURN

Abstract. We consider two-parameter generalizations of Hecke-Appell type expansions for
the generating functions of unimodal and special unimodal sequences. We then determine their
explicit representations which involve mixed false theta functions. These results complement
recent striking work of Mortenson and Zwegers on the mixed mock modularity of the generalized
U -function due to Hikami and Lovejoy.

1. Introduction

1.1. Motivation. A sequence of positive integers is strongly unimodal if

a1 < . . . < ar < c > b1 > . . . > bs (1.1)

with n = c +
∑r

j=1 aj +
∑s

j=1 bj . Here, c is the peak and n is the weight of the sequence. The
rank of such a sequence is defined as s− r, i.e., the number of terms after c minus the number
of terms before c. For example, there are six strongly unimodal sequences of weight 5, namely

(5), (1, 4), (4, 1), (1, 3, 1), (2, 3), (3, 2).

The ranks are 0, −1, 1, 0, −1 and 1, respectively. Let u(m,n) be the number of such sequences
of weight n and rank m. A brief reflection reveals the generating function

U(x; q) :=
∑
n≥1
m∈Z

u(m,n)xmqn =
∑
n≥0

(−xq)n(−x−1q)nqn+1

where q is a non-zero complex number with |q| < 1 and

(a)n = (a; q)n :=

n∏
k=1

(1− aqk−1)

is the usual q-Pochhammer symbol, valid for n ∈ N ∪ {∞}. Such sequences not only abound in
algebra, combinatorics and geometry [3, 4, 25], but have recent intriguing connections to knot
theory and modular forms [7, 19]. In 2015, Hikami and Lovejoy [12] introduced the generalized
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U -function

U
(m)
t (x; q) := q−t

∑
kt≥···≥k1≥0

km≥1

(−xq)kt−1(−x−1q)kt−1qkt

×
t−1∏
i=1

qk
2
i

[
ki+1 − ki − i+

∑i
j=1(2kj + χ(m > j))

ki+1 − ki

] (1.2)

where t, m ∈ Z with 1 ≤ m ≤ t, χ(X) := 1 if X is true and χ(X) := 0 otherwise and[
n
k

]
:=

(q)n
(q)n−k(q)k

is the standard q-binomial coefficient. Note that

U
(1)
1 (x; q) = q−1U(x; q).

The motivation for (1.2) arises in quantum topology. Let K be a knot and JN (K; q) be the Nth
colored Jones polynomial, normalized to be 1 for the unknot. By computing an explicit formula
for the cyclotomic coefficients of the colored Jones polynomial of the left-handed torus knots
T ∗(2,2t+1) [12, Proposition 3.2] and comparing with (1.2), one observes

U
(1)
t (−qN ; q) = JN (T ∗(2,2t+1); q)

and so U
(m)
t (x; q) can be viewed as “extracted” from JN (T ∗(2,2t+1); q). In addition, Hikami and

Lovejoy proved the Hecke-Appell type expansion [12, Theorem 5.6]

U
(m)
t (−x; q) = −q−

t
2
−m

2
+ 3

8
(qx)∞(x−1q)∞

(q)2∞

×

 ∑
r,s≥0

r 6≡s (mod 2)

−
∑
r,s<0

r 6≡s (mod 2)

 (−1)
r−s−1

2 q
1
8
r2+ 4t+3

4
rs+ 1

8
s2+ 1+m+t

2
r+ 1−m+t

2
s

1− xq
r+s+1

2

(1.3)

and stated [12, page 13]“. . . it is hoped that the Hecke series expansions established in this paper

will turn out to be useful for determining modular transformation formulae for U
(m)
t (x; q).” Given

that the base case U
(1)
1 (x; q) is a mixed mock modular form [12, Theorem 4.1], one wonders if

the same is true for U
(m)
t (x; q). Mixed mock modular forms are functions which lie in the tensor

space of mock modular forms and modular forms [8, 18]. In recent striking work [22], Mortenson

and Zwegers show that this is indeed the case by expressing U
(m)
t (x; q) in terms of finite sums

of Hecke-type double sums

fa,b,c(x, y; q) :=
∑
r,s∈Z

sg(r, s)(−1)r+sxrysqa(
r
2)+brs+c(

s
2) (1.4)

where a, b and c are positive integers,

sg(r, s) :=
sg(r) + sg(s)

2
(1.5)
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and

sg(r) =

{
1 if r ≥ 0,

−1 if r < 0.

Precisely, they prove for t ≥ 2 and 1 ≤ m ≤ t [22, Theorem 1.7, Corollary 5.3]

(1− x)U
(m)
t−1 (−x; q) =

q−m+1−t

(q)3∞

2t−1∑
k=0

(−1)kq(
k+1
2 )

×
(
f1,4t−1,1(q

k+m+t, qk−t−m+1; q)− qmf1,4t−1,1(qk−t+m+1, qk−m+t; q)
)

× f1,2t,2t(2t−1)(x−1q1+k,−q(2t−1)(k+t)+t; q).
(1.6)

As discussed below, one can show that the expression within the parenthesis in (1.6) is (up to
an appropriate power of q) a modular form while the remaining double sum is a mixed mock

modular form. Thus, U
(m)
t (x; q) is a mixed mock modular form.

1.2. Statement of Results. A sequence of positive integers is unimodal if each < is replaced
with ≤ and we write c for the distinguished peak in (1.1). For example, there are twelve unimodal
sequences of weight 4, namely

(4), (1, 3), (3, 1), (1, 2, 1), (2, 2), (2, 2),

(1, 1, 2), (2, 1, 1), (1, 1, 1, 1), (1, 1, 1, 1), (1, 1, 1, 1), (1, 1, 1, 1).

These sequences have numerous other guises [1, Section 3] and appear in a wide variety of areas
[23]. The rank of such a sequence is again s− r. Inspired by (1.3) and (1.6), the purpose of this
paper is to first consider two-parameter generalizations of Hecke-Appell type expansions for the
four generating functions of unimodal and special unimodal sequences which appear in [14, 15].
We also briefly discuss a two-parameter generalization of the Hecke-Appell type expansion for
another type of unimodal sequence from [6] (see Section 4). To our knowledge, this covers
all known cases of unimodal sequences whose generating function has such an expansion. We
then demonstrate that the techniques in [22] are robust enough to find explicit representations
for all of these generalizations. These representations involve mixed false theta functions, i.e.,
expressions of the form

∑
hvgv where hv is a modular form and gv is a false theta function

[24]. These new occurrences of mixed modularity nicely complement (1.6) and hint at a general
underlying structure for Hecke-Appell type expansions with such properties. Let D := b2 − ac.
The key is to express each of these two-parameter generalizations in terms of finite sums of (1.4)
and then apply [22, Corollary 4.2] if D > 0 or [21, Theorem 1.4] if D < 0, both of which we recall
in Section 2. For example, one uses [22, Corollary 4.2] to deduce the mixed mock modularity of
(1.6).

For the first case, let u(m,n) denote the number of unimodal sequences of weight n and rank
m and consider its generating function [14, Eq. (2.2)]

U(x; q) :=
∑
n≥1
m∈Z

u(m,n)xmqn =
∑
n≥0

qn

(xq)n(q/x)n
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which satisfies [14, Eq. (2.5)]

U(x; q) =
(1− x)

(q)2∞

∑
r,s≥0

−
∑
r,s<0

 (−1)r+sq
r2

2
+2rs+ s2

2
+ 3

2
r+ 1

2
s

1− xqr
. (1.7)

For t, m ∈ Z with t ≥ 1, −t ≤ m ≤ 3t− 2 and t ≡ m (mod 2), consider the generalization

gt,m(x; q) :=

∑
r,s≥0

−
∑
r,s<0

 (−1)r+sq
r2

2
+2trs+ s2

2
+ t+1+m

2
r+ t+1−m

2
s

1− xqr
(1.8)

and

U (m)
t (x; q) :=

(1− x)

(q)2∞
gt,m(x; q). (1.9)

By (1.7)–(1.9), U (1)
1 (x; q) = U(x; q). Let

Θ(x; q) := (x)∞(q/x)∞(q)∞ =
∑
n∈Z

(−1)nq(
n
2)xn. (1.10)

Following [11], we use the term “generic” to mean that the parameters do not cause poles in the
Appell-Lerch series (2.1) or in the quotients of theta functions which occur after applying (2.2)

to the Hecke-type double sums. Our first result shows that U (m)
t (x; q) is a mixed false theta

function.

Theorem 1.1. For generic x, we have

U (m)
t (x; q) =

(1− x)

Θ(x; q)

q1−3t
2− t−m

2
+tm

(q)2∞

4t2−2∑
k=0

(−1)k+1q(
k+1
2 )+kf1,2t,1(q

2−4t2+ t+m
2

+k, q1+
t−m
2 ; q)

× f1,4t2−1,4t2(4t2−1)(x−1qk+1,−q4t2k−t2+tm−
t−m
2

+8t4 ; q).
(1.11)

For the second case, consider unimodal sequences with a double peak, i.e., sequences of the
form

a1 ≤ . . . ≤ ar ≤ c c ≥ b1 ≥ . . . ≥ bs
with weight n = 2c+

∑r
i=1 ai +

∑s
i=1 bi. For example, there are eleven such sequences of weight

6, namely

(3, 3), (2, 2, 2), (2, 2, 2), (2, 2, 1, 1), (1, 2, 2, 1), (1, 1, 2, 2),

(1, 1, 1, 1, 1, 1), (1, 1, 1, 1, 1, 1), (1, 1, 1, 1, 1, 1), (1, 1, 1, 1, 1, 1), (1, 1, 1, 1, 1, 1).

The rank of such a unimodal sequence is s − r where we assume that the empty sequence has
rank 0. Let W (m,n) denote the number of such sequences of weight n and rank m and consider
its generating function [15, Eq. (2.1)]

W (x; q) :=
∑
n≥0
m∈Z

W (m,n)xmqn =
∑
n≥0

q2n

(xq)n(q/x)n
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which satisfies [15, Eq. (2.3)]

W (x; q) =
(1− x)

(q)2∞

∑
r,s≥0

−
∑
r,s<0

 (−1)r+sq
r2

2
+2rs+ s2

2
+ r

2
+ s

2 (1 + q2r)

1− xqr
− 1

(xq)∞(q/x)∞
. (1.12)

For t, m ∈ Z with t ≥ 1, 1− t ≤ m ≤ t, consider the generalization

ht,m(x; q) :=

∑
r,s≥0

−
∑
r,s<0

 (−1)r+sq(
r+1
2 )+2trs+(s+1

2 )+(t−m)r(1 + q2mr)

1− xqr
(1.13)

and

W
(m)
t (x; q) :=

(1− x)

(q)2∞
ht,m(x; q)− 1

(xq)∞(q/x)∞
. (1.14)

By (1.12)–(1.14), W
(1)
1 (x; q) = W (x; q). Our second result demonstrates that W

(m)
t (x; q) is the

sum of a mixed false theta function and a modular form.

Theorem 1.2. For generic x, we have

W
(m)
t (x; q) =

(1− x)q1−m−2t
2

(q)2∞

4t2−2∑
k=0

(−1)k+1q(
k+1
2 )+kf1,2t,1(q

t−m+2−4t2+k, q; q)

×

(
1

Θ(x; q)
f1,4t2−1,4t2(4t2−1)(x

−1qk+1,−q8t4−m+4t2k; q)

− x−1

Θ(x−1; q)
f1,4t2−1,4t2(4t2−1)(xq

k+1,−q8t4−m+4t2k; q)

)

− 1

(xq)∞(q/x)∞
.

(1.15)

For the third case, recall that an overpartition is a partition in which the first occurrence of a
part may be overlined. Consider unimodal sequences where c is odd,

∑
ai is a partition without

repeated even parts and
∑
bi is an overpartition into odd parts whose largest part is not c. For

example, there are twelve such sequences of weight 5, namely

(5), (1, 3, 1), (1, 1, 3), (3, 1, 1), (3, 1, 1), (1, 3, 1), (2, 3),

(1, 1, 1, 1, 1), (1, 1, 1, 1, 1), (1, 1, 1, 1, 1), (1, 1, 1, 1, 1), (1, 1, 1, 1, 1).

The rank of such a sequence is the number of odd non-overlined parts in
∑
bi minus the number

of odd parts in
∑
ai where the empty sequence is assumed to have rank 0. Let V(m,n) denote

the number of such sequences of weight n and rank m and consider its generating function [15,
Eq. (4.1)]

V(x; q) :=
∑
n≥0
m∈Z

V(m,n)xmqn =
∑
n≥0

(−q)2nq2n+1

(xq; q2)n+1(q/x; q2)n+1
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which satisfies [15, Eq. (4.3)]

V(x; q) =
1

(q)∞(q2; q2)∞

∑
r,s≥0

−
∑
r,s<0

 (−1)r+sqr
2+2rs+ s2

2
+3r+ 3s

2
+1

(1 + q2r+1)(1− xq2r+1)
. (1.16)

For t, m ∈ Z where t ≥ 1, consider the generalization

kt,m(x; q) =
x

1 + x

(
1

x
kt,m(−1; q) + kt,m(x; q)

)
where

kt,m(x; q) :=

∑
r,s≥0

−
∑
r,s<0

 (−1)r+sq2(
r
2)+2trs+(s2)+2tr+2ms

1− xq2r+1
(1.17)

and

V(m)
t (x; q) :=

1

(q)∞(q2; q2)∞
kt,m(x; q). (1.18)

By (1.16)–(1.18), V(1)1 (x; q) = V(x; q). Our third result establishes that V(m)
t (x; q) is a mixed

false theta function.

Theorem 1.3. For generic x, we have

V(m)
t (x; q) =

xq−2t
2+3t−4tm

(1 + x)(q)∞(q2; q2)∞

2t2−2∑
k=0

(−1)k+1qk
2+3kf2,2t,1(q

2t+2−4t2+2k, q2m; q)

×

(
x−1

Θ(−q; q2)
f2,4t2−2,4t2(2t2−1)(−q2k+1,−q4t2k−2+3t−4tm+4t4 ; q)

+
1

Θ(qx; q2)
f2,4t2−2,4t2(2t2−1)(x

−1q2k+1,−q4t2k−2+3t−4tm+4t4 ; q)

)
.

(1.19)

For the final case, consider unimodal sequences where
∑
bi is a partition into parts at most

c− k where k is the size of the Durfee square of the partition
∑
ai. For example, there are ten

such sequences of weight 4, namely

(4), (1, 3), (3, 1), (1, 2, 1), (2, 2), (2, 2), (1, 1, 2), (2, 1, 1), (1, 1, 1, 1), (1, 1, 1, 1).

Here, the rank is s − r where the empty sequence has rank 0. Let V (m,n) denote the number
of such sequences of weight n and rank m and consider its generating function [15, Eq. (3.1)]

V (x; q) :=
∑
n≥0
m∈Z

V (m,n)xmqn =
∑
n≥0

(qn+1)nq
n

(xq)n(q/x)n

which satisfies [15, Eq. (3.3)]

V (x; q) =
(1− x)

(q)2∞

∑
r,s≥0

−
∑
r,s<0

 (−1)rq(
r
2)+3rs+6(s2)+2r+5s(1− qr+2s+1)

1− xqr
. (1.20)
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For t, m ∈ Z with t ≥ 1, 0 ≤ m ≤ 3t− 1, consider the generalization

`t,m(x; q)

:=

∑
r,s≥0

−
∑
r,s<0

 (−1)rq(
r
2)+3trs+3t(3t−1)(s2)+(m+1)r+((3t2 )+3t−1)s(1− q(3t−2m)r+2(3t−1

2 )s+(3t−1
2 ))

1− xqr

(1.21)
and

V
(m)
t (x; q) :=

(1− x)

(q)2∞
`t,m(x; q). (1.22)

By (1.20)–(1.22), V
(1)
1 (x; q) = V (x; q). Before stating our last result, we recall the following

triple sums [20]

ga,b,c,d,e,f (x, y, z; q) :=

 ∑
r,s,t≥0

+
∑
r,s,t<0

 (−1)r+s+txrysztqa(
r
2)+brs+c(

s
2)+drt+est+f(

t
2) (1.23)

where a, b, c, d, e and f are positive integers. These building blocks have appeared in the
context of the modularity of coefficients of open Gromov-Witten potentials of elliptic orbifolds
[5], unified WRT invariants of the Seifert manifolds constructed from rational surgeries on the
left-handed torus knots T ∗(2,2t+1) [13], false theta functions [16] and mock theta functions [27].

Our last result exhibits that V
(m)
t (x; q) is a sum of mixed false theta series, the triple sums (1.23)

and a modular form.

Theorem 1.4. For generic x, we have

V
(m)
t (x; q) =

(1− x)(−1)tq(1−m)(1−3t)

(q)2∞
f1,3t,3t(3t−1)(q

m,−q(
3t
2 )+3t−1; q)

×

(
f1,1,3t(x

−1q, (−1)t+1q3tm−m+1; q)

Θ(x; q)
− x−1f1,1,3t(xq, (−1)t+1q3tm−m+1; q)

Θ(x−1; q)

)

+
(1− x)

(q)2∞

3t−2∑
i=0

(−1)iq(
i+1
2 )+miΘ(−q(

3t
2 )+3t−1+3ti; q3t(3t−1))

×

(
g1,1,3t,1,3t,1(x

−1q, (−1)t+1q3mt+1−m, qi+1; q)

Θ(x; q)

− x−1g1,1,3t,1,3t,1(xq, (−1)t+1q3mt+1−m, qi+1; q)

Θ(x−1; q)

)

− Θ(−q(
3t−1

2 ); q3t(3t−1))

(q)2∞
.

(1.24)

The paper is organized as follows. In Section 2, we first recall the key results from [21, 22]. We
then provide the necessary background on identities for (1.5) and (1.10) and prove alternative
forms for (1.13) and (1.21). In Section 3, we prove Theorems 1.1–1.4. In Section 4, we make
some concluding remarks and discuss future directions.
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2. Preliminaries

We begin with two important results, the first converts Hecke-type double sums (1.4) into
Appell-Lerch series

m(x, q, z) :=
1

Θ(z; q)

∑
r∈Z

(−1)rq(
r
2)zr

1− qr−1xz
(2.1)

while the second expresses (1.4) in terms of mixed false theta functions. Here, x and z are non-
zero complex numbers with neither z nor xz an integral power of q. Note that specializations
of (2.1) give mock theta functions [26].

Theorem 2.1 ([22], Corollary 4.2). For D := b2 − ac > 0 and generic x and y, we have

fa,b,c(x, y; q) = ga,b,c(x, y,−1,−1; q) +
1

Θ(−1; qaD)Θ(−1; qcD)
ϑa,b,c(x, y; q) (2.2)

where

ga,b,c(x, y, z1, z0; q) :=

a−1∑
i=0

(−y)iqc(
i
2)Θ(qbix; qa)m(−qa(

b+1
2 )−c(a+1

2 )−iD (−y)a

(−x)b
, z0; q

aD)

+
c−1∑
i=0

(−x)iqa(
i
2)Θ(qbiy; qc)m(−qc(

b+1
2 )−a(c+1

2 )−iD (−x)c

(−y)b
, z1; q

cD),

ϑa,b,c(x, y; q) :=

b−1∑
d∗=0

b−1∑
e∗=0

qa(
d−c/2

2 )+b(d−c/2)(e+a/2)+c(e+a/22 )(−x)d−c/2(−y)e+a/2

×
b−1∑
f=0

qab
2(f2)+

(
a(bd+b2+ce)−ac(b+1)/2

)
f (−y)afΘ(−qc(ad+be+a(b−1)/2+abf)(−x)c; qcb

2
)

×Θ(−qa((d+b(b+1)/2+bf)D+c(a−b)/2)(−x)−ac(−y)ab; qab
2D)

× (qbD; qbD)3∞Θ(qD(d+e)+ac−b(a+c)/2(−x)b−c(−y)b−a; qbD)

Θ(qDe+a(c−b)/2(−x)b(−y)−a; qbD) Θ(qDd+c(a−b)/2(−y)b(−x)−c; qbD)
,

d := d∗ + {c/2} and e := e∗ + {a/2} with 0 ≤ {α} < 1 denoting the fractional part of α.

Theorem 2.2 ([21], Theorem 1.4). For D := b2 − ac < 0, we have

fa,b,c(x, y; q) =
1

2

(
a−1∑
i=0

(−y)iqc(
i
2)Θ(qbix; qa)

∑
r∈Z

sg(r)

(
qa(

b+1
2 )−c(a+1

2 )−iD (−y)a

(−x)b

)r
q−aD(r+1

2 )

+

c−1∑
i=0

(−x)iqa(
i
2)Θ(qbiy; qc)

∑
r∈Z

sg(r)

(
qc(

b+1
2 )−a(c+1

2 )−iD (−x)c

(−y)b

)r
q−cD(r+1

2 )

)
.

(2.3)

We continue with a result concerning identities satisfied by sg(r, s). We omit the proof. Let

δ(r) :=

{
1 if r = 0,

0 otherwise.
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Lemma 2.3. For r, s, l, t ∈ Z with t ≥ 1, we have

sg(−r,−s− 1) = −sg(r, s) + δ(r), (2.4)

sg(r − 1, s+ 2t) = sg(r, s)− δ(r) +

2t∑
i=1

δ(s+ i), (2.5)

sg(r − (3t− 1), s+ 1) = sg(r, s)−
3t−2∑
i=0

δ(r − i) + δ(s+ 1) (2.6)

and

sg(r, l) sg(r + 3tl, s) = sg(r, l) sg(r, s). (2.7)

We now recall the theta function identities

Θ(qn; q) = 0, (2.8)

Θ(qnx; q) = (−1)nq−(n2)x−nΘ(x; q) (2.9)

and ∑
k∈Z

(−1)kq
1
2
k2+(n+ 1

2
)k

1− xqk
=

(q)3∞
xnΘ(x; q)

(2.10)

where n ∈ Z. Next, we turn to providing alternative expressions for (1.13) and (1.21) which will
be beneficial in the proofs of Theorems 1.2 and 1.4. Let

H(m)
t (x; q) :=

∑
r,s∈Z

sg(r, s)(−1)r+s
q(
r+1
2 )+2trs+(s+1

2 )+(t−m)r

1− xqr
(2.11)

and

Φ
(m)
t (x; q) :=

∑
r,s∈Z

sg(r, s)(−1)r
q(
r
2)+3trs+3t(3t−1)(s2)+(m+1)r+((3t2 )+3t−1)s

1− xqr
. (2.12)

Proposition 2.4. We have

ht,m(x; q) = H(m)
t (x; q)− x−1H(m)

t (x−1; q) (2.13)

and

`t,m(x; q) = Φ
(m)
t (x; q)− x−1Φ(m)

t (x−1; q)− 1

1− x
Θ(−q(

3t−1
2 ); q3t(3t−1)). (2.14)

Proof. We first let (r, s)→ (−r − 1,−s− 1) in H(m)
t (x−1; q) and simplify to obtain

− xq1+m+t
∑
r,s∈Z

sg(−r − 1,−s− 1)(−1)r+s
q(
r+1
2 )+2trs+(s+1

2 )+(m+t+1)r+2ts

1− xqr+1
. (2.15)

Next, applying r → r − 1 to (2.15), then using (1.10) and (2.4) yields

−x
∑
r,s∈Z

sg(r, s)(−1)r+s
q(
r+1
2 )+2trs+(s+1

2 )+(m+t)r

1− xqr
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and thus (2.13) follows. Now, let (r, s)→ (−r − 1,−s− 1) in Φ
(m)
t (x−1; q) and simplify to get

xq
∑
r,s∈Z

sg(−r − 1,−s− 1)(−1)r
q(
r+2
2 )+3t(r+1)(s+1)+3t(3t−1)(s+2

2 )−(m+1)(r+1)−((3t2 )+3t−1)(s+1)+r

1− xqr+1
.

(2.16)
Finally, applying r → r − 1 to (2.16), then (1.10), (2.4) and (2.9) yields

x
∑
r,s∈Z

sg(r, s)(−1)r
q(
r
2)+3trs+3t(3t−1)(s2)+(3t−m+1)r+

(3t−1)(9t−2)
2

s+(3t−1
2 )

1− xqr
+

x

1− x
Θ(−q(

3t−1
2 ); q3t(3t−1))

and so (2.14) follows. �

3. Proof of Theorems 1.1–1.4

The method of proof is as follows [22]. First, we derive functional equations for each of (1.8),
(1.13), (1.17), (1.21),

ĝt,m(x; q) := Θ(x; q)gt,m(x; q), (3.1)

Ĥ(m)
t (x; q) := Θ(x; q)H(m)

t (x; q), (3.2)

k̂t,m(x; q) := Θ(qx; q2)kt,m(x; q) (3.3)

and
Φ̂
(m)
t (x; q) := Θ(x; q)Φ

(m)
t (x; q). (3.4)

Suitable care is required in constructing the sums (3.7), (3.28), (3.44) and (3.60) which favorably
decompose in order to obtain these functional equations. We then express each of (3.1)–(3.4)
as a Laurent series in x ∈ C \ {0} and use the functional equations to find an explicit formula
for the coefficients in the Laurent series expansion. After some sitzfleisch, these calculations
eventually yield the right-hand sides of (1.11), (1.15), (1.19) and (1.24). For the first case, we
begin with the following result.

Proposition 3.1. For t ∈ N and m ∈ Z with t ≡ m (mod 2), we have

gt,m(qx; q) = −x1−4t2q
t−m−2t2−2tm

2 gt,m(x; q)

− x1−4t2−
t+m
2 q

t−m−2t2−2tm
2

(q)3∞
Θ(x; q)

2t∑
i=1

(−1)iq
i2

2
− 1+t−m

2
ix2ti

− x1−4t2q1−4t2
4t2−2∑
k=0

xkqkf1,2t,1(q
2−4t2+ t+m

2
+k, q1+

t−m
2 ; q)

(3.5)

and

ĝt,m(qx; q) = x−4t
2
q
t−m−2t2−2tm

2 ĝt,m(x; q)

+ x−4t
2− t+m

2 q
t−m−2t2−2tm

2 (q)3∞

2t∑
i=1

(−1)iq
i2

2
− 1+t−m

2
ix2ti

+ x−4t
2
q1−4t

2
Θ(x; q)

4t2−2∑
k=0

xkqkf1,2t,1(q
2−4t2+ t+m

2
+k, q1+

t−m
2 ; q).

(3.6)



UNIMODAL SEQUENCES AND MIXED FALSE THETA FUNCTIONS 11

Proof. The idea is to compute the sum

x4t
2−1q

2t2−t+2tm+m
2

∑
r,s∈Z

sg(r, s)(−1)r+sq
r2

2
+2trs+ s2

2
+ 1+t+m

2
r+ 1+t−m

2
s 1− x1−4t2q(r+1)(1−4t2)

1− xqr+1
(3.7)

in two ways. Expanding the numerator yields

x4t
2−1q

2t2−t+2tm+m
2 gt,m(qx; q)−

∑
r,s∈Z

sg(r, s)(−1)r+s
q
r2

2
+2trs+ s2

2
+ 1+t+m

2
r+ 1+t−m

2
s+1−3t2− t

2
+tm+m

2

1− xqr+1
.

(3.8)
Taking (r, s)→ (r − 1, s+ 2t) in the second sum in (3.8) and using (2.5), (2.8) and (2.10) leads
to

−
∑
r,s∈Z

sg(r − 1, s+ 2t)(−1)r+s
q
r2

2
+2trs+ s2

2
+ 1+t+m

2
r+ 1+t−m

2
s

1− xqr

= −
∑
r,s∈Z

sg(r, s)(−1)r+s
q
r2

2
+2trs+ s2

2
+ 1+t+m

2
r+ 1+t−m

2
s

1− xqr
+

1

1− x
∑
s∈Z

(−1)sq
s2+(1+t−m)s

2

−
2t∑
i=1

∑
r∈Z

(−1)r−i
q
r2

2
−2tri+ i2

2
+ 1+t+m

2
r− 1+t−m

2
i

1− xqr

= −gt,m(x; q)− x−
t+m
2 (q)3∞

Θ(x; q)

2t∑
i=1

(−1)iq
i2

2
− 1+t−m

2
ix2ti.

(3.9)

Alternatively, we use

1− x1−4t2q(r+1)(1−4t2)

1− xqr+1
= −x1−4t2q(r+1)(1−4t2)

4t2−2∑
k=0

xkqk(r+1) (3.10)

to express (3.7) as

− q
−6t2−t+2tm+m

2
+1

4t2−2∑
k=0

xkqk
∑
r,s∈Z

sg(r, s)(−1)r+sq
r2

2
+2trs+ s2

2
+ 1+t+m+2−8t2+2k

2
r+ 1+t−m

2
r+r(1−4t2)

= −q
−6t2−t+2tm+m

2
+1

4t2−2∑
k=0

xkqkf1,2t,1(q
2−4t2+ t+m

2
+k, q1+

t−m
2 ; q).

(3.11)
Combining (3.8), (3.9) and (3.11) gives us (3.5). Finally, (3.6) follows from (2.9), (3.1) and
(3.5). �

We are now in a position to prove our first result.

Proof of Theorem 1.1. Note that ĝt,m(x) = ĝt,m(x; q) does not have poles and so we may write

ĝt,m(x) =
∑
r∈Z

(−1)rq
r2

8t2
+ t−m+2t2−2tm

8t2
rarx

−r (3.12)
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for all x ∈ C \ {0}. Substituting (3.12) into (3.6), we obtain∑
r∈Z

(−1)rq
r2

8t2
+ t−m+2t2−2tm

8t2
r−rarx

−r = x−4t
2
q
t−m−2t2−2tm

2

∑
r∈Z

(−1)rq
r2

8t2
+ t−m+2t2−2tm

8t2
rarx

−r

+ x−4t
2− t+m

2 q
t−m−2t2−2tm

2 (q)3∞

2t∑
i=1

(−1)iq
i2

2
− 1+t−m

2
ix2ti

+ x−4t
2
q1−4t

2
Θ(x; q)

×
4t2−2∑
k=0

xkqkf1,2t,1(q
2−4t2+ t+m

2
+k, q1+

t−m
2 ; q).

(3.13)
Using (

a− b
2

)
=

(
a

2

)
− ab+

(
b+ 1

2

)
(3.14)

and (1.10), one can check that the last sum in (3.13) can be written as

q1−4t
2
∑
r∈Z

(−1)rq(
r+1
2 )

4t2−2∑
k=0

(−1)kq(
k+1−4t2

2 )+r(k−4t2)+kf1,2t,1(q
2−4t2+ t+m

2
+k, q1+

t−m
2 ; q)x−r. (3.15)

We now let r → r− 4t2 in the first term on the right-hand side of (3.13), apply (3.15) and then
compare coefficients of x−r in the resulting expressions to arrive at the recurrence relation

ar = ar−4t2 + b′r + c′r (3.16)

where

b′r := q1−4t
2+(r+1

2 )− r2

8t2
− t−m+2t2−2tm−8t2

8t2
r−4t2r

4t2−2∑
k=0

(−1)kq(
k+1−4t2

2 )+k(r+1)

× f1,2t,1(q2−4t
2+ t+m

2
+k, q1+

t−m
2 ; q)

and

c′r := (−1)i+
t+m
2 (q)3∞q

i2

2
− 1+t−m

2
i−(4t2+ t+m2 −2ti)

2

8t2
− t−m+2t2−2tm−8t2

8t2
(4t2+ t+m

2
−2ti)+ t−m−2t2−2tm

2

if r = 4t2 + t+m
2 − 2ti, 1 ≤ i ≤ 2t, and is 0 otherwise. Moreover, using (1.8), (3.1) and Cauchy’s

integral formula applied to (3.12), a short calculation gives

ar = − 1

2πi
q

4t2−1

8t2
r2− t−m+2t2−2tm

8t2
r
∮ ∑

λ∈Z
(−1)λq(

λ+1
2 )−λr

×
∑
n,s∈Z

sg(n, s)(−1)n+s
q
n2

2
+2tns+ s2

2
+ t+1+m

2
n+ t+1−m

2
s

1− zqn
dz

(3.17)
where the integration is over a closed contour around 0 in C. Thus, as |q| < 1,

lim
r→±∞

ar = 0. (3.18)
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Now, observe that (3.16) is equivalent to

ar − ar+4t2 = br + cr (3.19)

where br := −b′r+4t2 and cr := −c′r+4t2 . We now claim that

ar =
∑
l∈Z

sg(r, l)br+4t2l. (3.20)

To deduce this, we let αr := q
r2

8t2
+ t−m+2t2−2tm

8t2
rar and use (3.19) to obtain

αr = q−r−2t
2− t−m+2t2−2tm

8t2 αr+4t2 + q
r2

8t2
+ t−m+2t2−2tm

8t2
rbr + q

r2

8t2
+ t−m+2t2−2tm

8t2
rcr. (3.21)

In fact, we will demonstrate

αr = q
r2

8t2
+ t−m+2t2−2tm

8t2
r
∑
l∈Z

sg(r, l)br+4t2l

which clearly implies (3.20). Let

ãr :=
∑
l∈Z

sg(r, l)br+4t2l

and

α̃r := q
r2

8t2
+ t−m+2t2−2tm

8t2
rãr.

Then ãr and α̃r satisfy (3.19) and (3.21), respectively. The former follows from

ãr − ãr+4t2 =
∑
l∈Z

(
sg(r, l)− sg(r + 4t2, l − 1)

)
br+4t2l

=
∑
l∈Z

(
δ(l)− δ(r + 1)− · · · − δ(r + 4t2)

)
br+4t2l

= br −
(
δ(r + 1) + · · ·+ δ(r + 4t2)

) ∑
n≡r (mod 4t2)

bn

(3.22)

and ∑
n≡r (mod 4t2)

bn =
∑

n≡r (mod 4t2)

(an − an+4t2 − cn) = −
∑

n≡r (mod 4t2)

cn = −cr (3.23)

where we have used (3.18), the definitions of cr and c′r and that −t ≤ m ≤ 3t − 2. Now, since
limr→±∞ αr = 0 and limr→∞ α̃r = 0, we have

lim
r→∞

(αr − α̃r) = 0. (3.24)

Finally, we compute

αr − α̃r − qr+2t2+ t−m+2t2−2tm

8t2 (αr−4t2 − α̃r−4t2) = 0
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which in combination with (3.24) implies that αr = α̃r and so ar = ãr. In total,

ĝt,m(x) =
∑
r∈Z

(−1)rq
r2

8t2
+ t−m+2t2−2tm

8t2
rarx

−r

=
∑
r∈Z

(−1)rq
r2

8t2
+ t−m+2t2−2tm

8t2
r
∑
l∈Z

sg(r, l)br+4t2lx
−r

= −q1−4t2
∑
r,l∈Z

sg(r, l)(−1)rq(
r+4t2(l+1)+1

2 )− (r+4t2(l+1))2

8t2
− t−m+2t2−2tm−8t2

8t2
(r+4t2(l+1))

× q−4t2(r+4t2(l+1))
4t2−2∑
k=0

(−1)kq(
k+1−4t2

2 )+k(r+4t2(l+1)+1)+ r2

8t2
+ t−m+2t2−2tm

8t2
r

× f1,2t,1(q2−4t
2+ t+m

2
+k, q1+

t−m
2 ; q)x−r

= q1−t
2−8t4− t−m

2
+tm

4t2−2∑
k=0

(−1)k+1q(
k+1−4t2

2 )+k+4t2kf1,2t,1(q
2−4t2+ t+m

2
+k, q1+

t−m
2 ; q)

×
∑
r,l∈Z

sg(r, l)(−1)rq
r2

2
+(4t2−1)rl+2t2l2(4t2−1)+(k+ 1

2
)r+(t2− t−m

2
+tm+4t2k)lx−r

= q1−3t
2− t−m

2
+tm

4t2−2∑
k=0

(−1)k+1q(
k+1
2 )+kf1,2t,1(q

2−4t2+ t+m
2

+k, q1+
t−m
2 ; q)

× f1,4t2−1,4t2(4t2−1)(x−1qk+1,−q4t2k−t2+tm−
t−m
2

+8t4 ; q).
(3.25)

Thus, (1.11) follows from (1.9), (3.1) and (3.25). We now apply (2.2) and (2.8) to deduce that
f1,2t,1 is a modular form and (2.3) to obtain that f1,4t2−1,4t2(4t2−1) is a false theta function. �

For the second case, we begin with the following result.

Proposition 3.2. For t ∈ N and m ∈ Z, we have

H(m)
t (qx; q) = −x1−4t2qm−2t2H(m)

t (x; q)− x1−4t2+m−tqm−2t2 (q)3∞
Θ(x; q)

2t∑
i=1

(−1)iq(
i
2)x2ti

− x1−4t2q1−4t2
4t2−2∑
i=0

xkqkf1,2t,1(q
t−m+2−4t2+k, q; q)

(3.26)

and

Ĥ(m)
t (qx; q) = x−4t

2
qm−2t

2Ĥ(m)
t (x; q) + x−4t

2+m−tqm−2t
2
(q)3∞

2t∑
i=1

(−1)iq(
i
2)x2ti

+ x−4t
2
q1−4t

2
Θ(x; q)

4t2−2∑
i=0

xkqkf1,2t,1(q
t−m+2−4t2+k, q; q).

(3.27)
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Proof. We first compute the sum

x4t
2−1q2t

2−mt
∑
r,s∈Z

sg(r, s)(−1)r+sq(
r+1
2 )+2trs+(s+1

2 )+(t−m)r 1− x1−4t2q(r+1)(1−4t2)

1− xqr+1
(3.28)

in two ways. Expanding the numerator yields

x4t
2−1q2t

2−mH(m)
t (qx; q)−

∑
r,s∈Z

sg(r, s)(−1)r+s
q(
r+1
2 )+2trs+(s+1

2 )+(t−m)r+(r+1)(1−4t2)+2t2−m

1− xqr+1
.

(3.29)
Taking (r, s)→ (r−1, s+2t) in the second sum in (3.29) and using (2.5), (2.8) and (2.10) yields

−
∑
r,s∈Z

sg(r − 1, s+ 2t)(−1)r+s
q(
r+1
2 )+2trs+(s+1

2 )+(t−m)r

1− xqr

= −H(m)
t (x; q)− xm−t(q)3∞

Θ(x; q)

2t∑
i=1

(−1)iq(
i
2)x2ti.

(3.30)
Alternatively, we use (3.10) to express (3.28) as

−q1−2t2−m
4t2−2∑
k=0

xkqkf1,2t,1(q
t−m+2−4t2+k, q; q). (3.31)

Combining (3.29)–(3.31) gives us (3.26). Finally, (3.27) follows from (2.9) and (3.26). �

We can now prove our second main result.

Proof of Theorem 1.2. As Ĥ(m)
t (x) = Ĥ(m)

t (x; q) does not have poles, we write

Ĥ(m)
t (x) =

∑
r∈Z

(−1)rq
r2

8t2
+mr

4t2 arx
−r (3.32)

for all x ∈ C \ {0}. Substituting (3.32) into (3.27), we obtain∑
r∈Z

(−1)rq
r2

8t2
+mr

4t2
−rarx

−r = x−4t
2
qm−2t

2
∑
r∈Z

(−1)rq
r2

8t2
+mr

4t2 arx
−r

+ x−4t
2+m−tqm−2t

2
(q)3∞

2t∑
i=1

(−1)iq(
i
2)x2ti

+ x−4t
2
q1−4t

2
Θ(x; q)

4t2−2∑
k=0

xkqkf1,2t,1(q
t−m+2−4t2+k, q; q).

(3.33)

Using (1.10) and (3.14), the last sum in (3.33) can be written as

q1−4t
2
∑
r∈Z

(−1)rq(
r+1
2 )

4t2−2∑
k=0

(−1)kq(
k+1−4t2

2 )+r(k−4t2)+kf1,2t,1(q
t−m+2−4t2+k, q; q)x−r. (3.34)
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We now let r → r− 4t2 in the first term on the right-hand side of (3.33), apply (3.34) and then
compare coefficients of x−r in the resulting expressions to arrive at the recurrence relation

ar = ar−4t2 + b′r + c′r (3.35)

where

b′r := q1−4t
2+(r+1

2 )− r2

8t2
−mr

4t
+r(1−4t2)

4t2−2∑
k=0

(−1)kq(
k+1−4t2

2 )+k(r+1)f1,2t,1(q
t−m+2−4t2+k, q; q)

and

c′r := (−1)i+m+t(q)3∞q
m−2t2+(i2)−

(4t2−m+t−2ti)2

8t2
− m

4t2
(4t2−m+t−2ti)+(4t2−m+t−2ti)

if r = 4t2 −m + t − 2ti, 1 ≤ i ≤ 2t, and is 0 otherwise. Moreover, a similar computation as in
(3.17) implies

lim
r→±∞

ar = 0. (3.36)

Now, observe that (3.35) is equivalent to

ar − ar+4t2 = br + cr (3.37)

where br := −b′r+4t2 and cr := −c′r+4t2 . We now claim that

ar =
∑
l∈Z

sg(r, l)br+4t2l. (3.38)

To deduce this, we let αr := q
r2

8t2
+mr

4t2 ar and use (3.37) to obtain

αr = q−r−2t
2−mαr+4t2 + q

r2

8t2
+mr

4t2 br + q
r2

8t2
+mr

4t2 cr. (3.39)

We will show

αr = q
r2

8t2
+mr

4t2

∑
l∈Z

sg(r, l)br+4t2l

which clearly implies (3.38). Let

ãr :=
∑
l∈Z

sg(r, l)br+4t2l

and

α̃r := q
r2

8t2
+mr

4t2 ãr.

Then ãr and α̃r satisfy (3.37) and (3.39), respectively, via the same calculation as in (3.22) and
(3.23) where we use (3.36) and 1− t ≤ m ≤ t. In addition,

lim
r→∞

(αr − α̃r) = 0. (3.40)

Finally, we observe

αr − α̃r − qr+2t2+m (αr−4t2 − α̃r−4t2) = 0
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which in combination with (3.40) implies that αr = α̃r and so ar = ãr. In total,

Ĥ(m)
t (x) =

∑
r∈Z

(−1)rq
r2

8t2
+mr

4t2 arx
−r

=
∑
r∈Z

(−1)rq
r2

8t2
+mr

4t2

∑
l∈Z

sg(r, l)br+4t2lx
−r

= q1−m−8t
4
∑
r,l∈Z

sg(r, l)(−1)rq(
r
2)+(4t2−1)rl+4t2(4t2−1)(l2)+r+(8t4−m)l

×
4t2−2∑
k=0

(−1)kq(
k+1−4t2

2 )+kr+4t2kl+4t2k+kf1,2t,1(q
t−m+2−4t2+k, q; q)

= q1−m−2t
2
4t2−2∑
k=0

(−1)k+1q(
k+1
2 )+kf1,2t,1(q

t−m+2−4t2+k, q; q)

×
∑
r,l∈Z

sg(r, l)(−1)rq(
r
2)+(4t2−1)rl+4t2(4t2−1)(l2)+(k+1)r+(8t4−m+4t2k)lx−r

= q1−m−2t
2
4t2−2∑
k=0

(−1)k+1q(
k+1
2 )+kf1,2t,1(q

t−m+2−4t2+k, q; q)

× f1,4t2−1,4t2(4t2−1)(x−1qk+1,−q8t4−m+4t2k; q).
(3.41)

Thus, (1.15) follows from (1.14), (2.11), (2.13), (3.2) and (3.41). We now apply (2.2) and (2.8)
to deduce that f1,2t,1 is a modular form and (2.3) to obtain that f1,4t2−1,4t2(4t2−1) is a false theta
function. �

For the third case, we begin with the following result.

Proposition 3.3. For t ∈ N and m ∈ Z, we have

kt,m(q2x; q) = −x1−2tq3−4t2−3t+4tmkt,m(x; q)

− x−2t2−t+2q4−4t
2−4t+4tm (q2; q2)3∞

Θ(qx; q2)

2t∑
i=1

(−1)iq(
i+1
2 )−2mi+tixti

− x1−2t2q3−6t2
2t2−2∑
k=0

xkq3kf2,2t,1(q
2t+2−4t2+2k, q2m; q)

(3.42)

and
k̂t,m(q2x; q) = x−2t

2
q2−4t

2−3t+4tmk̂t,m(x; q)

+ x−2t
2−t+1q3−4t

2−4t+4tm(q2; q2)3∞

2t∑
i=1

(−1)iq(
i+1
2 )−2mi+tixti

+ x−2t
2
q2−6t

2
Θ(qx; q2)

2t2−2∑
k=0

xkq3kf2,2t,1(q
2t+2−4t2+2k, q2m; q).

(3.43)
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Proof. We first compute the sum

x2t
2−1q−3+4t2+3t−4tm

∑
r,s∈Z

sg(r, s)(−1)r+sq2(
r
2)+2trs+(s2)+2tr+2ms 1− x1−2t2q(2r+3)(1−2t2)

1− xq2r+3
(3.44)

in two ways. Expanding the numerator yields

x2t
2−1q−3+4t2+3t−4tmkt,m(q2x; q)−

∑
r,s∈Z

sg(r, s)(−1)r+s
q2(

r
2)+2trs+(s2)+2tr+2ms−2t2+3t+2r−4t2r−4tm

1− xq2r+3
.

(3.45)
Taking (r, s)→ (r−1, s+2t) in the second sum in (3.45) and using (2.5), (2.8) and (2.10) yields

−
∑
r,s∈Z

sg(r − 1, s+ 2t)(−1)r+s
q2(

r
2)+2trs+(s2)+2tr+2ms

1− xq2r+1

= −kt,m(x; q)− (qx)1−t(q2; q2)3∞
Θ(qx; q2)

2t∑
i=1

(−1)iq(
i+1
2 )−2mi+tixti.

(3.46)

Alternatively, we use

1− x1−2t2q(2r+3)(1−2t2)

1− xq2r+3
= −x1−2t2q(2r+3)(1−2t2)

2t2−2∑
k=0

xkq(2r+3)k

to express (3.44) as

−q−2t2+3t−4tm
2t2−2∑
k=0

xkq3kf2,2t,1(q
2t+2−4t2+2k, q2m; q). (3.47)

Combining (3.45)–(3.47) gives us (3.42). Finally, (3.43) follows from (2.9) and (3.42). �

We can now prove our third result.

Proof of Theorem 1.3. As k̂t,m(x) = k̂t,m(x; q) does not have poles, we write

k̂t,m(x) =
∑
r∈Z

(−1)rq
r2

2t2
− 2t2−2+3t−4tm

2t2
rarx

−r (3.48)

for all x ∈ C \ {0}. Substituting (3.48) into (3.43), we obtain∑
r∈Z

(−1)rq
r2

2t2
− 2t2−2+3t−4tm

2t2
r−2rarx

−r = x−2t
2
q2−4t

2−3t+4tm
∑
r∈Z

(−1)rq
r2

2t2
− 2t2−2+3t−4tm

2t2
rarx

−r

+ x−2t
2−t+1q3−4t

2−4t+4tm(q2; q2)3∞

2t∑
i=1

(−1)iq(
i+1
2 )−2mi+tixti

+ x−2t
2
q2−6t

2
Θ(qx; q2)

2t2−2∑
k=0

xkq3kf2,2t,1(q
2t+2−4t2+2k, q2m; q).

(3.49)
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Using (1.10) and (3.14), the last sum in (3.49) can be written as

q2−6t
2+4t4

∑
r∈Z

(−1)rqr
2−4t2r

2t2−2∑
k=0

(−1)kqk
2+3k+2rk−4t2kf2,2t,1(q

2t+2+(2r−4t2)k, q2m; q)x−r. (3.50)

We now let r → r− 2t2 in the first term on the right-hand side of (3.49), apply (3.50) and then
compare coefficients of x−r in the resulting expressions to arrive at the recurrence relation

ar = ar−2t2 + b′r + c′r (3.51)

where

b′r := q2+4t4−6t2+r2−4t2r− r2

2t2
+ 2t2−2+3t−4tm

2t2
r+2r

×
2t2−2∑
k=0

(−1)kqk
2+3k+(2r−4t2)kf2,2t,1(q

2t+2−4t2+2k, q2m; q)

and

c′r := (−1)i+t+ti+1(q2; q2)3∞q
3−4t2−4t+4tm+(i+1

2 )−2mi+ti− (2t2+t−1−ti)2

2t2
+ 6t2−2+3t−4tm

2t2
(2t2+t−1−ti)

if r = 2t2 + t − 1 − ti, 1 ≤ i ≤ 2t, and is 0 otherwise. Moreover, a similar computation as in
(3.17) implies

lim
r→±∞

ar = 0. (3.52)

Now, observe that (3.51) is equivalent to

ar − ar+2t2 = br + cr (3.53)

where br := −b′r+2t2 and cr := −c′r+2t2 . We now claim that

ar =
∑
l∈Z

sg(r, l)br+2t2l. (3.54)

To deduce this, we let αr := q
r2

2t2
− 2t2−2+3t−4tm

2t2
rar and use (3.53) to obtain

αr = q−2r−2+3t−4tmαr+2t2 + q
r2

2t2
− 2t2−2+3t−4tm

2t2
rbr + q

r2

2t2
− 2t2−2+3t−4tm

2t2
rcr. (3.55)

We will show

αr = q
r2

2t2
− 2t2−2+3t−4tm

2t2
r
∑
l∈Z

sg(r, l)br+2t2l

which clearly implies (3.54). Let

ãr :=
∑
l∈Z

sg(r, l)br+2t2l

and

α̃r := q
r2

2t2
− 2t2−2+3t−4tm

2t2
rãr.

Then ãr and α̃r satisfy (3.51) and (3.55), respectively, via the same calculation as in (3.22) and
(3.23) with r + 4t2 and r + 4t2l replaced with r + 2t2 and r + 2t2l, respectively, and (3.52). So,

lim
r→∞

(αr − α̃r) = 0. (3.56)
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Finally, we observe

αr − α̃r − q2r+2−3t+4tm (αr−2t2 − α̃r−2t2) = 0

which in combination with (3.56) implies that αr = α̃r and so ar = ãr. In total,

k̂t,m(x) =
∑
r∈Z

(−1)rq
r2

2t2
− 2t2−2+3t−4tm

2t2
rarx

−r

=
∑
r∈Z

(−1)rq
r2

2t2
− 2t2−2+3t−4tm

2t2
r
∑
l∈Z

sg(r, l)br+2t2lx
−r

= q2+4t4−6t2
∑
r,l∈Z

sg(r, l)(−1)rq(r+2t2(l+1))2−4t2(r+2t2(l+1))− (r+2t2(l+1))2

2t2

× q
2t2−2+3t−4tm

2t2
(r+2t2(l+1))+2(r+2t2(l+1))

2t2−2∑
k=0

(−1)k+1qk
2+3k+(2(r+2t2(l+1))−4t2)k+ r2

2t2

× q−
2t2−2+3t−4tm

2t2
rf2,2t,1(q

2t+2−4t2+2k, q2m; q)

= q−2t
2+3t−4tm

2t2−2∑
k=0

(−1)k+1qk
2+3kf2,2t,1(q

2t+2−4t2+2k, q2m; q)

×
∑
r,l∈Z

sg(r, l)(−1)rqr
2+(4t2−2)rl+2t2l2(2t2−1)+2kr+(4t2k+2t2−2+3t−4tm)lx−r

= q−2t
2+3t−4tm

2t2−2∑
k=0

(−1)k+1qk
2+3kf2,2t,1(q

2t+2−4t2+2k, q2m; q)

× f2,4t2−2,4t2(2t2−1)(x−1q2k+1,−q4t2k−2+3t−4tm+4t4 ; q).
(3.57)

Thus, (1.19) follows from (1.18), (3.3) and (3.57). We now apply (2.2) and (2.8) to deduce that
f2,2t,1 is a modular form and (2.3) to obtain that f2,4t2−2,2t2(4t2−2) is a false theta function. �

For our last case, we start with the following result.

Proposition 3.4. For t ∈ N and m ∈ Z, we have

Φ
(m)
t (q3t−1x) = (−1)t+1x−1q−m(3t−1)Φ

(m)
t (x)

+ (−1)tx−1q−m(3t−1)
3t−2∑
i=0

(−1)i
q(
i+1
2 )+mi

1− xqi
Θ(−q(

3t
2 )+3t−1+3ti; q3t(3t−1))

+ (−1)t+1x3t−m−1q
(3t−1)(3t−2m−2)

2
(q)3∞

Θ(x; q)
− x−1q1−3tf1,3t,3t(3t−1)(qm,−q(

3t
2 )+3t−1; q)

(3.58)
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and

Φ̂
(m)
t (q3t−1x) = x−3tq−(3t−1

2 )−m(3t−1)Φ̂
(m)
t (x)

− x−3tq−(3t−1
2 )−m(3t−1)

3t−2∑
i=0

(−1)iq(
i+1
2 )+miΘ(−q(

3t
2 )+3t−1+3ti; q3t(3t−1))

× f1,1,1(qx−1, qi+1; q)

+ x−mq−m(3t−1)(q)3∞

+ (−1)tx−3tq−(3t2 )Θ(x; q)f1,3t,3t(3t−1)(q
m,−q(

3t
2 )+3t−1; q).

(3.59)

Proof. We first compute the sum∑
r,s∈Z

sg(r, s)(−1)rq(
r
2)+3trs+3t(3t−1)(s2)+(m+1)r+((3t2 )+3t−1)s 1− x−1q−(r+3t−1)

1− xqr+3t−1 (3.60)

in two ways. Expanding the numerator yields

Φ
(m)
t (q3t−1x)− x−1q−3t+1

∑
r,s∈Z

sg(r, s)(−1)r
q(
r
2)+3trs+3t(3t−1)(s2)+mr+((3t2 )+3t−1)s

1− xqr+3t−1 . (3.61)

Taking (r, s)→ (r− (3t− 1), s+ 1) in the second sum in (3.61) and using (1.10), (2.6) and (2.8)
leads to

(−1)t+1q−(m−1)(3t−1)
∑
r,s∈Z

sg(r − (3t− 1), s+ 1)(−1)r
q(
r
2)+3trs+3t(3t−1)(s2)+(m+1)r+((3t2 )+3t−1)s

1− xqr

= (−1)t+1q−(m−1)(3t−1)Φ
(m)
t (x)

+ (−1)tq−(m−1)(3t−1)
3t−2∑
i=0

(−1)i
q(

i
2)+(m+1)i

1− xqi
Θ(−q(

3t
2 )+3t−1+3ti; q3t(3t−1))

+ (−1)t+1x3t−mq
(3t−1)(3t−2m−2)

2
(q)3∞

Θ(x; q)
.

(3.62)
Alternatively, we use

1− x−1q−(r+3t−1)

1− xqr+3t−1 = −x−1q−(r+3t−1)

to express (3.60) as

−x−1q1−3tf1,3t,3t(3t−1)(qm,−q(
3t
2 )+3t−1; q). (3.63)

Combining (3.61)–(3.63) gives us (3.58). Finally, (3.59) follows from (2.9), (3.58) and

Θ(x; q)

1− xqi
= f1,1,1(qx

−1, qi+1; q)

which holds for all i ∈ Z. �

We can now prove our final result.
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Proof of Theorem 1.4. As Φ̂
(m)
t (x) = Φ̂

(m)
t (x; q) does not have poles, we write

Φ̂
(m)
t (x) =

∑
r∈Z

q
(3t−1)r2

6t
− (m−1)(3t−1)

3t
rarx

−r (3.64)

for all x ∈ C \ {0}. Substituting (3.64) into (3.59), we obtain

∑
r∈Z

q
(3t−1)r2

6t
− (m−1)(3t−1)

3t
r−(3t−1)rarx

−r =
∑
r∈Z

q
(3t−1)r2

6t
− (m−1)(3t−1)

3t
r−(3t−1

2 )−m(3t−1)arx
−r−3t

− x−3tq−(3t−1
2 )−m(3t−1)

3t−2∑
i=0

(−1)iq(
i+1
2 )+mi

×Θ(−q(
3t
2 )+3t−1+3ti; q3t(3t−1))f1,1,1(qx

−1, qi+1; q)

+ x−mq−m(3t−1)(q)3∞

+ (−1)tx−3tq−(3t2 )Θ(x; q)f1,3t,3t(3t−1)(q
m,−q(

3t
2 )+3t−1; q).

(3.65)
Using (1.10), the last sum on the right-hand side of (3.65) can be written as

f1,3t,3t(3t−1)(q
m,−q(

3t
2 )+3t−1; q)

∑
r∈Z

(−1)rq(
r
2)−(3t−1)rx−r. (3.66)

We now let r → r − 3t in the first term on the right-hand side of (3.65), apply (3.66) and then
compare coefficients of x−r in the resulting expressions to arrive at the recurrence relation

ar = ar−3t + b′r + c′r

where

b′r := −q−
(3t−1)r2

6t
+

(m−1)(3t−1)
3t

r+(3t−1)r−(3t−1
2 )−m(3t−1)

3t−2∑
i=0

(−1)iq(
i+1
2 )+mi

×Θ(−q(
3t
2 )+3t−1+3ti; q3t(3t−1))

∑
s∈Z

sg(r − 3t, s)(−1)r+t+sq(
r−3t+1

2 )+(r−3t)s+(s+1
2 )+si

+ (−1)rq(
r
2)−

(3t−1)r2

6t
+

(m−1)(3t−1)
3t

rf1,3t,3t(3t−1)(q
m,−q(

3t
2 )+3t−1; q)

and

c′r := (q)3∞q
− 3t−1

6t
m2+

(m−1)(3t−1)
3t

m

if r = m and is 0 otherwise. As before, we have

ar =
∑
l∈Z

sg(r, l)br+3tl
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where br := −b′r+3t and so in total

Φ̂
(m)
t (x) =

∑
r∈Z

q
(3t−1)r2

6t
− (m−1)(3t−1)

3t
rarx

−r

=
∑
r∈Z

q
(3t−1)r2

6t
− (m−1)(3t−1)

3t
r
∑
l∈Z

sg(r, l)br+3tlx
−r

= (−1)t+1q(1−m)(1−3t)f1,3t,3t(3t−1)(q
m,−q(

3t
2 )+3t−1; q)

∑
r,l∈Z

sg(r, l)(−1)r+lq(
r+1
2 )+rl+3t(l2)

× ((−1)t+1q3tm+1−m)lx−r

+
3t−2∑
i=0

(−1)iq(
i+1
2 )+miΘ(−q(

3t
2 )+3t−1+3ti; q3t(3t−1))

×
∑
r,l,s∈Z

sg(r, l) sg(r + 3tl, s)(−1)r+s+ltq(
r+1
2 )+rl+3t(l2)+rs+3tls+(s+1

2 )+l(3mt+1−m)+isx−r

= (−1)t+1q(1−m)(1−3t)f1,3t,3t(3t−1)(q
m,−q(

3t
2 )+3t−1; q)f1,1,3t(x

−1q, (−1)t+1q3tm+1−m; q)

+
3t−2∑
i=0

(−1)iq(
i+1
2 )+miΘ(−q(

3t
2 )+3t−1+3ti; q3t(3t−1))

× g1,1,3t,1,3t,1(x
−1q, (−1)t+1q3mt+1−m, qi+1; q)

(3.67)
where we have used (2.7) in the penultimate step. Thus, (1.24) follows from (1.22), (2.14), (3.4)
and (3.67). Finally, f1,3t,3t(3t−1) is a mixed mock modular form by (2.2) and f1,1,3t is mixed false
theta function by (2.3). �

4. Concluding Remarks

First, Bringmann and Lovejoy [6] study odd unimodal sequences and odd strongly unimodal
sequences. These sequences simply have the extra condition that the parts ai, bj and c are odd
positive integers. Let ou(m,n) denote the number of odd unimodal sequences of weight n and
rank m and consider its generating function [6, Eq. (1.5)]

O(x; q) :=
∑
n≥1
m∈Z

ou(m,n)xmqn =
∑
n≥0

q2n+1

(xq; q2)n+1(q/x; q2)n+1

which satisfies [6, Eq. (1.7)]

O(x; q) =
q

(q2; q2)∞

∑
r,s≥0

−
∑
r,s<0

 (−1)r+sqr
2+4rs+s2+3r+3s

1− xq2r+1
. (4.1)

For t, m ∈ Z with t ≥ 1, 1− t ≤ m ≤ t, consider the generalization

pt,m(x; q) :=

∑
r,s≥0

−
∑
r,s<0

 (−1)r+sq(
r
2)+2trs+(s2)+(t+m)r+(t+m)s

1− xqr
(4.2)
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and
O(m)
t (x; q) :=

q

(q2; q2)∞
pt,m(qx; q2). (4.3)

By (4.1)–(4.3), O(1)
1 (x; q) = O(x; q). A similar argument as in the proofs of Theorems 1.1–1.4

yields

O(m)
t (x; q) =

q3−8t
2−2(m−1)(2t−1)

Θ(xq; q2)(q2; q2)∞

4t2−2∑
k=0

(−1)k+1qk
2+3kf1,2t,1(q

2t+2m+2−8t2+2k, q2t+2m; q2)

× f1,4t2−1,4t2(4t2−1)(x−1q2k+1,−q16t4−4t2−2(m−1)(2t−1)+8t2k; q2)

which is a mixed false theta function. A two-parameter generalization in the case of the Hecke-
Appell type expansion for odd strongly unimodal sequences [6, Eq. (1.11)] can be found in [2,
Theorem 1.6, Corollary 1.7] and is a mixed mock modular form. Second, it would be worthwhile

to find q-multisum expressions for U (m)
t (x; q), W

(m)
t (x; q), V(m)

t (x; q), V
(m)
t (x; q) and O(m)

t (x; q)
akin to (1.2) in order to discover combinatorial interpretations for their coefficients or potential
ties to the colored Jones polynomial for some family of knots. A possible starting point is
the fact that (1.7), (1.12), (1.16), (1.20) and (4.1) are all applications of the techniques in [17]
combined with appropriately chosen Bailey pairs. Are there two-parameter generalizations of
[17, Theorems 1.1 and 1.2]? Third, given that false theta functions are examples of quantum
modular forms [10, Section 4.4], it would highly desirable to investigate whether Theorems 1.1–
1.4 lead to the construction of new families of quantum Jacobi forms in the spirit of [9]. Finally,
is there a version of Theorem 2.1 or Theorem 2.2 for (1.23)?
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