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Abstract. In 2003, Atkin and Garvan initiated the study of rank and crank moments for ordi-
nary partitions. These moments satisfy a strict inequality. We prove that a strict inequality also
holds for the first rank and crank moments of overpartitions and consider a new combinatorial
interpretation in this setting.

1. Introduction

A partition of a non-negative integer n is a non-increasing sequence of positive integers whose
sum is n. For example, the 5 partitions of 4 are

4, 3 + 1, 2 + 2, 2 + 1 + 1, 1 + 1 + 1 + 1.

In 1944, Dyson introduced the rank of a partition as the largest part minus the number of
parts [18]. In 1988, the first author and Garvan defined the crank of a partition as either the
largest part, if 1 does not occur as a part, or the difference between the number of parts larger
than the number of 1’s and the number of 1’s, if 1 does occur [4]. These two statistics give a
combinatorial explanation of Ramanujan’s congruences for the partition function modulo 5, 7
and 11. Let N(m,n) denote the number of partitions of n whose rank is m and M(m,n) the
number of partitions of n whose crank is m.

A recent development in the theory of partitions has been the study of rank and crank
moments as initiated by Atkin and Garvan [6]. For k ≥ 1, the kth rank moment Nk(n) and the
kth crank moment Mk(n) are given by

Nk(n) :=
∑
m∈Z

mkN(m,n) (1.1)

and

Mk(n) :=
∑
m∈Z

mkM(m,n). (1.2)
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As N(−m,n) = N(m,n) [18] and M(−m,n) = M(m,n) [4], we have Nk(n) = Mk(n) = 0 for k
odd. The even moments are of considerable interest as they have been the subject of a number
of works [1, 2, 7, 8, 11, 13, 14, 17, 19, 20, 21, 27]. In particular, Garvan [20] conjectured that

M2j(n) > N2j(n) (1.3)

for all j, n ≥ 1. In [13], (1.3) was proved for fixed j and sufficiently large n. Garvan proved (1.3)
for all j and n via symmetrized rank and crank moments and Bailey pairs [21]. Recently, the
first three authors gave an elementary proof of (1.3) by considering modified versions of (1.1)
and (1.2). Namely, consider the positive rank and crank moments

N+
k (n) :=

∞∑
m=1

mkN(m,n)

and

M+
k (n) :=

∞∑
m=1

mkM(m,n).

In [3], it was proved that

M+
k (n) > N+

k (n) (1.4)

for all k, n ≥ 1 by a careful study of the decomposition of the generating function for the differ-
ence M+

k (n)−N+
k (n). For a discussion concerning the asymptotic behavior of these moments,

see [12]. Inequality (1.4) combined with the fact that N2j(n) = 2N+
2j(n) and M2j(n) = 2M+

2j(n)

imply (1.3).
Our interest in this paper is to consider an analogue of (1.4) for overpartitions. Recall that

an overpartition [25] is a partition in which the first occurrence of each distinct number may be
overlined. For example, the 14 overpartitions of 4 are

4, 4, 3 + 1, 3 + 1, 3 + 1, 3 + 1, 2 + 2, 2 + 2, 2 + 1 + 1, 2 + 1 + 1, 2 + 1 + 1,

2 + 1 + 1, 1 + 1 + 1 + 1, 1 + 1 + 1 + 1.

These combinatorial objects have recently played an important role in the construction of weight
3/2 mock modular forms [9], in Rogers-Ramanujan and Gordon type identities [15] and in the
study of Jack superpolynomials in supersymmetry and quantum mechanics [16].

Let N(n,m) denote the number of overpartitions of n whose rank is m and M(n,m) the
number of overpartitions of n whose (first residual) crank is m. Here, Dyson’s rank extends
easily to overpartitions and the first residual crank of an overpartition is obtained by taking the
crank of the subpartition consisting of the non-overlined parts [10]. It is now natural to consider
the rank and crank overpartition moments

Nk(n) :=
∑
m∈Z

mkN(m,n)

and
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Mk(n) :=
∑
m∈Z

mkM(m,n).

Via the symmetries N(−m,n) = N(m,n) [23] and M(−m,n) = M(m,n) [10], we have Nk(n) =
Mk(n) = 0 for k odd. Thus, to obtain non-trivial odd moments, we consider

N
+
k (n) :=

∞∑
m=1

mkN(m,n)

and

M
+
k (n) :=

∞∑
m=1

mkM(m,n).

The main result in this paper is an analogue of (1.4) for overpartitions in the case k = 1.

Theorem 1.1. For all n ≥ 1, we have

M
+
1 (n) > N

+
1 (n). (1.5)

The paper is organized as follows. In Section 2, we prove Theorem 1.1. In Section 3, we give

a combinatorial interpretation of M
+
1 (n)−N+

1 (n). In Section 4, we conclude with some remarks
regarding future directions.

2. The proof of Theorem 1.1

For k ≥ 1, we define the generating functions

Mk(q) =

∞∑
n=1

M
+
k (n)qn

and

Rk(q) =

∞∑
n=1

N
+
k (n)qn

and compute their explicit expressions for k = 1. Throughout, we use the standard q-hypergeometric
notation,

(a)n = (a; q)n =

n∏
k=1

(1− aqk−1),

valid for n ∈ N ∪ {∞}.

Proposition 2.1. We have

R1(q) =
2(−q)∞

(q)∞

∞∑
n=1

(−1)n+1 q
n(n+1)

1− q2n
(2.1)

and
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M1(q) =
(−q)∞
(q)∞

∞∑
n=1

(−1)n+1 q
n(n+1)/2

1− qn
. (2.2)

Proof. We begin with the generalized Lambert series representation of the two-variable gener-
ating function for Dyson’s rank for overpartitions,

R(z, q) :=
∞∑
n=0

∑
m∈Z

N(m,n)zmqn

=
∞∑
n=0

(−1)nq
n(n+1)/2

(zq)n(q/z)n

=
(−q)∞
(q)∞

(
1 + 2

∞∑
n=1

(1− z)(1− 1/z)(−1)nqn
2+n

(1− zqn)(1− qn/z)

)

=
(−q)∞
(q)∞

(
1 + 2

∞∑
n=1

(−1)nqn
2 − 2

∞∑
n=1

(−1)nqn
2
(1− qn)

1 + qn

( ∞∑
m=0

zmqmn +

∞∑
m=1

z−mqmn

))
.

(2.3)
For the second and third equalities in (2.3), see the proof of Proposition 3.2 in [23]. Here, we
have used the identity

(1− z)(1− 1/z)qn

(1− zqn)(1− qn/z)
= 1− 1− qn

1 + qn

( ∞∑
m=0

zmqmn +

∞∑
m=1

z−mqmn

)
for the last equality in (2.3). We now apply the differential operator z ∂

∂z to both sides of (2.3)
to obtain

z
∂

∂z

(
R(z, q)

)
=

(−q)∞
(q)∞

(
2
∞∑
n=1

(−1)n+1qn
2
(1− qn)

1 + qn

∞∑
m=1

mzmqmn + 2
∞∑
n=1

(−1)nqn2(1− qn)

1 + qn

∞∑
m=1

mz−mqmn

)
.

(2.4)
Only the first term on the right side of (2.4) contributes to positive powers of z and so

R1(q) = lim
z→1

2(−q)∞
(q)∞

∞∑
n=1

(−1)n+1qn
2
(1− qn)

1 + qn

∞∑
m=1

mzmqmn

=
2(−q)∞

(q)∞

∞∑
n=1

(−1)n+1qn
2
(1− qn)

1 + qn

∞∑
m=1

mqmn

=
2(−q)∞

(q)∞

∞∑
n=1

(−1)n+1qn(n+1)

1− q2n
,

(2.5)

which is (2.1). In the last equality of (2.5), we applied the identity
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∞∑
m=1

mqmn =
qn

(1− qn)2
.

For the two-variable generating function for the first residual crank for overpartitions, we have

C(z, q) :=
∞∑
n=0

∑
m∈Z

M(m,n)zmqn = (−q)∞C(z, q) (2.6)

where C(z, q) is the two-variable generating function for the crank for partitions. Thus, by the
proof of Theorem 1 in [3], we obtain (2.2).

�

We now require the following two Lemmas for the proof of Theorem 1.1.

Lemma 2.2. If

h(q) :=
∞∑
n=1

(−1)n+1qn(n+1)/2

1− qn
,

then

h(q) =
∞∑
j=1

qj
2
(1 + 2qj + 2q2j + · · ·+ 2qj

2−j + qj
2
).

Proof. Setting b = c = 1 in [5, Theorem 2.3], we have the Bailey pair

αn =
qn

2
(1− aq2n)(a)2n
(1− a)(q)2n

(2.7)

and

βn =
1

(q)2n
. (2.8)

Substituting (2.7) and (2.8) into [5, Corollary 2.1] with ρ1, ρ2 →∞, we find that

∞∑
n=0

qn
2
an

(q)2n
=

1

(aq)∞

(
1 +

∞∑
n=1

q2n
2
an(1− aq2n)(a)2n
(1− a)(q)2n

)
. (2.9)

Next, we apply d
da

∣∣
a=1

. The left side of (2.9) becomes

∞∑
n=0

nqn
2

(q)2n
=

1

(q)∞

∞∑
n=1

(−1)n+1q(
n+1
2 )

1− qn
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after invoking [3, Eq. (1.3)], while the right side of (2.9) becomes

1

(q)∞

∞∑
j=1

qj

1− qj
− 1

(q)∞

∞∑
n=1

q2n
2
(1− q2n)(q)2n−1

(q)2n

=
1

(q)∞

 ∞∑
j=1

qj

1− qj
−
∞∑
n=1

q2n
2
(1 + qn)

(1− qn)

 .

Multiplying both sides by (q)∞, we obtain

h(q) =
∞∑
j=1

qj

1− qj
−
∞∑
n=1

q2n
2(1+qn)(1− qn)

=

∞∑
j=1

qj
2
(1 + qj)

1− qj
−
∞∑
n=1

q2j
2(1+qj)1− qj

=

∞∑
j=1

qj
2
(1 + qj)(1− qj2)

1− qj

=

∞∑
j=1

qj
2
(1 + qj)(1 + qj + · · ·+ qj(j−1))

=
∞∑
j=1

qj
2
(1 + 2qj + 2q2j + · · ·+ 2qj

2−j + qj
2
).

(2.10)

Note that in the second equality of (2.10), we used the elementary manipulation

∞∑
j=1

qj

1− qj
=

∞∑
j=1

∞∑
k=1

qjk =

∞∑
j=1

∞∑
k≥j

qjk +

∞∑
k=1

∞∑
j>k

qjk =

∞∑
j=1

qj
2
(1 + qj)

1− qj
.

�

Lemma 2.3.

h(q)− 2h(q2) =

∞∑
n=1

(−1)n+1qn
2
(

1− 2qn + 2q2n + · · ·+ (−1)n−12qn
2−n + (−1)nqn

2
)
. (2.11)
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Proof. Expanding the right side of (2.11) according to the parity of n and then separating the
positive terms from the negative terms, we find that

∞∑
n=1

(−1)n+1qn
2
(

1− 2qn + 2q2n + · · ·+ (−1)n−12qn
2−n + (−1)nqn

2
)

=

∞∑
n=1

q(2n−1)
2
(

1 + 2q4n−2 + 2q8n−4 + · · ·+ 2q4n
2−6n+2

)
−
∞∑
n=1

q(2n−1)
2
(

2q2n−1 + 2q6n−3 + · · ·+ 2q4n
2−8n+3 + q(2n−1)

2
)

+

∞∑
n=1

q(2n)
2
(

2q2n + 2q6n + · · ·+ 2q4n
2−2n

)
−
∞∑
n=1

q(2n)
2
(

1 + 2q4n + · · ·+ 2q4n
2−4n + q(2n)

2
)
.

(2.12)

Using Lemma 2.2, we compute a similar expansion for h(q), then compare with (2.12) in order
to see that it suffice to prove

h(q2) =
∞∑
n=1

q2n
2
(

1 + 2q2n + 2q4n + · · ·+ 2q2n
2−2n + q2n

2
)

=

∞∑
n=1

q(2n−1)
2
(

2q2n−1 + 2q6n−3 + · · ·+ 2q4n
2−8n+3 + q(2n−1)

2
)

+
∞∑
n=1

q(2n)
2
(

1 + 2q4n + · · ·+ 2q4n
2−4n + q(2n)

2
)
. (2.13)

Subtracting
∞∑
n=1

q2n
2
(

1 + q2n
2
)

from both sides of (2.13) and then dividing by 2, it remains to

show that

∞∑
n=2

q2n
2
(
q2n + q4n + · · ·+ q2n

2−2n
)

=
∞∑
n=2

q(2n−1)
2
(
q2n−1 + q6n−3 + · · ·+ q4n

2−8n+3
)

+
∞∑
n=2

q4n
2
(
q4n + · · ·+ q4n

2−4n
)
. (2.14)
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Define f(n, j) = q2n
2+2nj . Substituting f(n, j) into the left side of (2.14) and making a change

of summation index k = n+ j, we find that

∞∑
n=2

q2n
2
(
q2n + q4n + · · ·+ q2n

2−2n
)

=
∞∑
n=2

n−1∑
j=1

f(n, j) =
∞∑
n=2

2n−1∑
k=n+1

f(n, k − n)

=
∞∑
l=2

2l−2∑
n=l

f(n, 2l − 1− n) +
∞∑
m=2

2m−1∑
n=m+1

f(n, 2m− n)

=
∞∑
l=2

q4l
2−2l + q4l

2+2l−2 + · · ·+ q8l
2−12l+4 +

∞∑
m=2

q4l
2+4l + q4l

2+8l + · · ·+ q8l
2−4l,

where in the penultimate equality, we rearranged the order of summation and separated the
terms into odd and even values of k via k = 2l − 1 and k = 2m. We see that these are equal to
the right side of (2.14) and this completes the proof.

�

We can now prove Theorem 1.1

Proof of Theorem 1.1. By Proposition 2.1, we have

M1(q)−R1(q) =
(−q)∞
(q)∞

(
h(q)− 2h(q2)

)
. (2.15)

Thus, it suffices to prove that the right side of (2.15) has positive power series coefficients for
all positive powers of q. By Lemma 2.3,

h(q)− 2h(q2) =
∞∑
n=1

(−1)n+1qn
2

+ 2
∞∑
n=2

(−1)nqn
2
(
qn − q2n + · · ·+ (−1)n−2qn

2−n
)

− 2

∞∑
n=1

q2(2n)
2 −

∞∑
n=1

(−1)n+1q2n
2

=: A1 + 2A2 − 2A3 −A4.

For the sum A1, note that

−1

2
+A1 = −1

2

∞∑
k=−∞

(−1)nqn
2

= − (q)∞
2(−q)∞

.

Hence
(−q)∞
(q)∞

A1 =
(−q)∞
2(q)∞

− 1

2
.

Similarly, for the sum A4,
(−q2; q2)∞
(q2; q2)∞

A4 =
(−q2; q2)∞
2(q2; q2)∞

− 1

2
.

Therefore,

(−q)∞
(q)∞

(A1 −A4) =
(−q)∞
2(q)∞

− 1

2
− (−q; q2)∞

(q; q2)∞

(
(−q2; q2)∞
2(q2; q2)∞

− 1

2

)
=

(−q; q2)∞
2(q; q2)∞

− 1

2
,
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which has positive power series coefficients for all positive powers of q. Next, we examine A2−A3.

We define g(n, j) = (−1)n+j−1qn
2+jn. Then

A2 −A3 =
∞∑
n=2

(−1)nqn
2
n−1∑
j=1

(−1)j−1qjn −
∞∑
n=1

q2(2n)
2

=

∞∑
n=2

n−1∑
j=1

g(n, j) +

∞∑
n=1

g(2n, 2n).

We now rearrange the series A2 −A3 into several sums. Note that for j ≥ 0 and n ≥ 2j + 2,

g(2n, 4j + 3) + g(2n+ 1, 4j + 3) + g(2n+ 1, 4j + 1) + g(2n+ 2, 4j + 1)

= (−1)2n+4j+2q4n
2+(4j+3)2n

(
1− q4n+4j+4 − q4j+2 + q4n+8j+6

)
= q4n

2+(4j+3)2n
(
1− q4j+2

) (
1− q4n+4j+4

)
,

and for j ≥ 0 and n ≥ 2j + 2,

g(2n+ 1, 4j + 4) + g(2n+ 2, 4j + 4) + g(2n+ 2, 4j + 2) + g(2n+ 3, 4j + 2)

= (−1)2n+4j+4q(2n+1)2+(4j+4)(2n+1)
(
1− q4n+4j+7 − q4j+3 + q4n+8j+10

)
= q(2n+1)2+(4j+4)(2n+1)

(
1− q4j+3

) (
1− q4n+4j+7

)
.

These take care of all the terms except, for all integers n ≥ 0,

g(4n+ 2, 4n+ 1) + g(4n+ 3, 4n+ 1) + g(4n+ 4, 4n+ 1) + g(4n+ 2, 4n+ 2)

+ g(4n+ 3, 4n+ 2) + g(4n+ 4, 4n+ 2) + g(4n+ 5, 4n+ 2) + g(4n+ 4, 4n+ 4)

= [g(4n+ 2, 4n+ 1) + g(4n+ 3, 4n+ 1) + g(4n+ 4, 4n+ 1) + g(4n+ 2, 4n+ 2)

+ g(4n+ 3, 4n+ 2)− g(4n+ 3, 4n+ 4)]

+ [g(4n+ 3, 4n+ 4) + g(4n+ 4, 4n+ 4) + g(4n+ 4, 4n+ 2) + g(4n+ 5, 4n+ 2)] .

Note that

g(4n+ 2, 4n+ 1) + g(4n+ 3, 4n+ 1) + g(4n+ 4, 4n+ 1) + g(4n+ 2, 4n+ 2)

+ g(4n+ 3, 4n+ 2)− g(4n+ 3, 4n+ 4)

= q(4n+2)2+(4n+1)(4n+2)
[
1− q12n+6 + q24n+14 − q4n+2 + q16n+9 − q24n+15

]
= q(4n+2)2+(4n+1)(4n+2)

[
(1− q4n+2)(1− q8n+7)(1− q12n+6)

+ q12n+8(1− q)(1− q4n) + q8n+7(1− q4n+1)(1− q12n+6)
]

while

g(4n+ 3, 4n+ 4) + g(4n+ 4, 4n+ 4) + g(4n+ 4, 4n+ 2) + g(4n+ 5, 4n+ 2)

= q(4n+2)2+(4n+1)(4n+2)+24n+15(1− q4n+3)(1− q12n+11).
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These sums show that

(−q)∞
(q)∞

(A2 −A3)

=
(−q)∞
(q)∞

∞∑
j=0

∞∑
n=2j+2

q4n
2+(4j+3)2n

(
1− q4j+2

) (
1− q4n+4j+4

)
+

(−q)∞
(q)∞

∞∑
j=0

∞∑
n=2j+2

q(2n+1)2+(4j+4)(2n+1)
(
1− q4j+3

) (
1− q4n+4j+7

)
+

(−q)∞
(q)∞

∞∑
n=0

q(4n+2)2+(4n+1)(4n+2)
[
(1− q4n+2)(1− q8n+7)(1− q12n+6)

+ q12n+8(1− q)(1− q4n) + q8n+7(1− q4n+1)(1− q12n+6)
]

+
(−q)∞
(q)∞

∞∑
n=0

q(4n+2)2+(4n+1)(4n+2)+24n+15(1− q4n+3)(1− q12n+11).

For positive integers a, b, c and d with b < c < d, expressions of the form

(−q)∞
(q)∞

qa(1− qb)(1− qc)

and
(−q)∞
(q)∞

qa(1− qb)(1− qc)(1− qd)

have nonnegative coefficients and so (−q)∞
(q)∞

(A2 − A3) has nonnegative power series coefficients.

Since (−q)∞
(q)∞

(A1−A4) has positive power series coefficients for all positive powers of q, we conclude

that the power series expansion of (−q)∞
(q)∞

(h(q)−2h(q2)) has positive coefficients for all qn, n ≥ 1.

This proves (1.5). �

Corollary 2.4.

1

(q)∞
(h(q)− 2h(q2))

has positive power series coefficients for all qn with n ≥ 6.

Proof. From the proof of Theorem 1.1 and by invoking the elementary identity (−q)∞ =
1/(q; q2)∞, we see that

1

(q)∞
(A1 −A4) =

1

(−q)∞

(
(−q; q2)∞
2(−q; q2)∞

− 1

2

)
=

1

2
((−q; q2)∞ − (q; q2)∞),

which has positive power series coefficients for all odd positive powers of q (the terms with even
powers of q vanishes). Again, from the proof of Theorem 1.1, it is easy to see that 1

(q)∞
(A2−A3)

has nonnegative power series coefficients. Since one of the terms in the corresponding expression
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of 1
(q)∞

(A2 −A3) is

1

(q)∞
q6(1− q2)(1− q6)(1− q8) = q6

∞∏
k=1

k 6=2,6,8
∞

1

1− qk
,

the coefficients of qn for n ≥ 6 in the power series expansion of 1
(q)∞

(A2 −A3) are all positive.

�

3. A combinatorial interpretation

In [3], the first three authors defined a new counting function ospt(n) as

ospt(n) = M+
1 (n)−N+

1 (n)

and provided its combinatorial interpretation. The function ospt(n) is an interesting companion
of spt(n) in sense of that

spt(n) = M+
2 (n)−N+

2 (n).

Here, spt(n) is the number of smallest parts in the partitions of n [2]. In this section, we discuss
an overpartition analogue of ospt(n) and its combinatorial meaning. Let us define

ospt(n) = M
+
1 (n)−N+

1 (n).

Before giving a combinatorial interpretation for ospt(n), we first recall the description of
ospt(n). An even string in the partition λ is a sequence of the consecutive parts starting from
some even number 2k + 2 where the length is an odd number greater than or equal to 2k + 1
and 2k + 2 plus the length of the string (the number of consecutive parts) do not appear as a
part. An odd string in λ is a sequence of the consecutive parts starting from some odd number
2k + 1 where the length is greater than or equal to 2k + 1 such that the part 2k + 1 appears
exactly once and 2k+ 2 plus the length of the string does not appear as a part. By “consecutive
parts”, we allow repeated parts. With these notions in mind, we have the following.

Theorem 3.1. [3, Theorem 4] For all positive integers n,

ospt(n) =
∑
λ`n

ST(λ),

where the sums runs over the partitions of n and ST(λ) is the number of even and odd strings
in the partition λ.

The function ospt(n) now counts the number of certain stings in the overpartitions of n, but
the difference is that we have a weighted count of strings. We start by defining fk(q) as

fk(q) =

∞∑
n=1

(−1)n+1qn(n+1)/2+n(k−1).

By Proposition 2.1 and exchanging the order of summation, we have
∞∑
n=1

(M
+
1 (n)−N+

1 (n))qn =
(−q)∞
(q)∞

∞∑
k=1

(fk(q)− 2fk(q
2)).
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Note that for a fixed k ≥ 1,

(−q)∞
(q)∞

(f2k−1(q) + f2k(q)− 2fk(q
2))

=
(−q)∞
(q)∞

∞∑
n=1

q2n
2−5n+4nk−2k+2(1− q2n2−n)(1− q4n+2k−2)− q2n2−3n+4nk(1− q2n2+n)(1− q4n+2k).

Now we define Ak(n) (resp. Bk(n)) to be the number of overpartitions of n counted by the first
(resp. second) sum. By noting that

2n2 − n+ 4nk = 1 + (2k − 2) + 2 + (2k − 2) + · · ·+ (2n− 1) + (2k − 2) + 2n+ (2k − 2),

we define an odd string starting from 2k − 1 in an overpartition as

(1) 2k − 1, 2k, . . . , 2`+ 2k − 3 appears at least once, i.e. there are 2`− 1 consecutive parts
starting from 2k − 1.

(2) There is no other part of size 2`2 − ` and 4`+ 2k − 2.

Similarly, we define an even sting starting from 2k in an overpartition as

(1) 2k−1, 2k, . . . , 2`+2k−2 appears at least once, i.e. there are 2` consecutive parts starting
from 2k − 1.

(2) There is no other part of size 2`2 + ` and 4`+ 2k.

As with the ospt(n) function, Ak(n) is now the number of odd strings starting from 2k − 1
along the overpartitions of n, and Bk(n) is the number of even strings starting from 2k−1 along
the overpartitions of n. Then we have

∞∑
n=1

(M
+
1 (n)−N+

1 (n))qn =
∞∑
n=1

b(n+1)/2c∑
k=1

(Ak(n)−Bk(n))qn =
∞∑
n=1

ospt(n)qn.

We have thus proven the following.

Theorem 3.2. For all positive integers n, we have

ospt(n) = STo(n)− STe(n),

where STo(n) (resp. STe(n)) is the number of odd (resp. even) strings along the overpartitions
of n.

Let us illustrate the above discussion for n = 5. From Table 1, we see that STo(5) = 8 and

STe(5) = 4, so ospt(5) = 4. This matches with M
+
1 (5) = 24 and N

+
1 (5) = 20.

4. Concluding Remarks

We have numerically observed that

M
+
k (n) > N

+
k (n) (4.1)

for all k, n ≥ 1. Inequality (4.1) and the fact that N2j(n) = 2N
+
2j(n) and M2j(n) = 2M

+
2j(n)

implies that a complete analogue of (1.3) should hold. It would be interesting to see if the

techniques in [3] can be used to prove (4.1) and discover a combinatorial meaning for M
+
k (n)−

N
+
k (n). Moreover, there is an inequality of note which has a similar flavor to (1.3). If we consider

the rank moment
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Overpartitions of 5 The number of odd strings The number of even strings
5 1 0

4+1 1 0
3+2 1 0
3 +2 1 0

3+1 +1 1 0
3+1+1 1 0
2+2+1 1 1
2+2+1 1 1

2+1+1+1 0 1
2+1+1+1 0 1

Table 1. The number of strings in the overpartitions of 5.

N2k(n) :=
∑
m∈Z

mkN2(m,n)

where N2(m,n) is the number of overpartitions of n with M2-rank m [24], then Mao [26] has
proven that

N2j(n) > N22j(n) (4.2)

for all j ≥ 1, n ≥ 2. Another proof of (4.2) using the similarly defined positive rank moment

N2
+
k (n) can be found in [22]. It is still not known what N

+
k (n) − N2

+
k (n) counts. One could

also compute asymptotics in the spirit of [11, 12, 13, 14, 27]. Finally, while proving Corollary
2.4 and Theorem 3.2, we observed the following. First, it appears that for all integers m ≥ 3.

1

(q)∞
(h(q)−mh(qm))

has positive power series coefficients for all positive powers of q. Second, numerical computations
suggest that Ak(n) ≥ Bk(n) for all n, k ≥ 1. We leave these questions to the interested reader.
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