Somos Sequences and Cluster Algebras

Hao Dai
University College Dublin

September 5, 2022

Somos Sequences

Somos Sequences

- Let $k \geq 2$ be an integer. The Somos- k sequence is a sequence $\left(a_{i}\right)_{i \in \mathbb{N}}$ defined by $a_{0}=a_{1}=\ldots=a_{k-1}=1$ and the recursion

$$
a_{i+k}=\frac{1}{a_{i}} \sum_{r=1}^{\left\lfloor\frac{k}{2}\right\rfloor} a_{i+k-r} a_{i+r}
$$

where \rfloor is the floor function.

Somos Sequences

- Let $k \geq 2$ be an integer. The Somos- k sequence is a sequence $\left(a_{i}\right)_{i \in \mathbb{N}}$ defined by $a_{0}=a_{1}=\ldots=a_{k-1}=1$ and the recursion

$$
a_{i+k}=\frac{1}{a_{i}} \sum_{r=1}^{\left\lfloor\frac{k}{2}\right\rfloor} a_{i+k-r} a_{i+r}
$$

where \rfloor is the floor function.

- Equivalently, the Somos- k sequence is defined as

$$
a_{i+k} a_{i}=\left\{\begin{aligned}
a_{i+1} a_{i+k-1}+a_{i+2} a_{i+k-2}+\ldots+a_{i+\frac{k}{2}}^{2} & \text { if } k \text { is even } \\
a_{i+1} a_{i+k-1}+a_{i+2} a_{i+k-2}+\ldots+a_{i+\frac{k-1}{2}} a_{i+\frac{k+1}{2}} & \text { if } k \text { is odd }
\end{aligned}\right.
$$

for $i \geq 0$ with $a_{0}=a_{1}=\ldots=a_{k-1}=1$.

Somos Sequences

Somos Sequences

- Some initial values of Somos- k sequences for $2 \leq k \leq 9$ are as follows:

Somos Sequences

- Some initial values of Somos- k sequences for $2 \leq k \leq 9$ are as follows:

$k=2$	$1, \ldots$
$k=3$	$1, \ldots$
$k=4$	$1,1,1,1,2,3,7,23,59,314,1529,8209,83313,620297,7869898, \ldots$
$k=5$	$1,1,1,1,1,2,3,5,11,37,83,274,1217,6161,22833,165713, \ldots$
$k=6$	$1,1,1,1,1,1,3,5,9,23,75,421,1103,5047,41783,281527, \ldots$
$k=7$	$1,1,1,1,1,1,1,3,5,9,17,41,137,769,1925,7203,34081, \ldots$
$k=8$	$1,1,1,1,1,1,1,1,4,7,13,25,61,187,775,5827,14815, \frac{420514}{7}, \ldots$
$k=9$	$1,1,1,1,1,1,1,1,1,4,7,13,25,49,115,355,1483,11137,27937, \frac{755098}{7}, \ldots$

Somos Sequences

- Some initial values of Somos- k sequences for $2 \leq k \leq 9$ are as follows:

$k=2$	$1, \ldots$
$k=3$	$1, \ldots$
$k=4$	$1,1,1,1,2,3,7,23,59,314,1529,8209,83313,620297,7869898, \ldots$
$k=5$	$1,1,1,1,1,2,3,5,11,37,83,274,1217,6161,22833,165713, \ldots$
$k=6$	$1,1,1,1,1,1,3,5,9,23,75,421,1103,5047,41783,281527, \ldots$
$k=7$	$1,1,1,1,1,1,1,3,5,9,17,41,137,769,1925,7203,34081, \ldots$
$k=8$	$1,1,1,1,1,1,1,1,4,7,13,25,61,187,775,5827,14815, \frac{420514}{7}, \ldots$
$k=9$	$1,1,1,1,1,1,1,1,1,4,7,13,25,49,115,355,1483,11137,27937, \frac{755098}{7}, \ldots$

- It appears that all terms in the Somos- k sequences are integers for $2 \leq k \leq 7$ while for $k=8$ and $k=9$ this is not the case.

Somos Sequences

Somos Sequences

- Is every term in the Somos- k sequences integer valued for $2 \leq k \leq 7$?

Somos Sequences

- Is every term in the Somos- k sequences integer valued for $2 \leq k \leq 7$? Yes!

Somos Sequences

- Is every term in the Somos- k sequences integer valued for $2 \leq k \leq 7$? Yes!
- The Somos-2 and Somos-3 sequences only contain 1's.

Somos Sequences

- Is every term in the Somos- k sequences integer valued for $2 \leq k \leq 7$? Yes!
- The Somos-2 and Somos-3 sequences only contain 1's.
- There are elementary proofs of the integrality of the Somos-4 and Somos-5 sequences.

Somos Sequences

- Is every term in the Somos- k sequences integer valued for $2 \leq k \leq 7$? Yes!
- The Somos-2 and Somos-3 sequences only contain 1's.
- There are elementary proofs of the integrality of the Somos-4 and Somos-5 sequences.
- To prove the integrality of the Somos-6 and Somos-7 sequences, we need to make use of the theory of cluster algebras.

Somos Sequences

- Is every term in the Somos- k sequences integer valued for $2 \leq k \leq 7$? Yes!
- The Somos-2 and Somos-3 sequences only contain 1's.
- There are elementary proofs of the integrality of the Somos-4 and Somos-5 sequences.
- To prove the integrality of the Somos-6 and Somos-7 sequences, we need to make use of the theory of cluster algebras.
- It is conjectured that the Somos- k sequence is not integral for any $k \geq 8$.

Quivers

Quivers

Definition

A quiver is a tuple $Q=\left(Q_{0}, Q_{1}, s, t\right)$ where Q_{0} and Q_{1} are finite sets and $s, t: Q_{1} \rightarrow Q_{0}$ are maps. Elements in Q_{0} and Q_{1} are called vertices and arrows, respectively. For $\alpha \in Q_{1}$, the vertex $s(\alpha) \in Q_{0}$ is the starting point and the vertex $t(\alpha) \in Q_{1}$ is the terminal point of α.

Quivers

Definition

A quiver is a tuple $Q=\left(Q_{0}, Q_{1}, s, t\right)$ where Q_{0} and Q_{1} are finite sets and $s, t: Q_{1} \rightarrow Q_{0}$ are maps. Elements in Q_{0} and Q_{1} are called vertices and arrows, respectively. For $\alpha \in Q_{1}$, the vertex $s(\alpha) \in Q_{0}$ is the starting point and the vertex $t(\alpha) \in Q_{1}$ is the terminal point of α.

Example

Quivers

Definition

A quiver is a tuple $Q=\left(Q_{0}, Q_{1}, s, t\right)$ where Q_{0} and Q_{1} are finite sets and $s, t: Q_{1} \rightarrow Q_{0}$ are maps. Elements in Q_{0} and Q_{1} are called vertices and arrows, respectively. For $\alpha \in Q_{1}$, the vertex $s(\alpha) \in Q_{0}$ is the starting point and the vertex $t(\alpha) \in Q_{1}$ is the terminal point of α.

Example

Quiver Mutation

Quiver Mutation

Definition

Let k be a vertex of a quiver $Q=\left(Q_{0}, Q_{1}, s, t\right)$. The quiver mutation μ_{k} at k gives a new quiver $Q^{\prime}=\left(Q_{0}^{\prime}, Q_{1}^{\prime}, s^{\prime}, t^{\prime}\right)=\mu_{k}(Q)$ via the following rules: (1) We keep the vertices the same, i.e., $Q_{0}=Q_{0}^{\prime} ;(2)$ for each length-2 path $i \rightarrow k \rightarrow j$, add an arrow from i to j; (3) reverse all arrows incident to k; (4) remove all 2-cycles.

Quiver Mutation

Definition

Let k be a vertex of a quiver $Q=\left(Q_{0}, Q_{1}, s, t\right)$. The quiver mutation μ_{k} at k gives a new quiver $Q^{\prime}=\left(Q_{0}^{\prime}, Q_{1}^{\prime}, s^{\prime}, t^{\prime}\right)=\mu_{k}(Q)$ via the following rules: (1) We keep the vertices the same, i.e., $Q_{0}=Q_{0}^{\prime} ;(2)$ for each length-2 path $i \rightarrow k \rightarrow j$, add an arrow from i to j; (3) reverse all arrows incident to k; (4) remove all 2-cycles.

Example

Let Q be the quiver on the left and Q^{\prime} be the quiver on the right.

Quiver Mutation

Definition

Let k be a vertex of a quiver $Q=\left(Q_{0}, Q_{1}, s, t\right)$. The quiver mutation μ_{k} at k gives a new quiver $Q^{\prime}=\left(Q_{0}^{\prime}, Q_{1}^{\prime}, s^{\prime}, t^{\prime}\right)=\mu_{k}(Q)$ via the following rules: (1) We keep the vertices the same, i.e., $Q_{0}=Q_{0}^{\prime} ;(2)$ for each length-2 path $i \rightarrow k \rightarrow j$, add an arrow from i to j; (3) reverse all arrows incident to k; (4) remove all 2 -cycles.

Example

Let Q be the quiver on the left and Q^{\prime} be the quiver on the right.

Quiver Mutation

Definition

Let k be a vertex of a quiver $Q=\left(Q_{0}, Q_{1}, s, t\right)$. The quiver mutation μ_{k} at k gives a new quiver $Q^{\prime}=\left(Q_{0}^{\prime}, Q_{1}^{\prime}, s^{\prime}, t^{\prime}\right)=\mu_{k}(Q)$ via the following rules: (1) We keep the vertices the same, i.e., $Q_{0}=Q_{0}^{\prime} ;(2)$ for each length-2 path $i \rightarrow k \rightarrow j$, add an arrow from i to j; (3) reverse all arrows incident to k; (4) remove all 2-cycles.

Example

Let Q be the quiver on the left and Q^{\prime} be the quiver on the right.

Note that $Q^{\prime}=\mu_{2}(Q)$.

Cluster Algebras

Cluster Algebras

Definition

Let $K \subseteq \mathcal{F}$ be a field extension. Elements $u_{1}, \ldots, u_{n} \in \mathcal{F}$ are said to be algebraically dependent over the field K if there exists $f \in K\left[X_{1}, \ldots, X_{n}\right]$ such that $f\left(u_{1}, \ldots, u_{n}\right)=0$. Otherwise, we say that u_{1}, \ldots, u_{n} are algebraically independent.

Cluster Algebras

Definition

Let $K \subseteq \mathcal{F}$ be a field extension. Elements $u_{1}, \ldots, u_{n} \in \mathcal{F}$ are said to be algebraically dependent over the field K if there exists $f \in K\left[X_{1}, \ldots, X_{n}\right]$ such that $f\left(u_{1}, \ldots, u_{n}\right)=0$. Otherwise, we say that u_{1}, \ldots, u_{n} are algebraically independent.

- Throughout, let $K=\mathbb{Q}$ and consider $\mathcal{F}=\mathbb{Q}\left(u_{1}, \ldots, u_{n}\right)$ for some algebraically independent elements u_{1}, \ldots, u_{n}.

Cluster Algebras

Definition

Let $K \subseteq \mathcal{F}$ be a field extension. Elements $u_{1}, \ldots, u_{n} \in \mathcal{F}$ are said to be algebraically dependent over the field K if there exists $f \in K\left[X_{1}, \ldots, X_{n}\right]$ such that $f\left(u_{1}, \ldots, u_{n}\right)=0$. Otherwise, we say that u_{1}, \ldots, u_{n} are algebraically independent.

- Throughout, let $K=\mathbb{Q}$ and consider $\mathcal{F}=\mathbb{Q}\left(u_{1}, \ldots, u_{n}\right)$ for some algebraically independent elements u_{1}, \ldots, u_{n}.

Definition

A cluster is a sequence $\mathbf{x}=\left(x_{1}, \ldots, x_{n}\right)$ of algebraically independent elements in \mathcal{F}^{n}. Here, x_{1}, \ldots, x_{n} are called cluster variables.

Cluster Algebras

Definition

Let $K \subseteq \mathcal{F}$ be a field extension. Elements $u_{1}, \ldots, u_{n} \in \mathcal{F}$ are said to be algebraically dependent over the field K if there exists $f \in K\left[X_{1}, \ldots, X_{n}\right]$ such that $f\left(u_{1}, \ldots, u_{n}\right)=0$. Otherwise, we say that u_{1}, \ldots, u_{n} are algebraically independent.

- Throughout, let $K=\mathbb{Q}$ and consider $\mathcal{F}=\mathbb{Q}\left(u_{1}, \ldots, u_{n}\right)$ for some algebraically independent elements u_{1}, \ldots, u_{n}.

Definition

A cluster is a sequence $\mathbf{x}=\left(x_{1}, \ldots, x_{n}\right)$ of algebraically independent elements in \mathcal{F}^{n}. Here, x_{1}, \ldots, x_{n} are called cluster variables.

Definition

A seed is a pair (\mathbf{x}, Q) where $\mathbf{x} \in \mathcal{F}^{n}$ is a cluster and Q is a quiver with vertices $1, \ldots, n$.

Cluster Algebras

Cluster Algebras

Definition

Let $Q=\left(Q_{0}, Q_{1}, s, t\right), Q^{\prime}=\left(Q_{0}^{\prime}, Q_{1}^{\prime}, s^{\prime}, t^{\prime}\right)$ be two quivers and $\mathbf{x}, \mathbf{x}^{\prime} \in \mathcal{F}^{n}$ be two corresponding clusters. We say that the seeds (\mathbf{x}, Q) and $\left(\mathbf{x}^{\prime}, Q^{\prime}\right)$ are isomorphic if there exists a quiver isomorphism with a pair (f, g) of bijections $f: Q_{0} \rightarrow Q_{0}^{\prime}$ and $g: Q_{1} \rightarrow Q_{1}^{\prime}$ such that $x_{i}=x_{f(i)}^{\prime}$ for every $i \in\{1, \ldots, n\}$. We write $(\mathbf{x}, Q) \cong\left(\mathbf{x}^{\prime}, Q^{\prime}\right)$.

Cluster Algebras

Definition

Let $Q=\left(Q_{0}, Q_{1}, s, t\right), Q^{\prime}=\left(Q_{0}^{\prime}, Q_{1}^{\prime}, s^{\prime}, t^{\prime}\right)$ be two quivers and $\mathbf{x}, \mathbf{x}^{\prime} \in \mathcal{F}^{n}$ be two corresponding clusters. We say that the seeds (\mathbf{x}, Q) and $\left(\mathbf{x}^{\prime}, Q^{\prime}\right)$ are isomorphic if there exists a quiver isomorphism with a pair (f, g) of bijections $f: Q_{0} \rightarrow Q_{0}^{\prime}$ and $g: Q_{1} \rightarrow Q_{1}^{\prime}$ such that $x_{i}=x_{f(i)}^{\prime}$ for every $i \in\{1, \ldots, n\}$. We write $(\mathbf{x}, Q) \cong\left(\mathbf{x}^{\prime}, Q^{\prime}\right)$.

Definition

Let (\mathbf{x}, Q) be a seed and $k \in\{1, \ldots, n\}$. The mutation of (\mathbf{x}, Q) at vertex k is the seed $\left(\mu_{k}(\mathbf{x}), \mu_{k}(Q)\right)$ where $\mu_{k}(Q)$ is the quiver mutation of Q at k and $\mu_{k}(\mathbf{x})=\left(x_{1}^{\prime}, \ldots, x_{n}^{\prime}\right) \in \mathcal{F}^{n}$ is the cluster defined as

$$
x_{i}^{\prime}= \begin{cases}x_{i}, & \text { if } i \neq k \\ \frac{1}{x_{i}}\left(\prod_{\alpha: j \rightarrow i} x_{j}+\prod_{\beta: i \rightarrow l} x_{l}\right), & \text { if } i=k\end{cases}
$$

Cluster Algebras

Definition

Let $Q=\left(Q_{0}, Q_{1}, s, t\right), Q^{\prime}=\left(Q_{0}^{\prime}, Q_{1}^{\prime}, s^{\prime}, t^{\prime}\right)$ be two quivers and $\mathbf{x}, \mathbf{x}^{\prime} \in \mathcal{F}^{n}$ be two corresponding clusters. We say that the seeds (\mathbf{x}, Q) and $\left(\mathbf{x}^{\prime}, Q^{\prime}\right)$ are isomorphic if there exists a quiver isomorphism with a pair (f, g) of bijections $f: Q_{0} \rightarrow Q_{0}^{\prime}$ and $g: Q_{1} \rightarrow Q_{1}^{\prime}$ such that $x_{i}=x_{f(i)}^{\prime}$ for every $i \in\{1, \ldots, n\}$. We write $(\mathbf{x}, Q) \cong\left(\mathbf{x}^{\prime}, Q^{\prime}\right)$.

Definition

Let (\mathbf{x}, Q) be a seed and $k \in\{1, \ldots, n\}$. The mutation of (\mathbf{x}, Q) at vertex k is the seed $\left(\mu_{k}(\mathbf{x}), \mu_{k}(Q)\right)$ where $\mu_{k}(Q)$ is the quiver mutation of Q at k and $\mu_{k}(\mathbf{x})=\left(x_{1}^{\prime}, \ldots, x_{n}^{\prime}\right) \in \mathcal{F}^{n}$ is the cluster defined as

$$
x_{i}^{\prime}= \begin{cases}x_{i}, & \text { if } i \neq k \\ \frac{1}{x_{i}}\left(\prod_{\alpha: j \rightarrow i} x_{j}+\prod_{\beta: i \rightarrow 1} x_{I}\right), & \text { if } i=k\end{cases}
$$

Definition

Two seeds (\mathbf{x}, Q) and $\left(\mathbf{x}^{\prime}, Q^{\prime}\right)$ are said to be mutation equivalent if there exists a sequence of vertices $\left(k_{1}, \ldots, k_{n}\right)$ in Q_{0} such that $\left(\mu_{k_{1}} \circ \ldots \circ \mu_{k_{n}}\right)(\mathbf{x}, Q) \cong\left(\mathbf{x}^{\prime}, Q^{\prime}\right)$. In this case, we write $(\mathbf{x}, Q) \sim\left(\mathbf{x}^{\prime}, Q^{\prime}\right)$.

Cluster Algebras

Cluster Algebras

Definition

Let (\mathbf{x}, Q) be a seed. The cluster algebra $\mathcal{A}(\mathbf{x}, Q)$ attached to (\mathbf{x}, Q) is the subalgebra of \mathcal{F} generated by

$$
\chi(\mathbf{x}, Q)=\bigcup_{\left(\mathbf{x}^{\prime}, Q^{\prime}\right) \sim(\mathrm{x}, Q)}\left\{x_{1}^{\prime}, \ldots, x_{n}^{\prime}\right\} .
$$

Cluster Algebras

Definition

Let (\mathbf{x}, Q) be a seed. The cluster algebra $\mathcal{A}(\mathbf{x}, Q)$ attached to (\mathbf{x}, Q) is the subalgebra of \mathcal{F} generated by

$$
\chi(\mathbf{x}, Q)=\bigcup_{\left(\mathrm{x}^{\prime}, Q^{\prime}\right) \sim(\mathrm{x}, Q)}\left\{x_{1}^{\prime}, \ldots, x_{n}^{\prime}\right\} .
$$

- Equivalently, $\mathcal{A}(\mathrm{x}, Q)$ is generated by all cluster variables in all seeds which are mutation equivalent to (\mathbf{x}, Q).

Cluster Algebras

Definition

Let (\mathbf{x}, Q) be a seed. The cluster algebra $\mathcal{A}(\mathbf{x}, Q)$ attached to (\mathbf{x}, Q) is the subalgebra of \mathcal{F} generated by

$$
\chi(\mathbf{x}, Q)=\bigcup_{\left(\mathrm{x}^{\prime}, Q^{\prime}\right) \sim(\mathrm{x}, Q)}\left\{x_{1}^{\prime}, \ldots, x_{n}^{\prime}\right\} .
$$

- Equivalently, $\mathcal{A}(\mathbf{x}, Q)$ is generated by all cluster variables in all seeds which are mutation equivalent to (\mathbf{x}, Q).
- In this case, ($\mathbf{x}^{\prime}, Q^{\prime}$) and (\mathbf{x}, Q) are called the seeds of $\mathcal{A}(\mathbf{x}, Q)$;

Cluster Algebras

Definition

Let (\mathbf{x}, Q) be a seed. The cluster algebra $\mathcal{A}(\mathbf{x}, Q)$ attached to (\mathbf{x}, Q) is the subalgebra of \mathcal{F} generated by

$$
\chi(\mathbf{x}, Q)=\bigcup_{\left(\mathrm{x}^{\prime}, Q^{\prime}\right) \sim(\mathrm{x}, Q)}\left\{x_{1}^{\prime}, \ldots, x_{n}^{\prime}\right\} .
$$

- Equivalently, $\mathcal{A}(\mathbf{x}, Q)$ is generated by all cluster variables in all seeds which are mutation equivalent to (\mathbf{x}, Q).
- In this case, $\left(\mathbf{x}^{\prime}, Q^{\prime}\right)$ and (\mathbf{x}, Q) are called the seeds of $\mathcal{A}(\mathbf{x}, Q)$; these $\mathbf{x}^{\prime} \mathrm{s}$ are called the clusters of $\mathcal{A}(\mathbf{x}, Q)$, and elements in $\chi(\mathbf{x}, Q)$ are called the cluster variables of $\mathcal{A}(\mathrm{x}, Q)$.

Cluster Algebras

Definition

Let (\mathbf{x}, Q) be a seed. The cluster algebra $\mathcal{A}(\mathbf{x}, Q)$ attached to (\mathbf{x}, Q) is the subalgebra of \mathcal{F} generated by

$$
\chi(\mathbf{x}, Q)=\bigcup_{\left(\mathbf{x}^{\prime}, Q^{\prime}\right) \sim(\mathrm{x}, Q)}\left\{x_{1}^{\prime}, \ldots, x_{n}^{\prime}\right\} .
$$

- Equivalently, $\mathcal{A}(\mathbf{x}, Q)$ is generated by all cluster variables in all seeds which are mutation equivalent to (\mathbf{x}, Q).
- In this case, $\left(\mathbf{x}^{\prime}, Q^{\prime}\right)$ and (\mathbf{x}, Q) are called the seeds of $\mathcal{A}(\mathbf{x}, Q)$; these \mathbf{x} 's are called the clusters of $\mathcal{A}(\mathbf{x}, Q)$, and elements in $\chi(\mathbf{x}, Q)$ are called the cluster variables of $\mathcal{A}(\mathbf{x}, Q)$.
- Here, we use x_{k}^{\prime} to denote $\mu_{k}\left(x_{k}\right)$ for all vertices k in Q

Cluster Algebras

Definition

Let (\mathbf{x}, Q) be a seed. The cluster algebra $\mathcal{A}(\mathbf{x}, Q)$ attached to (\mathbf{x}, Q) is the subalgebra of \mathcal{F} generated by

$$
\chi(\mathbf{x}, Q)=\bigcup_{\left(\mathbf{x}^{\prime}, Q^{\prime}\right) \sim(\mathrm{x}, Q)}\left\{x_{1}^{\prime}, \ldots, x_{n}^{\prime}\right\} .
$$

- Equivalently, $\mathcal{A}(\mathbf{x}, Q)$ is generated by all cluster variables in all seeds which are mutation equivalent to (\mathbf{x}, Q).
- In this case, $\left(\mathbf{x}^{\prime}, Q^{\prime}\right)$ and (\mathbf{x}, Q) are called the seeds of $\mathcal{A}(\mathbf{x}, Q)$; these \mathbf{x} 's are called the clusters of $\mathcal{A}(\mathbf{x}, Q)$, and elements in $\chi(\mathbf{x}, Q)$ are called the cluster variables of $\mathcal{A}(\mathbf{x}, Q)$.
- Here, we use x_{k}^{\prime} to denote $\mu_{k}\left(x_{k}\right)$ for all vertices k in Q and n is called the rank of the cluster algebra.

The Laurent Phenomenon

The Laurent Phenomenon

Definition
Given indeterminates X_{1}, \ldots, X_{n}, a Laurent polynomial over a field K is a polynomial in $X_{1}, \ldots, X_{n}, X_{1}^{-1}, \ldots, X_{n}^{-1}$ over K.

The Laurent Phenomenon

Definition

Given indeterminates X_{1}, \ldots, X_{n}, a Laurent polynomial over a field K is a polynomial in $X_{1}, \ldots, X_{n}, X_{1}^{-1}, \ldots, X_{n}^{-1}$ over K.

Theorem (The Laurent Phenomenon)

Any cluster variable u in a rank n cluster algebra \mathcal{A} can be written as a Laurent polynomial in any cluster $\mathbf{x}=\left(x_{1}, \ldots, x_{n}\right)$.

The Laurent Phenomenon

Definition

Given indeterminates X_{1}, \ldots, X_{n}, a Laurent polynomial over a field K is a polynomial in $X_{1}, \ldots, X_{n}, X_{1}^{-1}, \ldots, X_{n}^{-1}$ over K.

Theorem (The Laurent Phenomenon)

Any cluster variable u in a rank n cluster algebra \mathcal{A} can be written as a Laurent polynomial in any cluster $\mathbf{x}=\left(x_{1}, \ldots, x_{n}\right)$.

- This result follows from a more general (and much more complicated!) result called the "Caterpillar Lemma".

Integrality of the Somos-4 Sequence

Integrality of the Somos-4 Sequence

- We can view elements in the sequence as cluster variables in clusters in a rank 4 cluster algebra.

Integrality of the Somos-4 Sequence

- We can view elements in the sequence as cluster variables in clusters in a rank 4 cluster algebra.
- The Laurent Phenomenon implies that a cluster variable can be written as a Laurent polynomial in any cluster, so we choose the initial cluster $\left(x_{0}, x_{1}, x_{2}, x_{3}\right)$.

Integrality of the Somos-4 Sequence

- We can view elements in the sequence as cluster variables in clusters in a rank 4 cluster algebra.
- The Laurent Phenomenon implies that a cluster variable can be written as a Laurent polynomial in any cluster, so we choose the initial cluster ($x_{0}, x_{1}, x_{2}, x_{3}$).
- By definition, $x_{0}=x_{1}=x_{2}=x_{3}=1$.

Integrality of the Somos-4 Sequence

- We can view elements in the sequence as cluster variables in clusters in a rank 4 cluster algebra.
- The Laurent Phenomenon implies that a cluster variable can be written as a Laurent polynomial in any cluster, so we choose the initial cluster $\left(x_{0}, x_{1}, x_{2}, x_{3}\right)$.
- By definition, $x_{0}=x_{1}=x_{2}=x_{3}=1$.
- Thus, any element in the sequence can be written as a integer-valued polynomial over 1.

Thank you for your listening.

