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Somos Sequences

▶ Let k ≥ 2 be an integer. The Somos-k sequence is a sequence (ai )i∈N defined by
a0 = a1 = ... = ak−1 = 1 and the recursion

ai+k =
1

ai

⌊ k
2
⌋∑

r=1

ai+k−rai+r

where ⌊ ⌋ is the floor function.

▶ Equivalently, the Somos-k sequence is defined as

ai+kai =

 ai+1ai+k−1 + ai+2ai+k−2 + ...+ a2i+ k
2

if k is even

ai+1ai+k−1 + ai+2ai+k−2 + ...+ a
i+ k−1

2
ai+ k+1

2
if k is odd

for i ≥ 0 with a0 = a1 = ... = ak−1 = 1.
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Somos Sequences

▶ Some initial values of Somos-k sequences for 2 ≤ k ≤ 9 are as follows:

k = 2 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, ...

k = 3 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, ...

k = 4 1, 1, 1, 1, 2, 3, 7, 23, 59, 314, 1529, 8209, 83313, 620297, 7869898, ...

k = 5 1, 1, 1, 1, 1, 2, 3, 5, 11, 37, 83, 274, 1217, 6161, 22833, 165713, ...

k = 6 1, 1, 1, 1, 1, 1, 3, 5, 9, 23, 75, 421, 1103, 5047, 41783, 281527,...

k = 7 1, 1, 1, 1, 1, 1, 1, 3, 5, 9, 17, 41, 137, 769, 1925, 7203, 34081, ...

k = 8 1, 1, 1, 1, 1, 1, 1, 1, 4, 7, 13, 25, 61, 187, 775, 5827, 14815, 420514
7

, ...

k = 9 1, 1, 1, 1, 1, 1, 1, 1, 1, 4, 7, 13,25,49,115,355,1483,11137,27937, 755098
7

,...

▶ It appears that all terms in the Somos-k sequences are integers for 2 ≤ k ≤ 7 while
for k = 8 and k = 9 this is not the case.
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Somos Sequences

▶ Is every term in the Somos-k sequences integer valued for 2 ≤ k ≤ 7? Yes!

▶ The Somos-2 and Somos-3 sequences only contain 1’s.

▶ There are elementary proofs of the integrality of the Somos-4 and Somos-5 sequences.

▶ To prove the integrality of the Somos-6 and Somos-7 sequences, we need to make use
of the theory of cluster algebras.

▶ It is conjectured that the Somos-k sequence is not integral for any k ≥ 8.
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Quivers

Definition
A quiver is a tuple Q = (Q0,Q1, s, t) where Q0 and Q1 are finite sets and s, t : Q1 → Q0

are maps. Elements in Q0 and Q1 are called vertices and arrows, respectively. For α ∈ Q1,
the vertex s(α) ∈ Q0 is the starting point and the vertex t(α) ∈ Q1 is the terminal point
of α.

Example
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Quiver Mutation

Definition
Let k be a vertex of a quiver Q = (Q0,Q1, s, t). The quiver mutation µk at k gives a new
quiver Q ′ = (Q ′

0,Q
′
1, s

′, t′) = µk(Q) via the following rules: (1) We keep the vertices the
same, i.e., Q0 = Q ′

0; (2) for each length-2 path i → k → j , add an arrow from i to j ; (3)
reverse all arrows incident to k; (4) remove all 2-cycles.

Example

Let Q be the quiver on the left and Q ′ be the quiver on the right.

Note that Q ′ = µ2(Q).
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Cluster Algebras

Definition
Let K ⊆ F be a field extension. Elements u1, ..., un ∈ F are said to be algebraically
dependent over the field K if there exists f ∈ K [X1, ...,Xn] such that f (u1, ..., un) = 0.
Otherwise, we say that u1, ..., un are algebraically independent.

▶ Throughout, let K = Q and consider F = Q(u1, ..., un) for some algebraically
independent elements u1, ..., un.

Definition
A cluster is a sequence x = (x1, ..., xn) of algebraically independent elements in Fn. Here,
x1, ..., xn are called cluster variables.

Definition
A seed is a pair (x,Q) where x ∈ Fn is a cluster and Q is a quiver with vertices 1, ..., n.
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Cluster Algebras

Definition
Let Q = (Q0,Q1, s, t), Q

′ = (Q ′
0,Q

′
1, s

′, t′) be two quivers and x, x′ ∈ Fn be two
corresponding clusters. We say that the seeds (x,Q) and (x′,Q ′) are isomorphic if there
exists a quiver isomorphism with a pair (f , g) of bijections f : Q0 → Q ′

0 and g : Q1 → Q ′
1

such that xi = x ′
f (i) for every i ∈ {1, ..., n}. We write (x,Q) ∼= (x′,Q ′).

Definition
Let (x,Q) be a seed and k ∈ {1, ..., n}. The mutation of (x,Q) at vertex k is the seed
(µk(x), µk(Q)) where µk(Q) is the quiver mutation of Q at k and µk(x) = (x ′

1, ..., x
′
n) ∈ Fn

is the cluster defined as

x ′
i =


xi , if i ̸= k

1
xi

( ∏
α: j→i

xj +
∏

β: i→l

xl

)
, if i = k.

Definition
Two seeds (x,Q) and (x′,Q ′) are said to be mutation equivalent if there exists a
sequence of vertices (k1, ..., kn) in Q0 such that (µk1 ◦ . . . ◦ µkn )(x,Q) ∼= (x′,Q ′). In this
case, we write (x,Q) ∼ (x′,Q ′).
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Cluster Algebras

Definition
Let (x,Q) be a seed. The cluster algebra A(x,Q) attached to (x,Q) is the subalgebra of
F generated by

χ(x,Q) =
⋃

(x′,Q′)∼(x,Q)

{x ′
1, ..., x

′
n}.

▶ Equivalently, A(x,Q) is generated by all cluster variables in all seeds which are
mutation equivalent to (x,Q).

▶ In this case, (x′,Q ′) and (x,Q) are called the seeds of A(x,Q); these x’s are called
the clusters of A(x,Q), and elements in χ(x,Q) are called the cluster variables of
A(x,Q).

▶ Here, we use x ′
k to denote µk(xk) for all vertices k in Q and n is called the rank of

the cluster algebra.
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The Laurent Phenomenon

Definition
Given indeterminates X1, . . . ,Xn, a Laurent polynomial over a field K is a polynomial in
X1, . . . ,Xn, X

−1
1 , . . . ,X−1

n over K .

Theorem (The Laurent Phenomenon)

Any cluster variable u in a rank n cluster algebra A can be written as a Laurent polynomial
in any cluster x = (x1, ..., xn).

▶ This result follows from a more general (and much more complicated!) result called
the “Caterpillar Lemma”.
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Integrality of the Somos-4 Sequence

▶ We can view elements in the sequence as cluster variables in clusters in a rank 4
cluster algebra.

▶ The Laurent Phenomenon implies that a cluster variable can be written as a Laurent
polynomial in any cluster, so we choose the initial cluster (x0, x1, x2, x3).

▶ By definition, x0 = x1 = x2 = x3=1.

▶ Thus, any element in the sequence can be written as a integer-valued polynomial
over 1.
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Thank you for your listening.
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