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7/2/2019 - Introduction and Project Outline

Today we’ll begin by giving a brief overview of the project. The motivation will be a simple
polynomial identity, which is called a duality result. There will be an F-function and a U-function.
Next, we’ll mention how this identity yields a completely different perspective, one that comes from
knot theory. Finally, we’ll describe the goals for the project and some of the big picture.

A duality result

Definition. A finite sequence of integers {ai}si=1 is strongly unimodal of size n if

0 < a1 < a2 < . . . < ak > ak+1 > . . . > as > 0

for some k and a1 + a2 + . . .+ an = n.

Definition. Let U(n) denote the number of strongly unimodal sequences of size n.

Definition. The rank of a strongly unimodal sequence {ai} is defined to be s− 2k + 1.

The rank of a sequence counts the number of terms after the peak minus the number of terms
before the peak.

Example

• We have U(5) = 6, given by

{5}, {1, 4}, {4, 1}, {1, 3, 1}, {2, 3}, {3, 2}

The ranks of these are 0,−1, 1, 0,−1, 1, respectively.

We will form a two-variable generating function that keeps track of the number of series of size n
with a particular rank.

Definition. Define

U(x, q) =
∑
n≥1
m∈Z

U(m,n)xmqn

where U(m,n) is the number of series of size n and rank m.

Proposition. This series has generating function

U(x, q) =
∑
n≥0

(−xq)n(−x−1q)nqn+1

where

(a)n = (a, q)n =

n−1∏
k=0

(1− aqk)

5



Note that the Pochhammer symbol is defined

(q)n =
n−1∏
k=0

(1− qqk) =
n∏
k=1

(1− qn)

We have the following interesting duality result.

Theorem (Bryson, Ono, Pitmam, Rhoades [2012]). We have

F (ζ−1N ) = U(−1, ζN )

where ζN = e2πi/N is the N th root of unity and

F (q) =
∑
n≥0

(q)n

is the Kontsevich-Zagier ‘strange’ series.

The original proof involved technical polynomial identities.

Some remarks about this Kontsevich-Zagier series:

1. F (q) only converges at roots of unity. If q = ζN , then the sum terminates after the (N − 1)th
summand.

2. F (q) does not converge in the ring of formal power series Z[[q]], as the constant term in each
summand is 1.

3. F (1− q) converges in Z[[q]]. This is because (1− q, 1− q)n = O(qn) (the term of least power
increases with each summand, as the constant terms are 0. Then coefficients of each term are
a finite sum).

The first remark implies that the above duality is an equality of polynomials. We will see a
similar phenomenon appear with knot invariants. By the third remark, we can make the following
definition.

Definition. The Fishburn numbers are given by generating function

F (1− q) =
∑
n≥0

(1− q, 1− q)n =
∑
n≥0

ξ(n)qn

= 1 + q + 2q2 + 5q3 + 15q4 + 53q5 + 217q6 + 1014q7

+ 5335q8 + 31240q9 + 201608q10 + 1422074q11

+ 10886503q12 + 89903100q13 + 796713190q14 + . . .

We are interested in finding congruences for this series. To do so, compute the prime factorization of
these coefficients. For example, ξ(4), ξ(9), ξ(14), ξ(19) are 0 modulo 5. Similarly, ξ(3), ξ(8), ξ(13), ξ(18)
are 0 modulo 5. And ξ(6), ξ(13), ξ(20) are 0 modulo 7. More generally, we have the following propo-
sition.
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Theorem (Andrew, Sellers [2016]). For all n ∈ N, we have

ξ(5n+ 3) ≡ ξ(5n+ 4) ≡ 0 mod 5

ξ(7n+ 6) ≡ 0 mod 7

ξ(11n+ 8) ≡ ξ(11n+ 9) ≡ ξ(11n+ 10) ≡ 0 mod 11

Moreover, there are similar congruences for half of the primes.1

For the ordinary partition function, it was proven that there are these congruences for only three
primes. So it is remarkable that these hold for such a large class of numbers. We also have another,
stronger result.

Theorem (Ahlgren, Kim, Lovejoy [2018]). Let p ≥ 5 be a prime. If j ∈ Ta,b,ξ(pr), then

ξ(prn+ j) ≡ 0 mod pr

for all n ∈ N.

The set Ta,b,ξ(p
r) will be defined later.

Returning to the duality statement, the proof originally given is a bit ad hoc. Professor Os-
born became interested in developing a broader perspective to understand why these results may
be true.

Knot theory

The goal will be to construct knot invariants. In particular, given a knot K, we can associate
an infinite sequence of polynomials {JN (K, q)}n∈N where JN (K, q) ∈ Z[q±1] is the colored Jones
polynomial.

Theorem (Habiro [2008]). For any knot K, we can write

JN (K, q) =
∑
n≥0

Cn(K, q)(q1+N )n(q1−N )n

This is the cyclotomic expansion, and Cn(K, q) ∈ Z[q±1] are the cyclotomic coefficients,
which are independent of N .

Let K∗ denote the mirror image of K (which is obtained diagramatically from K by switching all
of the crossings).

1We will later describe for which primes this holds.
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Example

• (Masbaum [2003]) If K is the trefoil, then the cyclotomic expansiona of K∗ is

JN (K∗, q) =
∑
n≥0

qn(q1+N )n(q1−N )n

A related expansion, which we will term the non-cyclotomic expansion, of JN (K, q)
was computed for

JN (K, q) = q1−N
∑
n≥0

q−nN (q1−N )n

There is no clear substitution to go from JN (K∗, q) to JN (K, q). In short, a common
theme will be that the shape of the colored Jones polynomial is significant.

a We’ll eventually perform a similar knot-theoretic computation ourselves.

This example easily recovers the above duality. Recall

F (q) =
∑
n≥0

(q)n

U(−1, q) =
∑
n≥0

(q)2nq
n+1

F agrees with the Nth colored Jones polynomial for K up to multiplication by ξN when specialized
to roots of unity:

JN (K, ξ−1N ) = ξN−1N

∑
n≥0

(ξN−1N )n

= ξ−1N F (ξ−1N )

U agrees with the Nth colored Jones polynomial for K∗ when specialized to roots of unity:

JN (K∗, ξN ) =
∑
n≥0

ξnN (ξN )n(ξN )n

= ξ−1N

∑
n≥0

(ξN )2nξ
n+1
N

= ξ−1N U(−1, ξN )

For all knots K, we have that
JN (K, q−1) = JN (K∗, q)

Thus we have
ξ−1N F (ξ−1N ) = JN (K, ξ−1N ) = JN (K∗, ξN ) = ξ−1N U(−1, ξN )

which recovers the duality.

In general, the cyclotomic expansion of the colored Jones polynomial corresponds to the U function,
and the non-cyclotomic expansion corresponds to the F function.
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Project Goals

Consider the torus knot T (3, 4). For this knot, the non-cylotomic expansion has been computed
for

JN (T (3, 4), q) = q3(1−N)
∑
n≥0

(q1−N )nq
−2Nn(qNT (n,N, q) + T (n+ 1, N, q)

)
where

T (n,N, q) =

b(n−1)/2c∑
k=0

q2k(k+1−N)

[
n

2k + 1

]
q

where [
n
k

]
q

=
(q)n

(q)k(q)n−k

is the q-binomial coefficient.

We can use this to define a corresponding F function that agrees with JN (T (3, 4), q) on roots
of unity. To do so, consider the series

F(q) =
∑
n≥0

(q)n
(
T (n, 0, q) + T (n+ 1, 0, q)

)
Note that we can take N = 0, as qN = 1 anyway when q = ζN . Then

ζ3NF(ζN ) = JN (T (3, 4), ξN )

We must

1. Consider the q-series

F(1− q) =
∑
n≥0

γ(n)qn

Compute some terms. Do the coefficients satisfy congruences similar to those of the Fishburn
numbers? What about for prime powers?

2. More generally, consider the family of torus knots T (3, 2t), where t ≥ 2. The non-cylotomic
expansion of the colored Jones polynomial has been computed. We can similarly define Ft(q)
such that

q∗Ft(ξN ) = JN (T (3, 2t), ξN )

for some suitable power ∗. Consider

Ft(1− q) =
∑
n≥0

γt(n)qn

Do these coefficients satisfy similar congruences? What about for prime powers?

We are interested in congruences in particular, as these are often symptomatic of deeper modular
properties.
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In general, given a knot K, we can consider the schematic

JN (K∗, q)︸ ︷︷ ︸
cyclotomic

U(x, q) ‘mock modular form’

K

JN (K, q)︸ ︷︷ ︸
non-cyclotomic

F (q) ‘quantum modular form’

x=−1
q=ζN

q 7→q−1

q=ζN

There are also deep connections to modular forms, which are reflected in the right side of the
diagram. The specialized F (q) is a quantum modular form, and the specialized U function is a
mock modular form. The idea is that there should be some duality, which has been worked out in
particular for the knots T (2, 3) and T (2, 2k + 1), but not in general.

The second half of the project will be the U side of the matter, which requires knot theory. The goal
will be to compute the cyclotomic expansions of the colored Jones polynomial for certain families
of knots.

More generally, we have only discussed torus knots, but one can also ask questions about hyperbolic
knots and satellite knots.

Summary

Given a knot, we can look at the colored Jones polynomials. We can construct a F function
which agrees with the Nth Jones polynomial on the Nth root of unity. Congruences in the
coefficients of the expansion of F (1 − q) indicate that F may have modular properties. If we
can manage to obtain a cyclotomic expression for the colored Jones polynomial for the mirror
image of the knot,a we may be able to discover duality properties with some other analogous
U series.

aVia knot-theoretic computation techniques
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7/4/2019 - Knot Theory, Operator Invariants, and the Colored
Jones Polynomial

Introduction to knot theory

Definition. A knot is an embedding K : S1 ↪→ S3 of the circle into the 3-sphere.

Definition. Two knots are equivalent if there is a diffeomorphism h : S3 → S3 carrying one knot
to another.

Example

• The unknot is the inclusion S1 ↪→ R3 ∪ {∞} ' S3.

The main problem in knot theory is that of classification, namely listing the knot types and deter-
mining how to distinguish between them. Knots may also be different, depending on whether or
not we keep track of

1. the orientation of the knot, which is indicated by an arrow along the strand of the knot.

2. the orientation of the ambient space S3, in which case we require the ambient diffeomorphisms
of S3 to be orientation-preserving.

If we keep track of the orientation of S3 and demand that the diffeomorphisms of S3 be orientation
preserving, then two knots are equivalent in the sense of this definition if and only if there exists
an ambient isotopy between them.

Examples

• The knot below on the left is the left-handed trefoil , and the knot below on the right
is the right-handed trefoil .
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Definition. For an oriented knot, there are left-handed (negative) and right-handed (positive)
crossings:

Reversing the orientation of the knot does not change whether a crossing is right-handed or left-
handed. Reflecting the knot, which corresponds to changing every overcrossing to an undercrossing
and every undercrossing to an overcrossing, does change whether a crossing is right-handed or left-
handed.

When considering these two types of orientation, any knot K has potentially four distinct ver-
sions. These are K,−K,K∗, and −K∗, where −K indicates K with opposite orientation and K∗

indicates the reflection of K.

Remarks

• The first example of a knot K with K distinct from −K is due to Trotter [1964]. It turns
out that almost every knot is distinct from its reverse. There are few invariants that can
distinguish between a knot and its reverse.

• On the other hand, the mirror image of a knot is often distinct from a knot. Knots which
are equivalent to their mirror image are ampichiral .

Definition. A link is an embedding of several disjoint circles

L :

m⊔
i=1

S1 ↪→ S3

up to diffeomorphism. In such a case, L has m components.

The first definitions and intuition for knots carries over similarly to links, except now there are 2m

possible orientations on L, where m is the number of components.

The main problem in knot/link theory is to classify all knots/links. Mathematicians construct-
ing invariants to distinguish knots, and constructing diffeomorphisms to show knots are the same.

Definition. A knot/link invariant is an object or quantity associated to each knot/link that takes
the same value on two equivalent knots/links.

There are many ways to define invariants. The most common approach is combinatorically, by
examining projections of the link to the surface. There are a few necessary definitions and veri-
fications. We’ll proceed by discussing the case of knots, but the situation for links is entirely the
same.
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Definition. Suppose K : S1 ↪→ S3 is a knot, with 0 6∈ imK. A projection p of K is the tetravalent
graph on S2 obtained by projecting from S3 \ {0} radially to the equator S2.

By adjusting K up to diffeomorphism, we can assume that p ◦K : S1 → S2 is a regular immersion,
which has at worst double points (in general any nontrivial knot will result in a projection which
cannot be thus adjusted to obtain an embedding).

Definition. A knot diagram is a decorated graph obtained from a knot projection by indicating
over/under crossings.

Examples of Basic Invariants

• The crossing number of a knot is given by the number

c(K) = min{crossing points of D : diagrams D for K}

For example, the crossing number of the unknot is 0, and the crossing number of the
trefoil is 3.

• The knot group GK is the fundamental group of the complement S3\τ(K), where τ(K)
is a regular neighborhood of K. The knot group is a very powerful invariant, but it is
hard to compute.

• There is a knot polynomial called the Alexander polynomial, which will be introduced
later.

It is important to keep in mind that there is a distinction between the representations of knots as
diagrams and the knots themselves.

Philosophy of Invariant Construction

It can be difficult to understand knots as embeddings into S3. Thus, often one will consider a
representation of a knot, such as a diagram. One then characterizes the different such repre-
sentations that correspond to the same knot.

Then, an invariant is constructed from this representation of the knot. It is shown that the
invariant indeed respects the different representations which correspond to the same knot.a

aWe are about to proceed with this project for knot diagrams, and will later do so with braids.

The following theorem then characterizes the diagrams which describe the same knot.

Theorem. Two knot diagrams represent the same knot if and only if they are related by a sequence
of Reidemeister moves:
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It’s clear that if one diagram can be obtained from the other by a sequence of such moves, then the
associated knots are equivalent. However, it is not obvious that if two knots are equivalent, their
diagrams differ by a sequence of such moves.

The Jones Polynomial

Our project is primarily concerned with an invariant called the Jones polynomial. We will define the
Jones polynomial in the most mathematically efficient way, although this definition is ahistorical.

Lemma. There exists a unique function 〈·〉 : {link diagrams} → Z[A−1, A] satisfying

The function 〈·〉 is the Kauffman bracket.

The first type of smoothing in (iii) is often called an A smoothing of the crossing, and the second
type of smoothing is often called a B smoothing of the crossing.

Lemma. The Kauffman bracket is invariant under Reidemester II and Reidemester III. We have

This means that the bracket is not a knot invariant, although it is close to being one.

Proof. We have the following verification of invariance under Reidemeister II and Reidemeister III:

The second part of the lemma follows from

By resolving all of the crossings in a diagram and then considering the resulting unknotted link, we
obtain the following computationally useful state sum model for the bracket. Number the crossings
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1, 2, . . . , n arbitrarily. Choose a complete smoothing for the knot, which is a binary string of length
n, where each coordinate describes how to resolve the corresponding crossing in the diagram. Each
such binary string results in an unlink, which is termed a state.

Theorem (State sum model). For a state S, let a(S) and b(S) be the number of A and B smooth-
ings, respectively. Let |S| be the number of components of S. We have the formula

〈K〉 =
∑

states S

Aa(S)−b(S)(−A2 −A−2)|S|−1

The numbers a(S) and b(S) are easy to determine, but it is not straightforward to determine the
number of resulting components in the unlink S algorithmically. A useful observation is that given
a smoothing of the whole knot, adjusting the resolution of a single crossing results in a smoothing
with either one more or one fewer components.2

Definition. Given an oriented knot/link L, the Jones polynomial is the polynomial

VL(t) = [(−1)ω(L)A3ω(t)〈L〉]A2=t1/2

where ω(L) is the writhe of L, defined by

ω(L) =
∑

crossings x

εx

with

εx =

{
1 x is right-handed

0 x is left-handed

Proposition. The Jones polynomial is a knot/link invariant.

Proof. The proof is not difficult. The bracket is already invariant under Reidemeister II and
Reidemeister III. VL(t) is defined so that performing a Reidemeister I move on L changes the
writhe apppropriately, precisely accounting for the added factor present in 〈L〉.

Note that the bracket 〈D〉 is completely independent of the orientation of D, while the Jones poly-
nomial thus defined correspondingly adjusts for this. The Jones polynomial accounts for orientation
in the leading term, which is significant, as it is one of the first easily computed invariants which is
capable of distinguishing a knot from its mirror. Namely, if VL(t) is not a symmetric polynomial,
then L is distinct from its mirror L∗.

VL(t) is a Laurent polynomial in Z[t, t−1] if L is a knot or a link with an odd number of components.
Otherwise, t1/2VL(t) is a Laurent polynomial in Z[t, t−1] if L has an even number of components.
The following is a fantastic application of the Jones polynomial to alternating knots.

2 For knots, there is a clever way to compute |S| using linear algebra over Z/2Z. Zulli defined the trip matrix T ,
for which the nullity of

T +


1

0
. . .

1


gives the number of components in the unlink, where the zeroes are present at crossings with smoothing A and the
ones present at crossings with smoothing B.
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Application of the Jones Polynomial to Alternating Knots

Definition. A knot/link is alternating if the crossings alternate from passing over to passing
under as each component is traversed.

Note that the knot T (3, 4) we are considering in our project is not alternating.

Definition. A nugatory (removable) crossing is one that can be removed by rotating part
of the knot/link in space.

Definition. A knot/link diagram is reduced if it does not have any nugatory crossings.

Definition. A knot K is prime if it is not the connected suma of two nontrivial knots.

We have the following classical theorem as an application of the Jones polynomial.

Theorem. Suppose K is a connected diagram of an oriented knot/link L with n crossings.
Then

1. span(VK(t)), which is the integer equal to the maximum degree present in VL(t) minus
the minimum degree present in VK(t), is less than or equal to n.

2. if K is reduced and alternating, then span(VK(t)) = n.

3. if K is prime and not alternating as a diagram, then span(VK(t)) < n.

Hence a reduced alternating diagram is minimal with respect to crossing number. The theorem
also implies that the Jones polynomial distinguishes alternating knots if the crossing number
is known.

The crossing number of a knot is a simple concept, but it is often elusive. The above the-
orem indicates that it is easy to compute the crossing number for alternating knots.

Conjecture. The crossing number is additive

c(K#J) = c(K) + c(J)

The inequality c(K#J) ≤ c(K) + c(J) is clear.

Proposition. The Jones polynomial is multiplicative with respect to connected sum, namely

VL#K(t) = VL(t)VK(t)

Then properties of polynomial multiplication imply the following corollary.

Corollary. The conjecture holds for the class of alternating knots.

Corollary. Any two reduced alternating diagrams for a link have the same writhe.
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These sorts of results provide techniques to achieve a classification of alternating knots.b

aThe sum of two knots is given by the expected, intuitive operation

bThe first and second Tait conjectures follow. Tait’s third conjecture, the flype conjecture, says that any
two reduced alternating diagrams for a link are related by a sequence of flype moves. It was settled by other
techniques around the same time. In Kauffman’s words, ‘the three Tait conjectures provide the methods to
make the classification of alternating knots trivial.’

Braids and their invariants

Definition. A n-braid consists of n strands in the cube I3 connecting points in I2 × {1} to those
in I2 × {0} monotonically.3

Each n-braid is associated to a permutation on n letters, determined by which points are connected
to which other points by the strands. Denote by σi the braid which swaps the i and (i+1)th strand.
It is visually evident that every braid can be written as the product of these elementary braids via
isotopy.

Lemma. The n-stranded braids up to isotopy form the braid group Bn under the obvious com-
position given by ‘stacking’ two braids. The identity is the braid with no crossings, and the inverse
of a braid is obtained by reflection.

In the language of braid words, the inverse of σi1 . . . σi` is σ−1i` . . . σ−1i1 , where σ−1i swaps the i and
(i+ 1)th strands in the opposite order that σi does. Reidemeister II implies that these are indeed
inverse, and the associativity of multiplication then implies the claim.

Lemma (Artin). Bn is generated by {σ1, . . . , σn−1} with relations

1. σiσj = σjσi when |i− j| > 1 (far commutativity)

2. σiσi+1σi = σi+1σiσi+1.

3Meaning precisely one strand is attached to each point.
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This provides an alternative strategy to defining knots and links.

Definition. The closure of a braid β is given by

The closure of a braid is a knot if the permutation corresponding to β is an n-cycle. If not, the
number of components in the link is equal to the number of disjoint cycles in this permutation.

Theorem (Alexander). Every oriented knot/link is the closure of a braid.

We can then think of a knot/link as an equivalence class of braids whose closure is the corresonding
knot/link. To do so, we need to know which braids yield equivalent closures.

Theorem. Two braids β, γ have equivalent closures β̂, γ̂ if and only if they are related by a sequence
of Markov moves:

18



Constructing Representations of the Braid Group

Braids are special, in that they can be easily decomposed into a sequence of simple pieces
(the braid word). We will associate each of these fundamental building blocks of a braid with
a linear map on a vector space, and then combine them appropriately to build a linear map
associated with the entire braid. In this case, we will combine vertical sections of a braid via
composition and horizontal sections of a braid via the tensor product.

We should take our vector space to be V ⊗n for some V , and define the linear maps that
correspond to the building blocks of a braid by

where R ∈ Aut(R⊗R). This yields a map

ρ : Bn → End(V ⊗n)

which is obtained by taking the multiplicative and tensorial extension of

Right now, ρ is only really defined on the free group with n generators, as we don’t yet know
it respects the relations in Bn. We would like this to be a group representation of Bn, which
means that we should have ρ(β) = ρ(β′) if β and β′ differ by a sequence of braid moves. It
turns out that the condition ρ(σiσj) = ρ(σjσi) when |i − j| > 1 holds simply by the formulas
for σi and σj .

To show that ρ(σiσi+1σi) = ρ(σi+1σiσi+1), it ends up being necessary and sufficient that

(idV ⊗R) ◦ (R⊗ idV ) ◦ (idV ⊗R) = (R⊗ idV ) ◦ (idV ⊗R) ◦ (R⊗ idV )

So if R satisfies this equation, ρ descends to the quotient for a well-defined map from the braid
group Bn.
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The above summary motivates the following definition in the context of knot theory.

Definition. The Yang-Baxter equation in End(V ⊗3) is the equation

(idV ⊗R) ◦ (R⊗ idV ) ◦ (idV ⊗R) = (R⊗ idV ) ◦ (idV ⊗R) ◦ (R⊗ idV )

An invertible solution R ∈ Aut(V ⊗ V ) to this equation is an R-matrix.

So a solution R to the Yang-Baxter equation yields a well-defined representation ρ : Bn →
End(V ⊗n). We can use these representations to obtain invariants of links by algebraically defining
a closure operation and then determining under what conditions the resulting map is invariant
under Markov moves.4

Constructing Link Invariants from Representations of the Braid Group

Recall that there is a natural isomorphism

Hom(V,W ) ' V ∗ ⊗W

Then if ρ : Bn → End(V ⊗n) is a representation, ρ(β) can be viewed as an element of (V ∗)⊗n⊗
V ⊗n. The algebraic analogue of closure will be the contraction map

κ : (V ∗)⊗n ⊗ V ⊗n → F
(e∗i1 ⊗ . . .⊗ e

∗
in)⊗ (ej1 ⊗ . . .⊗ ejn) 7→ e∗i1(ej1) . . . e∗in(ejn)

This is the coordinate-free definition of the trace Tr : End(V ⊗n) → F. We need this to be

invariant under Markov moves. Markov I dictates β̂ ◦ γ = γ̂ ◦ β, so we need that

Tr(ρ(β ◦ γ)) = Tr(ρ(γ ◦ β))

for all β, γ ∈ Bn. This holds in general, because for linear maps A,B we have Tr(AB) =
Tr(BA). Markov II, in terms of the generators of the braid group, expresses

(σ ⊗ idV ) ◦ (id⊗nV ⊗ σ
±1
n ) = σ

This is achieved by the contraction, which can eliminate the final tensor factor in order to
relate the representations of the two sides of this equation.

The above ideas lead us to introduce the following definition.

Definition. The trace operator is the map

Trk : End(V ⊗k)→ End(V ⊗(k−1))

given by applying id
⊗(k−1)
V ⊗ κ⊗ id

⊗(k−1)
V to the endomorphism

f ∈ End(V ⊗k) ' (V ⊗(k−1) ⊗ V )∗ ⊗ (V ⊗(k−1) ⊗ k) ' (V ⊗(k−1))∗ ⊗ V ∗ ⊗ V ⊗ (V ∗⊗(k − 1))

4See Introduction to Quantum and Vassiliev Invariants [2010]
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where κ is the contraction map as above. Alternatively, using coordinates Trk is given by

Trk(f)(ei1 ⊗ ei2 ⊗ . . .⊗ eik−1
) =

n−1∑
j1,j2,...,jk−1,j=0

f
j1,j2,...,jk−1,j
i1,i2,...,ik−1,j

(ej1 ⊗ ej2 ⊗ . . .⊗ ejk−1
⊗ ej)

where f
j1,j2,...,jk−1,j
i1,i2,...,ik−1j

are defined by

f(ei1 ⊗ ei2 ⊗ . . .⊗ eik) =

n−1∑
j1,j2,...,jk−1,j=0

f j1,j2,...,jki1,i2,...,ik
(ej1 ⊗ ej2 ⊗ . . .⊗ ejk)

It turns out that, at this point, the algebraic conditions on the map R are too strong to yield useful
invariants.5 We fix this by introducing another map µ : V → V . WIth some work, we obtain the
following theorem.

Theorem. Let R ∈ End(V ⊗V ) be an R-matrix, and let µ ∈ End(V ). If (µ⊗µ) ◦R = R ◦ (µ⊗µ)
and Tr2(R

±1 ⊗ µ⊗2) = µ, then Tr(ρR(σ) ◦ µ⊗n) is invariant under Markov moves, where ρR is the
representation of Bn constructed using the above method.

This will provide us with a very powerful way to construct link invariants. By defining a repre-
sentation of the braid group that satisfies these key properties, taking the trace of the operator
associated to a braid yields an invariant of the link.

Definition. Let V be an n-dimensional complex vector space. An enhanced Yang-Baxter op-
erator is a quadruple (R,µ, a, b), where R ∈ Aut(V ⊗ V ) is an R-matrix, µ : V → V is linear,
a, b ∈ C are nonzero, and

1. R(µ⊗ µ) = (µ⊗ µ)R

2. Tr2(R
±1(idV ⊗ µ)) = a±1bidV

Definition. Let (R,µ, a, b) be an enhanced Yang-Baxter operator. Let K = β̂ be a knot realized as
the closure of a braid. Define

T(R,µ,a,b)(K) = aω(β)b−n(Tr1(Tr2(. . . T rn(Φ(β)µ⊗n) . . .)))

where ω(β) is an exponential sum from the braid word.

T(R,µ,a,b)(K) is an invariant of the knot K. This is the approach used to define the colored Jones
polynomial.

The colored Jones polynomial

Let V = CN with the standard basis {e0, . . . , eN−1}. For a complex parameter q, notate

{m} = qm/2 − q−m/2

{m}! = {m}{m− 1} . . . {2}{1}
5See [2010] for details, as we are omitting much of the algebra here.
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Now, define an R-matrix

R(ek ⊗ e`) =
N−1∑
i,j=0

Ri,jk,`ei ⊗ ej

where

Rijk` =

min(N−1−i,j)∑
m=0

δ`,i+mδk,j−m
{`}!{N − 1− k}!

{i}!{m}!{N − 1− j}!
q(i−(N−1)/2)(j−(N−1)/2)−m(i−j)/2−m(m+1)/4

And define the linear map

µ(ej) =

N−1∑
i=0

µijei

where
µij = δijq

(2i−N+1)/2

and δ is the usual Kronecker delta.

Lemma. The quadruple (R,µ, q(n
2−1)/4, 1) is an enhanced Yang-Baxter operator.

Definition. The N -colored Jones polynomial is

JN (K, q) =
{1}
{n}

T
(R,µ,q(n

2−1)/4,1)
(β)

where β is chosen so that K = β̂.

JN (K, q) is an invariant of knots, and it is normalized so that JN (O, q) = 1.

It is possible to compute the colored Jones polynomial using the Kauffman bracket applied to
the cabling of K. However, practically this becomes computationally prohibitive, as the Jones
polynomial behaves unpredictably with respect to cabling.

We will proceed next time by performing a computation of the colored Jones polynomial for torus
knots and also showing how this construction is related to another definition of the colored Jones
polynomial.
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7/5/2019 - Proving Congruences for the Kontsevich-Zagier Series

Overview

Over the next few lectures, we will develop a more streamlined argument to prove prime congru-
ences for the types of sequences we have been examining. This techniques will be useful for our
own project, as we are attempting to prove prime congruences for the F -series corresponding to
the colored Jones polynomial of the torus knots T (3, 2t).

Recall the Kontsevich-Zagier ‘strange’ series

F (q) =
∑
n≥0

(q)n

where

(a)n = (a, q)n =
n−1∏
k=0

(1− aqk)

Write
F (1− q) =

∑
n≥0

(1− q, 1− q)q =
∑
n≥0

ξ(n)qn

We stated, although did not prove, the congruences

ξ(5n+ 3) ≡ ξ(5n+ 4) ≡ 0 mod 5

ξ(7n+ 6) ≡ 0 mod 7

ξ(11n+ 8) ≡ ξ(11n+ 9) ≡ ξ(11n+ 10) ≡ 0 mod 11

. . .

We would like to better understand for which primes and congruence classes the sequence ξ
satisfies a congruence relation. We will discuss how to prove such congruences and why they
hold for half of the primes.

Technical results

We will proceed by first presenting some lemmas which hold for general polynomials and then
specialize to our case.

Definition. The Stirling numbers of the 2nd kind are the numbers {cn,j} defined by

cn,0 = cn,j = 0 for j ≥ n+ 1

c1,1 = 1

cn+1,j = jcn,j + cn,j−1 for 1 ≤ j ≤ n+ 1

Lemma 1. Let A(q), B(q) ∈ Z[q]. Then(
q
d

dq

)n
(A(q)B(q)) =

n∑
j=1

qjcn,j

(
d

dq

)j
(A(q)B(q))
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Proof. The proof will proceed by induction on n. When n = 1, the statement immediately follows.
Assume the formula holds for n. Then we have(

q
d

dq

)n+1

(A(q)B(q)) =

(
q
d

dq

) n∑
j=1

qjcn,j

(
d

dq

)j
(A(q)B(q))

=

( n∑
j=1

jqjcn,j

(
d

dq

)j
(A(q)B(q))

)
+

( n∑
j=1

qj+1cn,j

(
d

dq

)j+1

(A(q)B(q))

)
Since cn,n+1 = 0 and cn,0 = 0, we can increase the index on the first sum and reindex the second
sum for (

q
d

dq

)n+1

(A(q)B(q)) =

n+1∑
j=1

qj(jcn,j + cn,j−1)

(
d

dq

)j
(A(q)B(q))

=
n+1∑
j=1

qjcn+1,j

(
d

dq

)j
(A(q)B(q))

as desired.

Lemma 2. Let f(q) ∈ Z[q]. Then(
d

dt

)n
f(qet)

∣∣∣∣
t=0

=

(
q
d

dq

)n
f(q)

Proof. First apply Lemma 1 to A(q) = f(q) and B(q) = 1 for(
q
d

dq

)n
f(q) =

n∑
j=1

qjcn,j

(
d

dq

)j
f(q) (1)

Next, we claim that (
d

dt

)n
f(qet) =

n∑
j=1

qjejtcn,j

[(
d

dq

)j
f(q)

∣∣∣∣
q 7→qet

]
(2)

Note that when n = 1 we have (
d

dt

)
f(qet) =

(
d

dq
f(q)

∣∣∣∣
q 7→qet

)
qet
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by the chain rule. Induction yields(
d

dt

)n+1

f(qet) =
d

dt

( n∑
j=1

qjejtcn,j

[(
d

dq

)j
f(q)

∣∣∣∣
q 7→qet

])

=

n∑
j=1

qjjejtcn,j

[(
d

dq

)j
f(q)

∣∣∣∣
q 7→qet

]
+

n∑
j=1

qjejtcn,j

[(
d

dq

)j+1

f(q)

∣∣∣∣
q 7→qet

]
qet

=
n+1∑
j=1

qjjejtcn,j

[(
d

dq

)j
f(q)q 7→ qet

]
+
n+1∑
j=1

qjejcn,j−1

[(
d

dq

)j
f(q)

∣∣∣∣
q 7→qet

]

=
n+1∑
j=1

qjejtj(jcn,j + cn,j−1)

[(
d

dq

)j
f(q)

∣∣∣∣
q 7→qet

]

=

n+1∑
j=1

qjejtcn+1,j

[(
d

dq

)j
f(q)

∣∣∣∣
q 7→qet

]
as claimed. Taking t = 0 in equation (2) and comparing to (1) yields the result.

Polynomial dissections and orthogonality

There are two ideas that appear often in these papers, as well as more generally in number theory
related to q-series.

Definition. Let h(q) ∈ Z[q] and s be a positive integer. The s-dissection of h(q) is the unique
decomposition

h(q) =
s−1∑
i=0

qiAs(i, q
s)

where As(i, q
s) is a polynomial in qs.

We will see that considering the s-dissections of polynomials obtained from partial sums of our
series yields As(i, q

s) polynomials with special divisibility properties.

Definition. The following technique is called orthogonality, and it allows us to rewrite the orig-
inal s-dissection equation of h(q) ∈ Z[q] to express the polynomials As(i, q

s) in terms of h(q).

Technique. Fix an s-dissection

h(q) =

s−1∑
i=0

qiAs(i, q
s)

Let ζs be a primitive sth root of unity, and fix 0 ≤ i0 ≤ s− 1. Since (q1/sζks )s = q, replace q with
q1/sζks for the equality

h(q1/sζks ) = As(0, q) + q1/sζksAs(1, q) + . . .+ qi0/sζi0ks As(i0, q) + . . .+ q(s−1)/sζ(s−1)ks As(s− 1, q)

We will eliminate the i0th coefficient by multiplying both sides by q−i0/sζ−i0ks to obtain

q−i0/sζ−i0ks h(q1/sζks ) = q−i0/sζ−i0ks As(0, q) + . . .+As(i0, q) + . . .+ q(s−1−i0)/sζ(s−1−i0)ks As(s− 1, q)

We will need the following basic fact from number theory.
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Lemma. Suppose t 6≡ 0 mod s. Then
s−1∑
k=0

ζ−tks = 0

for ζs a primitive root of unity.

Proof. ζs satisfies
xs − 1 = (x− 1)(xs−1 + xs−2 + . . .+ x+ 1)

which implies
s−1∑
k=0

ζks = 0

for any primitive root of unity ζs. The group endomorphism

〈ζs〉 → 〈ζs〉
ζs 7→ ζ−ts

has image generated by some ζ−tk0s , as any subgroup of 〈ζs〉 is cyclic. Hence the image is generated
by some primitive root of unity ζs′ , so we have

s−1∑
k=0

ζ−tks = F
s−1∑
k=0

ζs′ = 0

where F is the order of the fibers.

Here, t = i0, i0− 1, . . . , i0− s+ 1, none of which are equal to 0 modulo s. Summing both sides then
yields

s−1∑
k=0

q−i0/sζ−i0ks h(q1/sζks ) = sAs(i0, q)

Hence we have

As(i0, q) =
1

s

s−1∑
k=0

ζ−i0ks q−i0/sh(q1/sζks )

Note that this is an expression for the polynomial As(i0, q), and that the polynomials As(i0, q
s) are

present in the dissection.

The general derivative lemma

We will first need a generalization of the Stirling numbers.

Definition. Let the array of numbers {CN,i,j(s)} be defined by

C0,0,0(s) = 1

CN,i,0(s) = iN

CN,i,j(s) = 0 for j ≥ N + 1 or j < 0

CN+1,i,j(s) = (i+ js)CN,i,j(s) + sCN,i,j−1(s) for 1 ≤ j ≤ N

26



Taking i = 0, s = 1, and N = n yields the original Stirling numbers, up to minor reindexing.
The original definition came from the patterns that occur when taking multiple derivatives. The
following result illustrates a similar phenomenon.

Lemma 3. We have the following:

1. For all N ≥ 0, (
q
d

dq

)N
h(q) =

N∑
j=0

s−1∑
i=0

CN,i,j(s)q
i+js

(
d

dq

)j
As(i, q

s)

2. Let ζs be a primitive root of unity. For N ≥ 0 and i0 ∈ {0, 1, . . . , s− 1},

N∑
j=0

CN,i0,j(s)q
i0+js

(
d

dq

)j
As(i0, q

s) =
1

s

s−1∑
k=0

ζ−i0ks

[(
q
d

dq

)N
h(q)

)∣∣∣∣
q 7→qζks

]

The first part of the lemma relates taking the derivative of a polynomial to the derivatives of the
parts of the polynomial that arise in the s-dissection. The second part of the lemma relates the
derivatives of these to the original polynomial.

Proof. The proof of the first part of the lemma will proceed by induction. For N = 0, we know
C0,i,0(s) = 1 and C0,i,j = 0 when j ≥ N + 1, and thus the formula reduces to

h(q) =
s−1∑
i=0

qiAs(i, q
s)

which is true by definition. By induction we have(
q
d

dq

)N+1

h(q) =

(
q
d

dq

)( N∑
j=0

s−1∑
i=0

CN,i,j(s)q
i+js

(
d

dq

)j
As(i, q

s)

)

=

N∑
j=0

s−1∑
i=0

CN,i,j(s)(i+ js)qi+js
(
d

dq

)j
As(i, q

s)

+

N∑
j=0

s−1∑
i=0

CN,i,j(s)q
i+jssqs

(
d

dq

)j+1

As(i, q
s)

=

N+1∑
j=0

s−1∑
i=0

CN,i,j(s)(i+ js)qi+js
(
d

dq

)j
As(i, q

s)

+

N+1∑
j=0

s−1∑
i=0

sCN,i,j−1(s)q
i+js

(
d

dq

)j
As(i, q

s)

=

N+1∑
j=0

s−1∑
i=0

[(i+ js)CN,i,j(s) + sCN,i,j−1(s)]q
i+js

(
d

dq

)j
As(i, q

s)

=
N+1∑
j=0

s−1∑
i=0

CN,i,j(s)q
i+js

(
d

dq

)j
As(i, q

s)
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as desired. To show part 2 of the lemma, observe that part 1 implies(
q
d

dq

)N
h(q) =

s−1∑
i=0

qi
N∑
j=0

CN,i,j(s)q
js

(
d

dq

)j
As(i, q

s)︸ ︷︷ ︸
dissections

is an s-dissection, as the right-most summands are indeed polynomials in qs. Then by orthogonality

N∑
j=0

CN,i0,j(s)q
js

(
d

ds

)j
As(i0, q

s) =
1

s

s−1∑
k=0

ζ−i0ks q−i0
[(
q
d

dq

)N
h(q)

∣∣∣∣
q 7→qζks

]
N∑
j=0

CN,i0,j(s)q
i0+js

(
d

ds

)j
As(i0, q

s) =
1

s

s−1∑
k=0

ζ−i0ks

[(
q
d

dq

)N
h(q)

∣∣∣∣
q 7→qζks

]

Stability

Next, we will begin specializing the above techniques to our problem.

Lemma. Define the polynomials

F (q,N) =
N∑
n=0

(q)n

F (q,N) are obtained from the partial sums of the Kontsevich-Zagier series. Let ζk be a kth root of
unity. Then the values (

q
d

dq

)`
F (q,N)

∣∣∣∣
q=ζk

are stable for N ≥ (`+ 1)k, namely(
q
d

dq

)`
F (q)

∣∣∣∣
q=ζk

=

(
q
d

dq

)`
F (q,N)

∣∣∣∣
q=ζk

=

(
q
d

dq

)`
F (q, (`+ 1)k − 1)

∣∣∣∣
q=ζk

Stability will allow us to truncate the series F (q).

Proof. For each positive integer k, (1− qk)`+1 divides (q)N when N ≥ (`+ 1)k. This is because if
N = (`+ 1)k, then we have

(q)(`+1)k =

(`+1)k−1∏
k=0

(1− qk+1)

= (1− q)(1− q2) . . . (1− q(`+1)k)

(1−qk) divides (1−qk), (1−q2k), . . . , (1−q(`+1)k). Hence (1−qk)`+1 divides (q)N for all N ≥ (`+1)k.

It follows that for 0 ≤ j ≤ `, we have (
d

dq

)j
(q)N

∣∣∣∣
q=ζk

= 0 (3)
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for N ≥ (`+ 1)k. This is because as (q)N vanishes on ζk with order `, so the first ` derivatives of
(q)N will vanish.

Now take A(q) = F (q,N) and B(q) = 1. Lemma 1 yields(
q
d

dq

)`
F (q,N)

∣∣∣∣
q=ζk

=
∑̀
j=1

qjcN,j

(
d

dq

)j
F (q,N)

∣∣∣∣
q=ζk

=
∑̀
j=1

qicN,j

N∑
n=0

(
d

dq

)j
(q)n

∣∣∣∣
q=ζk

=
∑̀
j=1

qicN,j

(`+1)k−1∑
n=0

(
d

dq

)j
(q)n

=

(
q
d

dq

)`
F (q, (`+ 1)k − 1)

∣∣∣∣
q=ζk

by equation (3).

Proving the prime congruences

Stability will allow us to define a formal power series expansion for F (ζke
−t).

By Lemma 2, we have that(
d

dt

)`
f(ζke

−t)

∣∣∣∣
t=0

= (−1)`
(
q
d

dq

)`
f(q)

∣∣∣∣
q=ζk

(4)

for any polynomial f(q), accounting appropriately for the −1 factor. Thus we define(
d

dt

)`
F (ζke

−t)

∣∣∣∣
t=0

=

(
d

dt

)`
F (ζke

−t, N)

∣∣∣∣
t=0

= (−1)`
(
q
d

dq

)`
F (q,N)

∣∣∣∣
q=ζk

These values, which correspond to the `th derivatives, stabilize by Lemma 4 when N is sufficiently
large. Then we can define the formal series expansion

F (ζke
−t) =

∞∑
`=0

1

`!
(−1)`

(
d

dt

)`
F (ζke

−t)

∣∣∣∣
t=0

t`

The proof also requires the following result.

Theorem (Zagier [2001]). For the series F (ζke
−t), we have

F (ζke
−t) =

∞∑
n=0

bn(ζk)

n!
tn
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where
bn(ζk) =

∑
m≤6k

(m,6)=1

a(m,n, k)ζ
(m2−1)/24
k

The a(m,n, k) can be given explicitly.

The key idea is that, when we write the coefficients bn as functions of the roots of unity, the
exponents on the roots of unity have the form (m2 − 1)/24. These two formulations of the series
F (ζke

−t) allow us to equate the coefficients for

bn(ζk) = (−1)n
(
q
d

dq

)n
F (q,N)

∣∣∣∣
q=ζk

for N sufficiently large. In particular,

b0(ζk) = F (q,N)

∣∣∣∣
q=ζk

Definition. The pentagonal numbers are given by

{(m2 − 1)/24}m∈N = {0, 1, 2, 5, 7, 12, . . .}

where m is coprime to 6.

Definition. Let s be a positive integer. Define

S(s) =
{
j : 0 ≤ j ≤ s− 1 such that j ≡ m2 − 1

24
mod s for some m ∈ N coprime to 6

}
Consider the s-dissection

F (q,N) =
N∑
n=0

(q)n =
s−1∑
i=0

qiAs(N, i, q
s)

The strategy will be to split up the sum into those for which the index is in S(s) and those whose
index is not.

Lemma 4 (Andrews, Sellers [2016]). If i 6∈ S(s), then (1− q)n divides As(sn− 1, i, q).

This is the key result of the paper, and subsequent work6 generalizes it.

Proof. We first note that the desired result is equivalent7 to showing that for 0 ≤ j ≤ n and
i 6∈ S(s), (

d

dq

)j
As(sn− 1, i, q)

∣∣∣∣
q=1

= 0 (5)

6Ahlgren Kim [2015] and Ahlgren Kim Lovejoy [2015] generalize the set S(s) and increase the strength of the
divisibility result.

7The forward direction is clear. We prove the converse by induction. The case when n = 0 is trivial. For the
inductive step, suppose the first (n+ 1) derivatives vanish on 1. Then by assumption (1− q)n divides As(sn− 1, i, q).
We have (

d

dq

)n+1(
(1− q)np(q)

)
=

n+1∑
k=0

(
n + 1

k

)((
d

dq

)n+1−k

(1− q)n
)((

d

dq

)k

p(q)

)
for some polynomial p(q), by the general Leibniz rule. Evaluating both sides on q = 1 yields 0 = p(1), so (1− q)n+1

indeed divides As(sn− 1, i, q).
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The proof then proceeds by induction on j. When j = 0, substitute q = ζs in Lemma 3 part 2 to
obtain

ζisAs(sn− 1, i, 1) =
1

s

s−1∑
k=0

ζ−iks F (ζk+1
s , sn− 1)

since C0,i,0 = 1. Then

As(sn− 1, i, 1) =
1

s

s∑
k=1

ζ−i(k−1)−is F (ζks , sn− 1)

=
1

s

s∑
k=1

ζ−iks b0(ζ
k
s )

Fix k0. We will now apply an orthogonality argument.8

sζik0s As(sn− 1, i, 1) =
s∑

k=1

ζ−ik+ik0s b0(ζ
k
s )

Sum both sides over i for

s−1∑
i=0

sζik0s As(sn− 1, i, 1) =
s∑

k=1

s−1∑
i=0

ζ−i(k−k0)s b0(ζ
k
s )

= sb0(ζ
k
s )

Thus

b0(ζ
k
s ) =

s−1∑
i=0

ζiks As(sn− 1, i, 1)

Since i 6∈ S(s), the exponents on the roots of unity are not equivalent to any pentagonal numbers
modulo s. However, recall that we have Zagier’s expression for b0 as a linear combination of roots
of unity with pentagonal number powers. Hence we invoke Lemma 2.1 of Andrews, Sellers [2016]
to conclude b0 = 0.

For the induction step, suppose that (5) holds for all 0 ≤ t ≤ j − 1. We want to show the
claim holds for t = j. By Lemma 3 part 2 and the induction hypothesis, taking q = ζs yields

j∑
k=0

Cj,i,k(s)q
i+ks

(
d

dq

)k
As(sn− 1, i, qs) =

1

s

s−1∑
k=0

ζ−iks

(
q
d

dq

)j
F (q, sn− 1)

∣∣∣∣
q 7→qζks

Cj,i,j(s)

(
d

dq

)j
As(sn− 1, i, 1) =

1

s

s∑
k=0

ζ−iks

(
q
d

dq

)j
F (q, sn− 1)

∣∣∣∣
q=ζk+1

s

=
1

s

s∑
k=1

ζ−i(k−1)s bj(ζ
k
s )

By orthogonality, the formula for bj(ζ
v
s ), and the fact that i 6∈ S(s), we have(
d

dq

)j
As(sn− 1, i, 1) = 0

as Ct,i,t > 0.

8The rest of the proof is not quite correct and requires revision.
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The moral is that for i 6∈ S(s), there are nice divisibility properties for the polynomials in the
s-dissections of our polynomials.

Definition. Let s be a positive integer. Define

T (s) = {k : 0 ≤ k ≤ s− 1 such that k > maxS(s)}

Example

• If s = 11, then

S(11) = {0, 1, 2, 4, 5, 7}
T (11) = {8, 9, 10}

These are precisely the congruence classes for which the desired equivalence holds. Next time, we
will prove the following theorem.

Theorem (Andrews, Sellers [2016]). If p is prime and i ∈ T (p), then

ξ(pn+ i) ≡ 0 mod p

for all n ∈ N.

We also have a congruence result for prime powers, which requires some adjustments in the above
work.

Our project is an attempt at a generalization of these results. The above work considers ex-
ponents of the form (m2 − 1)/24, whereas a stronger result is known with exponents of the form
(m2−a)/b. This will require replacing the set T (p) with Ta,b,ξ(p

r) which satisfies certain conditions.

Next time, we will examine the set T (s) in the general case. We would like to classify the sets
Ta,b,ξ(p

r) for the torus knot T (3, 4) and T (3, 2t).

‘Strange identities’ indicate that we have congruences for F(1−q). Do we have strange identities
for the torus knots? How might we prove these?
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7/8/2019 - Computing the Colored Jones Polynomial
Algebraically

Recall that an enhanced Yang-Baxter operator is a quadruple (R,µ, a, b), where R ∈ Aut(V ⊗ V ),
µ : V → V , and a, b ∈ C. These should satisfy

1. (R⊗ idV )(idV ⊗R)(R⊗ idV ) = (idV ⊗R)(R⊗ idV )(idV ⊗R) on V ⊗ V ⊗ V

2. R(µ⊗ µ) = (µ⊗ µ)R on V ⊗ V

3. Tr2(R
±1(id⊗ µ)) = a±1b idV on V

Then we defined

T(R,µ,a,b)(K) = a−ω(β)b−nTr1(Tr2(. . . (Trn(Φ(β)⊗ µ⊗n)) . . .))

where β is an n-stranded braid so that β̂ = K, ω(β) is the writhe of the braid, and Φ(β) ∈ End(V ⊗n)
is constructed algorithmically from the braid, with the procedure described in the previous lecture.

We will mention, omitting some of the details, that this indeed gives a well-defined invariant
of knots.9 In short, the three conditions specified in the definition of the enhanced Yang-Baxter
operator provide precisely the conditions necessary to show invariance under the braid and Markov
moves.

Braid relations: The definition of Φ immediately implies that it respects the far commutativity
relation in the braid group. The first condition in the definition of the Yang-Baxter operator im-
plies that φ respects the braid relation σiσi+1σi = σi+1σiσi+1.

Markov moves: T(R,µ,a,b) respects the first Markov move because the operator Trk is invariant
under cyclic permuatations of its argument, and because µ⊗µ commutes with R. Invariance under
stabilization and destabilization follows from the third condition above.

Our interest lies mainly in the enhanced Yang-Baxter operator given by taking V = CN with
standard basis {e0, e1, . . . , eN−1) and defining

{m} = qm/2 − q−m/2

{m}! = {m}{m− 1} . . . {2}{1} =
m∏
j=1

(qj/2 − q−j/2)

The R-matrix is given by

R(ek ⊗ e`) =

N∑
i,j=0

Ri,jk,`ei ⊗ ej

9Some of these ideas with additional explanation can be found in the notes from the previous lecture.
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where

Ri,jk,` =

min(N−1−i,j)∑
m=0

δ`,i+mδk,j−m
{`}!{N − 1− k}!

{i}!{m}!{N − 1− j}!
q(i−(N−1)/2)(j−(N−1)/2)−m(i−j)/2−m(m+1)/4

And

µ(ej) =

N−1∑
i=0

µijej

where
µij = δi,jq

(2i−N+1)/2

If we set a = q(N
2−1)/4 and b = 1, then (R,µ, a, b) is an enhanced Yang-Baxter operator. We

define the colored Jones polynomial as the normalized

JN (K, q) =
{1}
{N}

T(R,µ,a,b)(K)

The colored Jones polynomial of the figure eight knot

The goal today will be to produce a computation of the colored Jones polynomial for K = 41, the
figure eight knot, using the above definition.

First note that the closure of the braid β = σ1σ
−1
2 σ1σ

−1
2 is the figure eight knot.

Next, observe that the summation in the definition of Ri,jk,` is not in fact a sum, as only one of
the summands will ever be nonzero. This is becase in order for there to be a nontrivial summand,
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there are relations demanded upon the indices i, j, k, ` by the Kronecker delta symbols. For positive
crossings

1. We must have i ≤ `

2. We must have k ≤ j

3. We must have i+ j = k + `

The inverse of R has matrix entries is given by

(R−1)i,jk,` =

min(N−1−j,i)∑
m=0

δ`,i−mδk,j+m
{k}!{N − 1− `}!

{j}!{m}!{N − 1− i}!
(−1)mq−(i−(N−1)/2)(j−(N−1)/2)−m(i−j)/2+m(m+1)/4

Similar reasoning yields that for negative crossings

1. We must have i ≥ `

2. We must have k ≥ j

3. We must have i+ j = k + `

We have that

JN (K, q) =
{1}
{N}

Tr1(Tr2(Tr3(Φ(β) ◦ µ⊗3)))

since the writhe of the above braid is zero. It will be easier to compute

Tr2(Tr3(Φ(β) ◦ idV ⊗ µ⊗2))

This coincides with S · idV for some scalar S, in which case10

Tr1(Tr2(Tr3(Φ(β) ◦ µ⊗3))) = S · Tr1(µ) =
{N}
{1}

S

as the unnormalized colored Jones polynomial of the unknot is {N}. This implies

JN (K, q) = S

We can evaluate S in terms of R and R−1 as follows:∑
b,c,d,e,f,g,h

Ra,bc,d(R
−1)d,ea,hR

c,f
a,h(R−1)h,gb,e µ

b
bµ
e
e

The scalar S should be independent of everything in the diagram, so we can set a = N − 1 to color

10This is nontrivial. See Kirby and Melvin [1991] for a proof by Schur’s lemma.
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this strand with the last representation.

By the above inequalities for positive crossings, we know that a ≤ d and so d = N − 1. We also
know f = N −1. By the above equality, we have that b = c. The same reasoning implies h = b = c.
We have that g = e. Finally, by the above inequality for negative crossings, we have b ≥ e.

Hence

T(R,µ,a,b)(K) =
∑
b≥e

RN−1,bb,N−1(R−1)N−1,eN−1,eR
b,N−1
N−1,b(R

−1)b,eb,eµ
b
bµ
e
e

=
∑
b≥e

(−1)N−1+b
{N − 1}!{b}!{N − 1− e}!

({e}!)2{b− e}!{N − 1− b}!
q(−b−b

2−2be−2e2+3N+6Nb+2Ne−3N2)/4

Now, in the summation for RN−1,bb,N−1 the only term present is when m = 0, in which case the coefficient
is 1. There are no contributions from the quantum factorials, although there will be a q residual.
In the summation for (R−1)N−1,eN−1,e the only term present is when m = N − 1 − e, in which case it
contributes

{N − 1}!
{e}!

q−((N−1)/2)(e−(N−1)/2)−(N−1−e)
2)/2+(N−1−e)(N−e)/4

Similarly, Rb,N−1N−1,b has a nonzero summand when m = 0, in which case it contributes just a q residual.

Finally, the term (R−1)b,eb,e has a nonzero summand when m = b− e, in which case it contributes

{b}!{N − 1− e}!
{e}!{b− e}!{N − 1− b}

q−(b−(N−1)/2)(e−(N−1)/2)−(b−e)
2/2+(b−e)(b−e+1)/4
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which yields the colored Jones polynomial for the figure eight knot. One can also compute the
colored Jones polynomial using the appropriate tangle:

which yields

JN (K, q) =
N−1∑
k=0

{N − 1}!
{N − 1− k}!

qk
2/4+Nk/2+k/4

( k∑
i=0

(−1)i
{k}!

{i}!{k − i}!
q−Ni−ik/2−i/2

)
Using the formula

k∑
i=0

(−1)iq`i/2
{k}!

{i}!{k − i}!
=

k∏
g=1

(1− q(`+k+1)/2−g)

implies

JN (K, q) =
1

{N}

N−1∑
k=0

{N + k}!
{N − 1− k}!

We will see next time that there is an alternative technique to compute the colored Jones polyno-
mial, using cabling and the bracket polynomial.
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7/10/2019 - Congruences and Strange Identities

Last time, we spoke about the Kontsevich-Zagier strange series

F (q) =
∑
n≥0

(q)n

We are interested in the Fishburn numbers, given by

F (1− q) =
∑
n≥0

ξ(n)qn

We showed that we can truncate the series and consider an s-dissection for

F (q,N) =

N∑
n=0

(q)n =

s−1∑
i=0

qiAs(N, i, q
s)

Given a positive integer s, we defined the set

S(s) =
{
j : 0 ≤ j ≤ s− 1 such that j ≡ m2 − 1

24
mod s for some m ∈ N coprime to 6

}
We proved that for i 6∈ S(s), (1 − q)n divides A(sn − 1, i, q). Today, we will further consider
the set

T (s) = {k : 0 ≤ k ≤ s− 1 such that k > maxS(s)}

and show that this set corresponds to the congruence classes for which we have congruences.

Theorem (Andrews, Sellers [2016]). If p is prime and i ∈ T (p), then

ξ(pn+ i) ≡ 0 mod p

for all n ∈ N.

Before the proof, we will require the following two theorems.

Theorem (Lucas’ theorem [1878]). Let m,n be nonnegative integers and p prime. Consider the
base p expansions

m = mkp
k +mk−1p

k−1 + . . .+m1p+m0

n = nkp
k + nk−1p

k−1 + . . .+ n1p+ n0

Then
(
m
n

)
≡ 0 mod p if and only if nj > mj for some j.

When we eventually strengthen the congruence result to include prime powers, it will be necessary
to consider a generalized version of Lucas’s theorem.

Theorem. We can write
∞∑
n=0

ξ(n)qn = F (1− q,N) +O(qN+1)
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We can now prove the main theorem.

Proof. We will show that, when i ∈ T (p), the coefficient of qpn+i in

F (1− q) = lim
N→∞

F (1− q,N)

is equivalent to 0 modulo p, where the limit indicates that by taking N sufficiently large we can
guarantee that the coefficient of qpn+i stabilizes. By Lucas’ theorem, if π is an integer congruent
to a pentagonal number λ modulo p, then(

π

i

)
≡ 0 mod p

This is because writing

π = πkp
k + πk−1p

k−1 + . . .+ π1p+ π0

λ = λkp
k + λk−1p

k−1 + . . .+ λ1p+ λ0

implies π0 = λ0 ∈ S(p), which is less than i ∈ T (p) by definition.

By Lemma 4, we have the decomposition

F (q, pn− 1) =

p−1∑
i=0

qiAp(pn− 1, i, qp)

=

p−1∑
i=0

i∈S(p)

qiAp(pn− 1, i, qp) +

p−1∑
i=0

i 6∈S(p)

qi(1− qp)nαp(n, i, qp)

for some polynomial αp(n, i, q) ∈ Z[q]. So

F (1− q, pn− 1) ≡
p−1∑
i=0

i∈S(p)

(1− q)iAp(pn− 1, i, (1− q)p) +

p−1∑
i=0

i 6∈S(p)

(1− q)i(1− (1− q)p)nαp(n, i, (1− q)p)

≡
p−1∑
i=0

i∈S(p)

(1− q)iAp(pn− 1, i, 1− qp) +O(qpn) mod p

using that (1− q)p ≡ 1− qp mod p and that

(1− (1− q)p)n =

(
−

p∑
i=1

(
p

i

)
(−q)i

)n
≡
(
− (−q)p

)n
mod p

Since Ap(pn−1, i, 1−qp) is a polynomial in qp, any term with an exponent congruent to an element
of T (p) modulo p arises from the expansion of (1− q)i. However, the expansion of (1− q)i is

(1− q)i =

i∑
k=0

(
i

k

)
(−q)k
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So if k is congruent to an element of T (p) modulo p,
(
i
k

)
= 0 by Lucas’ theorem, as i ∈ S(p).

Therefore any variable with exponent congruent to an element of T (p) modulo p has coefficient
zero modulo p.

This argument holds for the stabilized terms in F (1 − q, pn − 1), so for all j < pn such that j
is congruent to an element of T (p) modulo p, the coefficient of qj is equivalent to 0 modulo p.
Letting n go to infinity concludes the proof.

The case of prime powers is very similar. One can either proceed by choosing coefficients more
carefully or employing a stronger divisibility result and an alternative decomposition.

Identifying congruence classes and their asymptotics

Recall that we claimed there exist congruences for half of the primes. Can we (explicitly) construct
T (p)?

Definition. Let p be an odd prime, and let a ∈ Z. The Legendre symbol is given by

(
a

p

)
=


1 a ≡ x2 mod p for some nonzero x ∈ Z
−1 a 6≡ x2 mod p for all x ∈ Z
0 if p divides a

In the first case, a is a quadratic residue modulo p. In the second case, a is a quadratic
nonresidue.

We will require some basic properties of the Legendre symbol.

Proposition. We have the following properties.

1.
(
a
p

)
=
(
b
p

)
if a ≡ b mod p

2.
(
ab
p

)
=
(
a
p

)(
b
p

)
3.
(−1
p

)
= (−1)(p−1)/2

4. Let p and q be distinct odd primes. Then(
p

q

)(
q

p

)
= (−1)

p−1
2

q−1
2

This is the law of quadratic reciprocity.

5. Fix a nonsquare integer a. The set

{p prime :

(
a

p

)
= 1}

has natural density 1/2.
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Definition. A set S of primes has natural density δ(S) if the limit

lim
x→∞

|{p ≤ x : p ∈ S}|
|{p ≤ x : p prime}|

exists and is equal to δ(S).

Theorem. Let p 6= 23 be an odd prime. Then T (p) is nonempty if and only if p = 23k + r for
k ≥ 0 and 0 < r < 23, such that

(
r
23

)
= −1.

Proof. First note that T (p) is empty if and only if p− 1 ∈ S(p), equivalently

p− 1 ≡ (m2 − 1)/24 mod p

m2 ≡ −23 mod p

for some m coprime to 6. This holds if and only if
(−23
p

)
= 1.

Suppose p = 23k + r such that
(
r
23

)
= −1. Then(

−23

p

)
=

(
−1

p

)(
23

p

)
= (−1)(p−1)/2(−1)11(p−1)/2

(
p

23

)−1
= (−1)11(p−1)

2/2

(
p

23

)
=

(
r

23

)
= −1

by the properties of the Legendre symbol, since p ≡ r mod 23, and since p− 1 is even. Thus T (p)
is nonempty.

Now suppose T (p) is nonempty. Write p = 23k + r with k ≥ 0 and 0 < r < 23. Then we
have

−1 =

(
−23

p

)
=

(
r

23

)
as above.

Corollary. There are congruences for the coefficients of the Fishburn numbers for half of the
primes.

What about the case p = 23? What about prime powers?

The idea will be to instead consider the set

S∗(p) = {j : 0 ≤ j ≤ p−1 such that j ≡ m2 − 1

24
for some m ∈ N coprime to 6 and 24j 6≡ −1 mod p}

and similarly define T ∗(p). Then we have the following theorem.
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Theorem (Garvan [2015]). Let p ≥ 5 be a prime. If j ∈ T ∗(p), then

ξ(pn+ j) ≡ 0 mod p

for all n ∈ N.

Example

• We have 22 ∈ S(23), but 22 6∈ S∗(23) and T ∗(23) = {18, 19, 20, 21, 21, 22}. This yields
additional congruences.

We can use similar techniques along with Kumer’s theorem,11 to prove the following theorem.12

Theorem (Straub [2015]). Let p be a prime. If j ∈ {1, 2, . . . , p− 1−maxS∗}, then

ξ(prn− j) ≡ 0 mod p

for all n ∈ N .

Strange identities13

We will now attempt to understand how to obtain these congruences for our series as well as tbe
source of these results.

Theorem (Zagier [2001]). We have

F (q) =
1

2

∞∑
n=1

nχ12(n)q(n
2−1)/24

for

χ12(n) =


1 n ≡ 1, 11, mod 12

−1 n ≡ 5, 7 mod 12

0 otherwise

Remark. The statement of equality in the theorem is meant in the sense that the radial limit yields
F (ζ). More formally, taking q = ζe−t in the right-hand expression and letting t→ 0+ yields F (ζ).

This is a strange identity. It says that the expression F (q) is sufficiently well-behaved on roots of
unity to be approximated by a complex function on the open disc.

An important moral is that behind every strange identity lies an actual q-series identity.

11A generalization of Lucas’s theorem
12See pages 1687-1688 in Straub’s paper. He uses nothing more than the divisibility result in Andrews, Sellers

[2016].
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Behind a Strange Identity Lies a q-Series Identity

We have the identity

∞∑
n=0

[(q)n − (q)∞] =
1

2

∞∑
n=1

nχ12(n)q(n
2−1)/24 +

(
1

2
−
∞∑
n=1

qn

1− qn
(q)∞

)
Taking q = ζe−t and t→ 0+ implies (q)∞ → 0, and Zagier’s result follows.

Questions: How can we prove a strange identity for T (3, 4)? What about the general T (3, 2t)?
How is such an identity related to congruences?

To answer the first question, we will follow Hikami and Kirillov. We first define

H(x) = H(x, q) =
∞∑
n=1

χ24(n)q(n
2−25)/48x(n−5)/2

where

χ24(n) =


1 n ≡ 5, 19 mod 24

−1 n ≡ 11, 13 mod 24

0 otherwise

We have the following key result.

Proposition. We can write

H(x) =
∞∑
n=0

(x)n+1x
2n

( b(n−1)/2c∑
k=0

x2k−1q2k(k+1)

[
n

2k + 1

]
q

+

bn/2c∑
k=0

x2kq2k+1

[
n+ 1
2k + 1

]
q

)

Before the next result we will need some facts.

Theorem (Classical q-binomial theorem). We have

∞∑
n=0

(a)n
(q)n

zn =
(az)∞
(z)∞

Theorem (Watson’s quintuple product identity). We have∑
k∈Z

qk(3k−1)/2x3k(1− xqk) = (q, x, qx−1, q)∞(qx2, qx−2, q2)∞

where
(a1, . . . , am)n = (a1, . . . , am; q)n = (a, q)n . . . (am, q)n

Theorem (Slater’s identity). We have

(q)∞

∞∑
n=0

q2n(n+1)

(q)2n+1
= (q3, q5, q8, q8)∞(q2, q14, q16)∞
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Lemma. We have the following three identities.

H(x) = (qx)∞

∞∑
n=0

q2n(n+1)

(x2q)2n+1
x6n

+ (1− x)

∞∑
n=0

[(qx)n − (qx)∞]x2n
( ∞∑
k=0

x2k−1q2k(k+1)

([
n

2k + 1

]
q

+ x

[
n+ 1
2k + 1

]
q

))
and

1

2

∞∑
n=0

nχ24q
(n2−25)/48 − 5

2
(q3, q5, q8, q8)∞(q2, q14, q16)∞

= (q3, q5, q8, q8)∞(q2, q14, q16)∞

(
−
∞∑
k=1

qk

1− qk

)

+ (q)∞

∞∑
n=0

q2n(n+1)

(q)2n+1

(
6n+ 2

2n+1∑
k=1

qk

1− qk

)
−
∞∑
n=0

((q)n − (q)∞)
(
Tn(q) + Tn+1(q)

)
where

Tn(q) =

b(n−1)/2c∑
k=0

q2k(k+1)

[
n

2k + 1

]
q

and finally

F(q) = −1

2

∞∑
n=0

nχ24(n)q(n
2−25)/48

where F is the series obtained from the colored Jones polynomial of the knot T (3, 4), and equality
is meant in the sense of a strange identity.

Proof. First, note that the right hand side of the first equation is

(qx)∞

∞∑
n=0

q2n(n+1)

(x2q)2n+1
x6n +RHS︸ ︷︷ ︸

(1)

− (x)∞

∞∑
n=0

x2n
∞∑
k=0

x2k−1q2k(k+1)

([
n

2k + 1

]
q

+ x

[
n+ 1
2k + 1

]
q

)
︸ ︷︷ ︸

(2)

using that
(1− x)(qx)n = (x)n+1

(1− x)(qx)∞ = (x)∞

We will show that (2) equals (1). We have

(x)∞

∞∑
n=0

x2n
∞∑
k=0

x2k−1q2k(k+1)

(
(q)n

(q)2k+1(q)n−2k+1
+ x

(q)n+1

(q)2k+1(q)n−2k

)

= (x)∞
∑
k≥0

x2k−1q2k(k+1)

(q)2k+1

(∑
n≥0

x2n+4k+2 (q)n+2k+1

(q)n
+
∑
n≥0

x2n+4k+1 (q)n+2k+1

(q)n︸ ︷︷ ︸
(∗)

)
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where we are replacing n with n+ 2k + 1 to obtain the first sum, and n with n+ 2k to obtain the
second sum. This is equal to

(x)∞(1 + x)
∑
k≥0

x6kq2k(k+1) (x2q2k+2)∞
(x2)∞

since (*) is

(1 + x)x4k+1
∑
n≥0

(q)n+2k+1

(q)n
x2n = (1 + x)x4k+1(q)2k+1

∑
n≥0

(q2k+2)n
(q)n

x2n

Apply the binomial theorem with a = q2k+2 and z = x2 for

(xq)∞
∑
k≥0

x6kq2k(k+1)

(x2q)2k+1

using that (x)∞ = (1− x)(xq)∞, which completes the proof of the first part of the lemma.

To show the second part of the lemma, differentiate both sides of the previous equality with respect
to x, and then let x→ 1. For the right hand side, it will be necessary to use the product rule

d

dx

n∏
k=1

fk(x) =

( n∑
k=1

d
dxfk(x)

fk(x)

) n∏
k=1

fk(x)

The third part follows by taking q = ζe−t in the second part and letting t→ 0+.

Robert conjectures a strange identity in general.

Conjecture. Let Ft(q) be the Kontsevich-Zagier series associated to the general family of torus
knots T (3, 2t). Then we have the strange identity

Ft(q) =
1

2

∞∑
n=0

nχ3·2t+1(n)q(n
2−(3−2t+1)2)/(3·2t+2)

where

χ3·2t+1(n) =


1 n ≡ 3− 2t+1, 2t+3 − 3 mod 3 · 2t+1

−1 n ≡ 2t+2 − 3, 2t+1 + 3 mod 3 · 2t+1

0 otherwise

We will now address why strange identities are important. Consider the generalized version of the
strange identity

P
(v)
a,b,χ(q) =

∑
n≥0

nvχ(n)q(n
2−a)/b

where v ∈ {0, 1}, a ≥ 0, b > 0 are integers, and χ : Z≥0 → C is a function that satisfies

1. χ(n) 6= 0 only if (n2 − a)/b ∈ Z

2. For each root of unity ζ, the function n 7→ ζ(n
2−a)/bχ(n) is periodic and has mean value 0.
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Now let
F (q) =

∑
n≥0

(q)nfn(q)

where fn(q) ∈ Z[q]. For positive integers s and N , we can similarly truncate

F (q,N) =

N∑
n=0

(q)nfn(q) =

s−1∑
i=0

qiAF,s(n, i, q
s)

Define

Sa,b,χ(s) =
{

0 ≤ j ≤ s− 1 : j ≡ n2 − a
b

mod s for some n ∈ N such that χ(n) 6= 0
}

λ(N, s) =
⌊N + 1

s

⌋
Theorem (Ahlgren, Kim, Lovejoy [2018]). Suppose we have

F (q) = P
(v)
a,b,χ(q)

If i 6∈ Sa,b,χ(s), then (q)λ(N,s) divides AF,s(N, i, q).

This divisibility result implies the prime power congruences. Note that when a = 1, b = 24, χ =
χ12, v = 1, we have Zagier’s strange identity. When a = 25, b = 48, χ = χ24, v = 1, we have the
strange identity for T (3, 4). When a = 3 · 2t+1, b = 3 · 2t+2, χ = χ3·2t+1 , v = 1, it is conjectured we
have a general identity for T (3, 2t).

We must

1. For T (3, 4), confirm that conditions 1 and 2 are satisfied.a

2. Compute some examples to verify the theorem (s = 5, N = 8).

3. For T (3, 2t), check that conditions 1 and 2 are satisfied.

4. Determine the prime and prime power congruences in general for T (3, 4).

aFor example, see Lemma 5.1 in the Ahlgren, Kim, Lovejoy paper.
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7/12/2019 - Framing and the Skein Algebra

The structure of the project is broadly to attempt to prove number theoretic dualities via knot
theoretic computations. Today we will begin to discuss the necessary skein-theory.

Skein Algebras

Our first goal will be to understand the computation of the colored Jones polynomial of the trefoil
via the Kauffman bracket, due to Masbuam [2003]. We will attempt to emulate this technique for
other knots. We will employ the Kauffman bracket skein algebra. This method is distinct from
other computations of the colored Jones polynomial, and it has connections to quantum algebra,14

3-manifold invariants, and mathematical physics.15

Definition. A skein algebra over a ring R, associated to an orientable 3-manifold M , is the
R-module with elements that are formal linear combinations of links in M up to isotopy.

For our purposes, we will take R = Z[A,A−1] and either M = S3 or M = S1×D2 (the solid torus).
These skein algebras are very large.

Remark. We will mention the algebra structure on these skein objects, but in general we will only
consider them as R-modules. In particular, maps on skein algebras will not usually respect their
multiplication.

That being said, it is often very natural to examine the skein algebra of a thickened surface, namely
a 3-manifold of the form S × [0, 1]. In this case, we can define a multiplication by stacking two
copies of the ambient manifold to obtain a product analogous to the disjoint union of the two links.
We will see this concretely in the case of the solid torus.

Elements of skein algebras are in fact linear combinations of framed links.

Definition. A framing of a link L is an embedded, orientable surface which deformation retracts
onto L.

These framings are distinguished by their number of twists. The surface must be orientable, so it
will have an integral number of full twists. In a diagrammatic representation of a link, we can label

14The study of the representation theory of quantum groups
15See the paper The colored Jones polynomial of doubles of knots, Tanaka [2008], which adapts Masbaum’s method

in a similar way that we will. Also see Lickorish, chapters 12-14.
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each component with the integral number of full twists on each framing. Given a link diagram,
there is a usual framing obtained by viewing the surface to be parallel to the plane of the diagram.
This is the blackboard framing of a link.

Note that there are right- and left-handed twists, which can be distinguished by the direction
in which your hand twists when traveling along the surface. Right-handed twists are clockwise,
and left-handed twists are counterclockwise.

The number of twists of a framing is well-defined. We can ‘cut’ the surface at a point and then
measure the number of resulting twists when the surface is unraveled.

Remark. The Reidemeister I move increases or decreases the framing number by 1.

The Reidemeister I move results in a full twist, rather than a half twist, as the surface is orientable
and ‘pulling the crossing tight’ is an isotopy.

Remark. The Reidemesiter II and Reidemeister III moves do not affect the framing of a link.

Definition. Let A be a formal variable and M an orientable 3-manifold. The Kauffman bracket
skein algebra of M , denoted K(M), is the Z[A,A−1]-module generated by framed links in M up
to isotopy with relations

where a = A2. In other words, K(M) is the general skein algebra of M quotient the submodule
generated by the above relations.

From now on, the term ’skein algebra’ will refer to the Kauffman bracket skein algebra.

Every element of Z[A,A−1] is an element of the skein algebra, via the scalar product with the
empty link. The second relation indicates that, given a framed link, one can produce two new links
by resolving a local crossing. The K(M) element represented by that framed link can be expressed
as a sum of the resolutions.

This is the framework in which the Masbuam computation will take place. We will consider a
heavily decorated knot diagram, and the colored Jones polynomial of this knot will be the associ-
ated element of the skein algebra.

The above relations imply the following result.

Proposition. Let L±1 be the link obtained from L by increasing the framing by 1. Then

L±1 = −A±3L

in K(M). This is the framing relation.
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Proof. The proof is not difficult. Introducing a twist on L can be represented diagramatically via
the corresponding Reidemeister I move. Applying the relations above and simplifying yields the
desired equality, using the fact that multiplication in K(M) is given by disjoint union.16

The skein algebra of S3 is isomorphic to Z[A,A−1] and thus is particularly simple. This is not
always the case for other 3-manifolds, as repeatedly applying the bracket relations does not neces-
sarily yield homotopically trivial unlinks.

Computing the colored Jones polynomial corresponds to examining more complex framings and
decorations of a diagram and then applying a modified isomorphism to obtain the corresponding
polynomial. We would like to find such a diagram for T (3, 4) to simplify computation of the colored
Jones polynomial.

16See the notes from 7/19/2019
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7/15/2019 - Satellite Knots, Cabling, and the Volume Conjecture

Much of the topological side of the project will be computations in the Skein algebra.

Operations on knots

Definition. The connected sum of K and J , denoted K#J , is the operation defined on two knots
by

Note that the connected sum is only well-defined when the knots are oriented, as this forces them
to be connected in one particular way (otherwise, there are two distinct ways to connect the knots).

Remark. The unknot is a unit for connected sum. Thus connected sum makes knots into a com-
mutative monoid.

Definition. A knot is composite if it is the connected sum of two nontrivial knots.

Definition. A knot K is prime if, for any decomposition K = K1#K2, either K1 or K2 is
equivalent to the unknot.

Theorem (Prime decomposition theorem). Every knot K can be decomposed as a connected sum
K = K1# . . .#Kn of nontrivial, prime knots. Furthermore, this decomposition is unique up to
reordering.

One way to prove the theorem is with Seifert surfaces.17

Torus knots

Let T be the standard 2-torus in S3, obtained as a surface of revolution. T is unknotted, in the
sense that we can view it as the boundary of a regular neighborhood N = S1 ×D2 of the unknot.

17Livingston is a good reference, which details surgery on Seifert surfaces.
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Definition. The (p, q) torus knot, where p, q are relatively prime, is obtained from the simple closed
curve in T that winds p times around longitudinally and q times around meridionally.

One can also view the torus as the quotient R2/Z2, in which case the torus knot is given as the
image of the line in R2 with slope p/q after mapping the torus into S3.

The exterior of Tp,q = S3 \ Tp,q consists of three pieces:

1. The solid torus inside of T

2. The solid torus outside of T

3. The annular region in T given by removing the simple closed curve of slope p/q. The annulus
winds p times around T longitudinally and q times around T meridionally.

Definition. The knot group is the invariant Gk = π1(S
3 \K).

In this case, the knot group admits a two-generator, one-relation presentation. We can appropriately
consider neighborhoods of these pieces to apply Van Kampen’s theorem. Each of the solid torii
give one generator, and gluing along the annulus gives the relation. Thus

GTp,q = 〈x, y : xpy−q〉

as the annulus has core S1 and is simultaneously equal to xp and yq.

Proposition. The Alexander polynomial of Tp,q is given by

∆Tp,q(t) =
(1− t)(1− tpq)
(1− tp)(1− tq)

up to multiplication by ±tk.

This formula is easy to derive using Fox calculus from the presentation of Tp,q.

Proposition. The Jones polynomial of Tp,q is given by

VTp,q(t) =
t(p−1)(q−1)/2(1− tp+1 − tq+1 + tp+q)

(1− t2)
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This is a nontrivial computation to which we will return.

We can also describe Tp,q by consider the cylinder S1 × I. Let there be p lines on the cylinder,
evenly spaced. Then glue the ends of the cylinder along a twist of angle 2πq/p.

Satellite knots

These different definitions of the torus knot are intended to emphasize certain properties they have.
Torus knots are special cases of cabled knots, and cabled knots are special cases of satellite knots.

Definition. The satellite construction is a procedure involving two knots, the companion C
in S3 and the pattern P in T 2.

We will see that we need a framing on C. Usually, this is accomplished by considering C as
a diagram with the blackboard framing. The satellite knot is obtained by removing from S3 a
regular neighborhood of C, and gluing the solid torus containing P in its place.

The framing is important, as it provides a trivialization of the normal bundle. This allows us to
glue the solid torus into the regular neighborhood in an unambiguous way.18

So if we take C to be the unknot and P to the (p, q) curve, then the result is Tp,q.

Definition. If P is the (p, q) curve, then this construction yields the (p, q) cabling of a knot K,
denoted by C(P ).

Generally, cabling makes knots much more intricate. It also preserves primeness, in the sense that
if P is a pattern in the solid torus with wrapping number19 greater than 1, any associated satellite
knot is prime if and only if P is prime.20 Cabling makes knots overtly more complicated, but the
following procedure pushes complexity deeper into the knot.

Definition. Let C a knot, and let P be the Whitehead double knot:

18Intuitively, the framing tells us how much to ‘twist’ the solid torus when gluing it.
19The wrapping number of a knot is the minimum number of times it intersects a disc whose boundary is a meridian

of the torus.
20Livingston [1981].
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The Whitehead double21 of C is given by the resulting satellite knot.

One indicator of satellite complexity is the number of times the pattern winds around the solid
torus. For example, the (p, q) cabling pattern winds around the torus p times, and the Whitehead
double knot does not wind around the torus at all.

Remark. Connected sum is a special case of the satellite construction, given by embedding the
second knot into the torus and letting one of the strands go around the longitude.

Definition. A knot is simple if it is not a satellite with nontrivial companion.

For example, torus knots are simple, even though they are satellite knots (as they have trivial
companion). We can now state a classification result in classical knot theory.

Theorem (Thurston). Every simple knot is either a torus knot or is hyperbolic.22

Cabling will be important in our project, as it turns out the colored Jones polynomial admits a
description based on computing the Kauffman bracket of a particular cabling of the original knot
by Jones-Wenzl idempotents.

The volume conjecture

In 1995, Rinat Kashaev defined a link invariant using ‘quantum dilogarithms.’ It can be described
using the following R-matrices.

Let

(x)n =
n∏
i=1

(1− x)

for n ≥ 0. Define

θ : Z→ {0, 1}

n 7→

{
1 N > n

0 otherwise

21Tanaka [2008] computes the colored Jones polynomial of the Whitehead double of a knot by adapiting Masbaum’s
argument.

22A knot is hyperbolic if its complement admits a hyperbolic structure with finite volume.
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For integers x, let res(x) be its residue modulo N . Let ζ = e2πi/N . Let

(Rk)
cd
ab =

Nζ1+c−b+(a−d)(c−b)θ(res(b− a− 1) + res(c− d)) · θ(res(a− c) + res(d− b))
(ζ)res(b−a−1)(ζ−1)res(a−c)(ζ)res(c−d)(ζ−1)res(d−b)

(µk)
i
j = −ζ1/2δi,j+1

Lemma. (Rk, µk,−ζ1/2, 1) is an enhanced Yang-Baxter operator, with associated knot invariant
〈K〉N , called Kashaev’s invariant.

Kashaev computed the asymptotic limit of 〈K〉N as N goes to infinity. He showed that it increases
exponentially and observed that the growth rate is proportional to the hyperbolic volume

Vol(K) = Vol(S3 \K)

when K is hyperbolic.

Conjecture. If K is hyperbolic, then

lim
N→∞

1

N
log(〈K〉N ) =

1

2π
Vol(S3 \K)

In 2001, Murakami and Murakami proposed a generalization that extends to all knots and involves
the colored Jones polynomial via the following observation: take q = ζ = e2πi/N . Then the colored
Jones polynomial of K coincides with 〈K〉N .

Tanaka also proved in 2008 that the volume conjecture implies that the colored Jones polynomial
detects the unknot.
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7/18/2019 - Skein Algebras and the Colored Jones Polynomial

Today we will introduce the skein-theoretic techniques Masbuam develops to compute colored Jones
polynomials. First let

q = a2 = A4

{n} = an − a−n

{n}! = {n}{n− 1} . . . {1}

[n] =
{n}
{1}

[n]! = [n][n− 1] . . . [1][
n
i

]
=

[n]!

[i]![n− i]!

Recall that the Kauffman relations

in the skein algebra K(M) imply the framing relation, which says

L±1 = −A±3L

It is important to note that, as we consider framed links in manifolds besides S3, the second
Kauffman relation says that a homotopically trivial unknot is equal to −a − a−1. The fact that
there are unknotted links in other manifolds that are not homotopically trivial is part of what
makes skein algebras more complex in the general case. However, the first homotopy and homology
groups of a manifold do not completely determine the skein algebra.

Proposition. We have K(S3) ' Z[A,A−1], where the isomorphism is given by evaluating the
Kauffman bracket.23

The skein algebra of the solid torus

Consider the skein algebra of the solid torus S1 ×D2. We have

B = K(S1 ×D2) = Z[A,A−1][z]

where z is given by a single component circling the torus once. This is because we can always re-
solve crossings in a diagram until we obtain unknotted components, which are either homotopically
trivial or wrap around the torus once.24

In this case, by viewing S1 × D2 ' S1 × I × I, we can define multiplication in the skein alge-
bra by gluing two copies of the thickened annulus on top of each other. It is evident that this
operation is commutative.

23This is nontrivial. See Kauffman [1986] and his state model for the Jones polynomial.
24For if there is a loop that wraps around the torus more than once, it contains a crossing yet to be resolved.
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Definition. Let Beven be the subalgebra generated by z2.

There is a distinguished basis of B defined recursively by

e0 = 1

e1 = z

. . .

ei = zei−1 − ei−2

This basis will turn out to be the Jones-Wenzl idempotents.

Definition. The twist map t : B → B is the module homomorphism induced by a right-handed
Dehn twist on the solid torus and then extended linearly to all of B.

The twist map acts nontrivially on B, and it has z as an eigenvector by the framing relation. In
fact, we have a more general statement about eigenvectors of t.

Proposition. The basis {e0, e1, . . .} defined above for B consists of eigenvectors of t.

So we can write
t(ei) = µiei

where
µi = (−1)iAi

2+2i

Proof. The proof will proceed by induction. The base case is trivial, as t(1) = 1. We must
understand how a Dehn twist acts on the product zei−1. The rest .

Definition. Define the bilinear map 〈·〉 : B×B → Z[A,A−1] by cabling the 0-framed Hopf link with
the two arguments, viewing the result as a link in S3, and taking the Kauffman bracket. It is thus
defined on pure links in the solid torus and extended linearly.

Lemma. We have
〈ei, 1〉 = (−1)i[i+ 1]

Proof. When i = 0, the claim is immediate. For the inductive step, observe

〈ei, 1〉 = 〈zei−1 − ei−2, 1〉
= 〈zei−1, 1〉 − 〈ei−2, 1〉
= (−a− a−1)(−1)i−1[i]− (−1)i−2[i− 1]

= (−1)i
1

{1}
(
(a+ a−1)(ai − a−i)− (ai−1 − a−(i−1))

)
= (−1)i[i+ 1]

since the addition of z yields a homotopically trivial unlink component in S3.
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Lemma. For f(z) ∈ B ' (Z[A,A−1])[z], we have

〈f(z), ei〉 = f(λi)〈1, ei〉

where λi = −A2(i+1) −A−2(i+1).

Proof. We first claim
〈zj , ei〉 = (−A2(i+1) −A−2(i+1))j〈1, ei〉

When j = 0 the claim is immediate. For the inductive step, note that 〈zj , ei〉 is the Kauffman
bracket of j disjoint circles each linked once with ei. [Incomplete]

Then we have

〈f(z), ei〉 = 〈
deg f∑
j=0

fjz
j , ei〉 =

deg f∑
j=0

fj〈zj , ei〉

=

deg f∑
j=0

fjλ
j
i 〈1, ei〉 = f(λi)〈1, ei〉

Now define

Rn =
n−1∏
`=0

(z − λ2`)

By construction
〈Rn, e2i〉 = 0

for all i < n. This is simply because

〈Rn, e2i〉 =

( n−1∏
`=0

(λ2i − λ2`)
)
〈1, ei〉

by the above lemma.

Lemma. We have
〈Rn, z2k〉 = 0

for all k < n.

Proof. Consider the linear subspace

Beven2n ⊂ Beven ' (Z[A,A−1])[z2]

that consists of polynomials in z of degree less than 2n. Certainly z2k ∈ Beven2n . Furthermore, the
elements e0, e2, . . . , e2i for i < n are linearly independent in Beven2n . The dimension of Beven2n is n, so
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these elements are in fact a basis. Thus

〈Rn, z2k〉 = 〈Rn,
n−1∑
i=0

aie2i〉

=
n−1∑
i=0

ai〈Rn, e2i〉

= 0

We are now equipped to tackle Masbaum’s method.

The colored Jones polynomial via skein algebras

The idea will be to find a particular nice form for an element ω ∈ B that satisfies

〈ω, x〉 = 〈t(x), 1〉

for all x ∈ Beven. Namely, the geometric operation of twisting on the underlying 3-manifold can be
replicated algebraically by the addition of ω around x.

Theorem (Habiro [2000]). ω exists, and it can be written

ω =
∞∑
n=0

cnRn

where

cn = (−1)n
an(n+3)/2

{n}!

A large portion of the Masbum paper is devoted to determining an expression for ωp, which corre-
sponds to p full twists.

The element ω, in this particularly nice form, will allow us to use the cancellation properties
of the Rn to simplify bracket computations.
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The Temperley-Lieb algebra

Consider the square with n marked points on its top face and n marked poins on its bottom face.
An (n, n) tangle diagram is formed by joining these endpoints and decorating any intersections
with the appropriate over/under crossings.

Definition. The nth Temperley-Lieb algebra TLn is the Q(A)-algebra25 generated by (n, n)-
tangle diagrams modulo the Reidemeister relations. The addition is formal, and the multiplication
is given by concatanation of two diagrams.

Note that some papers26 use the ground ring Z[A,A−1], while others27 use Z(A,A−1).28

At this point, all diagrams will be assumed to have the blackboard framing, so an integer k deco-
rating a link component will indicate k parallel strands.

We can reduce an (n, n)-tangle diagram to a combination of elements of the form

So the elements U1, . . . , Un−1 generate TLn.

Definition. Given an element τ ∈ TLn, the closure of τ is given by connecting the corresponding
strands of the diagram for τ and viewing the result as a link in S3.

25The field Q(A) is taken from Masbaum and Vogel.
26Namely Masbaum, Tanaka, Przytyck
27Elhamadadi and Hajij
28Lickorish uses C.
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Definition. The Jones-Wenzl idempotents are the distinguished elements of TLn denoted by f (i),
defined below.

Definition. Let ∆n ∈ Z(A,A−1) be the Kauffman bracket of the closure of f (i).

Then we define f (i) recursively by

Proposition. We have the following:

1. f (n)Ui = Uif
(n)(= 0)29

2. (f (i))2 = f (i)

3. ∆n = (−1)nA
2(n+1)−A−2(n+1)

A2−A−2

Definition. The trace map g : TLn → B is given by closing the tangle and viewing the result as
a link in S1 ×D2.

Note that g does not respect the multiplication on TLn. Furthermore, there may be minor problems
with coefficient compatability in the ground ring, as TLn is an Q(A)-module and B is an Z[A,A−1]-
module.

Remark. We have
g(f (i)) = ei

as they satisfy the same recursive relations.

Definition. The unnormalized N -colored Jones polynomial of a framed link L is the Kauffman
bracket of L cabled by eN−1.

J ′N (L) = (−1)N−1〈L(eN−1)〉

Then we normalize as follows for the N -colored Jones polynomial.

JN (L) =
J ′N (L)

J ′N (O)

where O is the unknot.

This cabling is prohibitively expensive to compute with the Kauffman relations. The approach
will be to use a ‘graphical calculus’ to expand, replacing twists with ω appropriately and using the
vanishing properties of the Rn terms to vastly simplify the result.

29In Lickorish [1992] we have f (n)Ui = Uif
(n) = 0 when i ≤ n and f (n)Ui = f (n)Ui when n + 2 ≤ i.

60



7/22/2019 - Colored Jones Polynomial in Skein Algebras, the
Volume Conjecture

We will pick up where we left off last time in the computation of the colored Jones polynomial of
the trefoil. We’ve seen that working in skein algebras is often difficult. However, Masbaum and
Vogel developed a shorthand method for calculating JN (L).

Recall that JN (K) is given, up to normalization, by the bracket of L cabled with the (N − 1)th
Jones-Wenzl idempotent.

Masbaum and Vogel represent these idempotents using trivalent graphs. As before, all diagrams
will have the blackboard framing, which is not necessarily the zero framing. An integer n decorating
a diagram denotes n parallel strands.

Definition. A triple (a, b, c) ∈ N3 is admissible if a+ b+ c ∈ 2N and |a− b| ≤ c ≤ a+ b. Given
an admissible triple, a trivalent vertex is a vertex

where 
i = b+c−a

2

j = a+b−c
2

k = a+b−c
2

(i, j, k) are the internal colors of the vertex.

Note that (a, b, c) is admissible if and only if there exist a triple of internal colors. The process of
converting diagrams into trivalent graphs and then performing operations on these graphs is known
as graphical calculus.

From now on, it will be assumed that a Jones-Wenzl idempotent is attached to every group of
strands.30 The following two theorems are nontrivial (see Masbaum [2003]) and give important
equalities in the skein algebra.

30It does not matter how many of these elements are placed on a family of strands, as they are idempotent in TLn,
in which multiplication is given by concatenation.
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Theorem. We have31

Theorem. We have

where there are p twists in the center region of the left diagram and Cpn,n is some coefficient.

In particular, when p = 1 we have
C1
n,n = A−n(n+1){n}!

The colored Jones polynomial of the trefoil

Masbaum computes JN (Kp) for the twist knots

We will just consider the case when p = 1. Let K = K1 = T (3, 2). The writhe of this diagram is
ω = −2. To make the blackboard framing into the zero framing, add two positive Reidemeister I
moves.32

We would like to evaluate the unnormalized

J ′N (K) = (−1)N−1〈K(eN−1)〉

where K(eN−1) is the knot K cabled with eN−1.

Lemma. We can write

eN−1 =
N−1∑
n=0

(−1)N−n−1
[

N + n
N − 1− n

]
Rn

31It seems this needs justification, as Masbuam has a slightly different result.
32Note that ommitting this step would yield the correct Jones polynomials up to the framing relation.
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Proof. The proof proceeds by induction. [Incomplete]

This is a Z[A,A−1]-linear combination of elements

Rn =
n−1∏
i=0

(z − λ2i)

In the skein algebra, we have that the trefoil is equal to

So evaluating 〈K(eN−1)〉 amounts to evaluating 〈ω, K̃(eN−1)〉, where K̃ is the knot in S1 × D2

obtained by removing the twist. Furthermore, we can break up

〈K(eN−1)〉 = 〈ω, K̃(eN−1)〉

=

〈 ∞∑
n=0

cnRn, K̃

(N−1∑
n=0

(−1)N−n−1
[

N + n
N − 1− n

]
Rn

)〉

=

N−1∑
n=0

(−1)N−n−1
[

N + n
N − 1− n

] ∞∑
k=0

ck〈Rk, K̃(Rn)〉

by linearity into summands of the form

Consider the expression 〈Rk, K̃(Rn)〉. If we fill in the component Rk with a solid disk, K̃(Rn)
intersects this disk evenly many times.33

We can simplify K̃(Rn) in the expression 〈Rk, K̃(Rn)〉 first. Every resolution of crossings for
K̃(Rn) is a polynomial in even powers of z. This is because we can first resolve crossings on the
right side of Rn. Then the resolved diagram still intersects the disk spanning Rk evenly many times,
as we have not changed the diagram in this region. Finally, the modulo 2 intersection number of

33As even though K̃(Rn) is cabled, two copies of each strand pass through the disk.
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the resolved state and the spanning disk is well-defined, so any isotopy preserves the fact that the
resolution intersects an even number of times.

Hence K̃(Rn) ∈ Beven. Next, recall 〈Ri, z2j〉 = 0 when j < i.

Rn has z-degree n by definition. Furthermore, K̃(Rn) has z-degree at most 2n, since it is cabled
twice through the disk spanning Rk. Thus when k > n, we can write Rn as a linear combination
of terms z2i where i < k. Therefore 〈Rk, K̃(Rn)〉 = 0.

It is also true that when n > k we have 〈Rk, K̃(Rn)〉 = 0 as well. This can be demonstrated
in at least two ways:

1. It possible to isotopy the two-component link so that Rk and Rn switch roles in the diagram.
Then the same argument implies 〈Rn, Rk〉 = 0 when n > k.

2. Consider a Seifert surface for K̃(Rn) and observe that Rk pierces this surface twice. Let this
surface be a cross-section of some torus. Then the same argument implies 〈Rk, K̃(Rn)〉 = 0
when n > k.

Then the sum becomes finite for

N−1∑
n=0

(−1)N−n−1
[

N + n
N − 1− n

]
cn〈Rn, K̃(Rn)〉

Note that we have

〈Rn, K̃(Rn)〉 = 〈Rn, K̃(Rn)〉+ 〈Rn, K̃(en −Rn)〉︸ ︷︷ ︸
0

= 〈Rn, K̃(en)〉

since en−Rn has z-degree less than n by definition, and thus K̃(en−Rn) can be written as a linear
combination of terms z2i where i < n.

Therefore the sum is
N−1∑
n=0

(−1)N−n−1
[

N + n
N − 1− n

]
cn〈Rn, K̃(en)〉

To resolve the framing, observe that we can recast the above link in the torus, where the kinked
regions are now separated by themselves. Then we have

〈Rn, K̃(en)〉 = 〈Rn, t2(K̃ ′(en))〉 = µ2n〈Rn, K̃ ′(en)〉
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where K ′ is the unkinked trefoil in this form. Now each adjusted summand 〈Rn, K̃ ′(en)〉 is equal
to

where we are combining parallel strands using the first theorem above. The second theorem implies
this is equal to C1

n,n〈Rn, e2n〉. Putting everything together yields

〈Rn, K̃(Rn)〉 = µ2nC
1
n,n〈Rn, e2n〉

Recall 〈f(z), ei〉 = f(λi)〈1, ei〉. Then34

〈Rn, e2n〉 =

( n−1∏
i=0

(λ2n − λ2i)
)
〈1, e2n〉 = (−1)n

{2n+ 1}!
{1}

Thus the unnormalized colored Jones polynomial is given by

J ′N (K) = (−1)N−1
N−1∑
n=0

(−1)N−n−1
[

N + n
N − 1− n

]
cn〈Rn, K̃(Rn)〉

= (−1)N−1
N−1∑
n=0

(−1)N−n−1
[

N + n
N − 1− n

]
cnµ

2
nC

1
n,n〈Rn, e2n〉

= (−1)N−1
N−1∑
n=0

(−1)N−n−1
[

N + n
N − 1− n

]
cnA

(n2+2n)2A−n(n+1){n}!{2n+ 1}!
{1}

34This equality requires justification.
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The volume conjecture

Definition. A knot K in S3 is hyperbolic if the complement M = S3 \ K admits a complete
metric of constant curvature −1 with finite volume.

Examples

• The trefoil is not hyperbolic.

• The figure-eight knot is hyperbolic.

We also had the following theorem.

Theorem (Thurston). Every knot in S3 is a torus knot, hyperbolic knot, or satellite knot.

Conjecture. The hyperbolic volume of a knot is related to Kashaev’s dilogarithm invariant by

lim
N→∞

1

N
log |〈K〉N | =

1

2π
Vol(S3 \K)

After the conjecture was proposed, Kashaev and Tirkkonen proved that for torus knots K

lim
N→∞

1

N
log |〈K〉N | = 0

Theorem (Murakami, Murakami). Kashaev’s invariant 〈K〉N coincides with the colored Jones
polynomial JN (K, q) by specializing with a root of unity q = e2πi/N .

They generalized Kashaev’s conjecture to all knots using simplicial volume.

Simplicial volume and the generalized volume conjecture

Definition. A surface F in a 3-manifold M is incompressible if the inclusion i : F ↪→M induces
an injective map π1i : π1F ↪→ π1M .

Intuitively, F ⊂ M is incompressible if there are no nontrivial curves in F which bound a disk in
M .

Definition. Two surfaces F ′, F ′′ are parallel in M if they cobound a thickened surface F × I in
M , namely F ′ = F × {0} and F ′′ = F × {1}. If M is a 3-manifold with boundary, then F is
boundary parallel if it is parallel to a connected component of ∂M .

Two surfaces are parallel if and only if they are isotopic in M .

The next result is the Jaco-Shalen-Johannson decomposition, which holds more generally for Haken
3-manifolds when either ∂M = ∅ or when ∂M is a union of torii.
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Theorem (JSJ decomposition). Let K be a knot in S3. Then there exists a maximal set of
incompressible torii in M = S3 \K such that

1. No torus is boundary parallel

2. No two torii are parallel

Definition. A 3-manifold M is Seifert-fibered if it can be realized as a S1-bundle over a surface
with finitely many singular fibers.

Theorem. Let T = {Ti : Ti ⊂ M} be a maximal set of torii. Denote the result of cutting M
along all of the torii in F by M |T . The connected components of M |F are either hyperbolic or
Seifert-fibered.35

Definition. The simplicial volume of S3\K is the sum of the hyperbolic volumes of the hyperbolic
pieces of M |T .

The torus knots have complements that are Seifert-fibered, so they have no hyperbolic volume,
as expected. This definition also allows us to extend the conjecture to satellite knots, whose
complements consists of pieces that are both hyperbolic and Seifert-fibered.

Remark. Simplicial volume coincides with Gromov norm up to some overall factor.

Then we can now state the generalized volume conjecture.

Conjecture. Let K be any knot. Then

lim
N→∞

1

N
log
∣∣JN (K, q = e2πi/N )

∣∣ =
1

2π
Vol(S3 \K)

The conjecture has been verified for very low crossing knots:

1. 31 was verified by Kashaev, Tirkkonen

2. 41 was verified by Ekholm

3. 51 was verified by Kashaev, Tirkkonen

4. 52 was verified by Kashaev, Yokota

5. 61, 62, 63 were verified by Ohtsuki, Yokota

6. Whitehead doubles of torus knots were verified by Zheng

Verification of the volume conjecture for the figure-eight knot

Let K be the figure-eight knot. Recall that

JN (K, q) =
1

{N}

N−1∑
j=0

{N + j}!
{N − 1− j}!

35This is a highly nontrivial result, relying upon the geometrization theorem and particular properties of knot
complements.
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where
{m} = qm/2 − q−m/2

We can cancel terms and simplify for

N−1∑
j=0

{N + j}{N + j − 1} . . . {N + 1}{N − 1} . . . {N − j}

=
N−1∑
j=0

j∏
k=1

{N + k}{N − k}

=

N−1∑
j=0

j∏
k=1

(q(N+k)/2 − q−(N+k)/2)(q(N−k)/2 − q−(N−k)/2

Taking q = e2πi/N and using the fact that cos is even yields

N−1∑
j=0

j∏
k=1

2i sin
(2π(N + k)

N

)
· 2i sin

(2π(N − k)

N

)
=

N−1∑
j=0

j∏
k=1

−(−1)4 sin2
(kπ
N

)
since sin is periodic and odd. Define

gN (j) =

j∏
k=1

4 sin2
(kπ
N

)
Consider the graph of y = 4 sin2(πx).

As a function of j, gN (j) is is

1. decreasing when 0 < j < N/6

2. increasing when N/6 < j < 5N/6

3. decreasing when 5N/6 < j < N

Thus gN (j) obtains its maximal value when j = b5N/6c. Furthermore, since gN (j) > 0 we have

gN (b5N/6c) <
N−1∑
j=0

gN (j) < NgN (b5N/6c)
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Taking log and dividing by N yields

1

N
log gN (b5N/6c) < 1

N
log

(N−1∑
j=0

gN (j)

)
<

1

N
log(NgN (b5N/6c)) =

1

N
logN +

1

N
log gN (b5N/6c)

Note that as N becomes large, the left and right sides converge, and hence are equal in the limit
to the center expression by the squeeze theorem. Taking the limit as N goes to infinity yields

lim
N→∞

1

N
log |JN (K, q = 2πi/N)| = lim

N→∞

1

N

(N−1∑
j=0

gN (j)

)
= lim

N→∞

1

N
log gN (b5N/6c)

= lim
N→∞

1

N

b5N/6c∑
k=1

2 log
(
2 sin

kπ

N

)
=

2

π

∫ 5π/6

0
log(2 sinx) dx

= − 2

π
Λ(5π/6)

where Λ is the Lobachevsky function given by

Λ(t) = −
∫ t

0
log(2 sinx) dx

Λ(t) gives the volume of an ideal terahedron36 in terms of its dihedral angles α, β, γ.

Vol(T ) = Λ(α) + Λ(β) + Λ(γ)

Lemma. We have the following.

1. Λ(ζ + π) = Λ(ζ)

2. Λ(−ζ) = −Λ(ζ)

3. Λ(2ζ) = 2Λ(ζ) + 2Λ(ζ + π/2)

We can use these identities for

Λ(5π/6) = Λ(π − π/6) = Λ(−π/6) = −Λ(π/6)

= −1

2
Λ(π/3) + Λ(2π/3) = −3

2
Λ(π/3)

Substituting this in the above equation yields

− 2

π
Λ(5π/6) =

3

π
Λ(π/3) =

1

2π
6Λ(π/3) =

1

2π
Vol(S3 \K)

36For example, see Milnor [1982].
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where the last equality utilizes the fact that S3 \ K can be obtained by gluing two ideal regular
tetrahedra together.
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Midterm Presentation Slides

The midterm presentation slides are available on the next page.
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7/30/2019 - Progress Update and Jones-Wenzl Idempotents

We gave the midterm presentation to Robert, Hans, and Will. Afterwards, Beckham presented a
computation of the colored Jones polynomial for the T (3, 4) knot using graphical calculus.

Prime power congruences

Aaron will present a proof of the prime power congruences for the. We can write

F(q) =
s−1∑
i=0

qiAs(N, i, q
s)

The Ahlgren, Kim, Lovejoy divisibility result implies for i 6∈ S(s)

(q)λ(N,s)|As(N, i, q)

We we only need the weaker result

(1− qn)r|As(N, i, q)

We truncate the series for

F(1− q) =
∑

i∈S(pr)

(1− q)iApr(N, i, (1− q)pr) +
∑

i 6∈S(pr)

(1− q)iApr(N, i, (1− q)pr)

The is equal to

(1− (1− q)pr)n
∑

i 6∈S(pr)

fi(q)

for all n such that λ(N, pr) ≥ npr. Howevever, we need that

(1− (1− q)pr)n = O(qnp
r−(r−1)(pr−1)) mod pr

This is because (1− q)pr = 1 + qg(q)− qpr , and hence

(1− (1− q)pr)n = (qg(q)− qpr)n =
n∑
i=0

(
n

i

)
(qg(q))i(−qpr)n−i ≡

r−1∑
i=0

(
n

i

)
(qg(q))i(−qpr)n−i mod pr

Thus
F(1− q,N) =

∑
i∈S(pr)

(1− q)iApr(N, i, (1− q)pr) +O(qnp
r−(r−1)(pr−1))

which is a linear combination of terms of the form (1− q)i+kpr , for i ∈ S(pr), k ∈ N.

Theorem. For m ∈ T (pr), we have (
i+ kpr

m+ αpr

)
≡ 0 mod pr

Lemma. Let n ∈ S(p) and r ≥ 2.

1. If n 6≡ −24−1 mod p, then n+ `p ∈ S(pr) for 0 ≤ ` ≤ pr−1.
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2. If n ≡ −24−1 mod p, then n+ pr − p 6∈ S(pr).

To show the first part of the lemma, it is necessary to invoke Hensel’s lemma:

Lemma (Hensel’s Lemma). If f(r) ≡ 0 mod p and f ′(r) 6≡ 0 mod p, there exists s ≡ r mod p such
that f(s) ≡ 0 mod pn for all n ≥ 1.

We can write n ≡ (3m2 −m)/2 mod p by definition of the pentagonal numbers. If we let f(x) =
(3x2 − x)/2− p`, we have f(m) ≡ 0 mod p. f ′(n) 6≡ 0 because n ≡ −24−1 mod p.

To prove the second part of the lemma, suppose n+ pr − p ∈ S(pr). Then

n+ pr − p ≡ m2 − 1

24
mod p

for some m coprime to 6. [The rest of the argument is missing.]

Let n0 be the largest element in S(p) not congruent to −24−1 mod p. Then n0 + pr − p ∈ S(pr)
is the largest element in S(pr). We are looking at

(
i+kpr

m+αpr

)
for m > n0 + pr − p ≥ i. Thus we can

write m = m0 + pr − p for m0 > n0.

m = m0 + (p− 1)p+ (p− 1)p2 + . . .+ (p− 1)pr−1

All the digits in the base-p expansion of m are maximal, where m0 is strictly larger than the first
digit in the expansion of i. We require the case when r = 1.

(
i+kp
mαp

)
≡ 0 mod p and Kummer’s

theorem imply that since
(
n
m

)
is the number of carries in the base p addition of n−m and m, there

will be always be carry in every digit.
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Jones-Wenzl idempotents

We will work in the (Kauffman) skein module of the n-stranded disk and the annulus A = S1×I×I,
with the usual diagrammatic crossing relations. Recall that the n-stranded skein module of the
disk is in fact the Temperley-Lieb algebra TLn, with multiplication given by the obvious stacking
operation. It is generated by the identity 1 and the elements U1, . . . , Un−1.

We know K(A) ' Z[A,A−1][z]. The goal today will be to understand the Jones-Wenzl idempotents
and their properties.

Definition. The Jones-Wenzl idempotents are the elements

We also define ∆n as the trace of f (n).

Lemma. If A4 is not a kth root of unity for all 1 ≤ k ≤ n, then there exists a unique element
f (n) ∈ TLn such that

1. f (n)Uk = 0 = Ukf
(n) for 1 ≤ k ≤ n− 1

2. 1− f (n) lies in the algebra generated by U1, . . . , Un−1

3. f (n)f (n) = f (n)

4. ∆n = (−1)nA
2n+2−A−(2n+2)

A2−A−2

Proof. We first prove uniqueness using properties 1 and 2. Let g(n) be another such element that
satisfies the above properties. Then 1− g(n) lies in the algebra generated by U1, . . . , Un−1, in which
case

f (n)(1− g(n)) = 0 = g(n)(1− f (n))

So
1− f (n) = (1− f (n))(1− g(n)) = 1− g(n)

f (n) = g(n)

Next, observe that property 3, idempotency, follows from properties 1 and 2. This is because

0 = f (n)(1− f (n)) = f (n) − f (n)f (n)

77



Hence we must construct an element that satisfies properties 1 and 2.

Note that we have an absorption result

f̂ (i)f (i+j) = f (i+j)

where f (i) is stabilized appropriately. This is because

(f (i) − 1)f (i+j) = 0

as f (i) − 1 lies in the subalgebra generated by U1, . . . , Ui−1 and is hence annihilated by f (i+j).

Now consider the element x ∈ TLn−1 given by

Then f (n−1)x = x by the absorption result.

However, since x is a linear combination of 1 and products of U1, . . . , Un−2

f (n−1)x = λf (n−1)

for some scalar λ. Therefore x = λf (n−1). We can solve for λ by taking the trace of both sides of
this equation. The closure of x is ∆n, and the closure of λf (n−1) is λ∆n−1. Thus

λ =
∆n

∆n−1

We can now proceed to define f (n). Set f (0) to be the empty diagram and f (1) to be the unknotted
one-stranded diagram. Recursively define

f (n+1) = f (n) − ∆n−1
∆n︸ ︷︷ ︸
λ−1

f (n−1)

Note that the leading term is always n + 1 parallel strands with coefficient 1. We will verify that
this definition indeed satisfies the desired properties.
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1. We know f (n)Uk = 0 = Ukf
(n) immediately for all 1 ≤ k ≤ n−1. Composition with Un yields

The right rectangle has center component x, which we can replace with λf (n−1) and conse-
quently absorb.

2. 1 − f (n) is in the subalgebra generated by U1, . . . , Un−1, as the identity component in the
recursion expansion necessarily has coefficient 1 by construction.

3. Idempotence follows from the previous two properties, as remarked above.

4. We must show

∆n = (−1)n
A2n+2 −A−(2n+2)

A2 −A−2

We have the map TLn → K(A) given by closing an element around the annulus. Then f (n)

is sent to polynomial in z, denoted by Sn(z). Note S0(z) = 1 and S1(z) = z. The recursive
formula implies

Sn+1(z) = zSn(z)− Sn−1(z)

as the last diagram is in fact the closure of x using idempotence, which is equal to the closure
of λf (n−1). These are the Chebyshev polynomials of the 2nd kind.

We extend the map TLn → K(A) → K(S3) by setting z = −A2 − A−2. Thus if ∆n is
the closure of f (n), ∆n satisfies the recursion

∆n+1 = (−A2 −A−2)∆n −∆n−1

and hence by induction

∆n+1 = (−A2 −A−2)(−1)n
A2n+2 −A−(2n+2)

A2 −A−2
− (−1)n−1

A2n −A−2n

A2 −A−2

= (−1)n+1A
2(n+1) −A−(2(n+1)+2)

A2 −A−2
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8/7/2019 - Bailey’s Machinery

Today we will discuss a collection of ideas encapsulated by the term Bailey machinery. In particular,
we will be interested in its applications to classical q-series identities in general, and our problem
in particular.

Bailey’s lemma

Lemma (Weak Bailey’s Lemma). Let {αn} and {βn} be two sequences of rational functions in q.
Suppose

βn =
n∑
r=0

αr
(q)nr(aq)n+r

Then
∞∑
n

anqn
2
βn =

1

(aq)∞

∞∑
n=0

anqn
2
αn

Proof. We have

∞∑
n=0

anqn
2
βn =

∞∑
n=0

anqn
2

n∑
r=0

αr
(q)n−r(aq)n+r

=

∞∑
r=0

∞∑
n=r

anqn
2
αr

(q)n−r(aq)n+r

=
∞∑
r=0

αr

∞∑
n=0

q(n+r)
2
an+r

(q)n(aq)n+2r

by taking k = n − r, n = k + r and then replacing k with n. We then employ Cauchy’s identity37

by taking x = aq1+2r and using that

(aq1+2r)∞
(aq1+2r)n

=
(aq)∞

(aq)n+2r

This can be in fact generalized, using Bailey’s transform and the q-Pfaff-Saalshitz identity to obtain
the following result.

Theorem (Bailey’s Lemma). Let {αn} and {βn} be two sequences of rational functions in q.
Suppose

βn =
n∑
r=0

αr
(q)n−r(aq)n+r

37This states
∞∑

n=0

qn
2−nxn

(q)n(x)n
=

1

(x)∞
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Then

β′n =
∞∑
r=0

α′r
(q)n−r(aq)n+r

where

α′r =

(ρ1)r(ρ2)r

(
aq
ρ1ρ2

)r
αr(

aq
ρ1

)
r

(
aq
ρ2

)
r

and

β′n =

n∑
i=0

(ρ1)i(ρ2)i

(
aq
ρ1ρ2

)
n−i

(
aq
ρ1ρ2

)i
(q)n−i

(
aq
ρ1

)
n

(
aq
ρ2

)
n

βi

Note that the weak Bailey’s lemma implies Bailey’s lemma by letting n, ρ1, ρ2 go to infinity and
using

lim
ρi→∞

(ρi)r

(
1

ρi

)r
= (−1)rqr(r−1)/2

lim
ρi→∞

(
aq

ρi

)
= 1

for i = 1, 2. So the above statement becomes

n∑
i=0

qi
2
aiβi

(q)n−i
=

n∑
r=0

qr
2
arαr

(q)n−r(aq)n+r

Letting n go to infinity yields the result since

lim
n→∞

1

(q)n−i
=

1

(q)∞

lim
n→∞

1

(aq)n+r
=

1

(aq)∞

Bailey pairs

It is now natural to make the following definition.

Definition. A Bailey pair relative to a is a pair of sequences (αn, βn) that satisfy

βn =

n∑
r=0

αr
(q)n−r(aq)n+r

The key idea is that, given a Bailey pair (αn, βn) we can construct a new Bailey pair (α′n, β
′
n) via

Bailey’s lemma. Iterating this yields a Bailey chain

(αn, βn)→ (α′n, β
′
n)→ (α′′n, β

′′
n)→ . . .
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Note that given {αn}, we can find {(βn)} using the definition. Given {βn}, we can find {αn} via
the inversion formula

αn = (1− aq2n)

n∑
i=0

(aq)n+i−1(−1)n−iq(
n−i
2 )

(q)n−i
βi

Application to a classical identity

We have the following example, which is one of the easiest possible choices for βn.

Lemma (Unit Bailey pair). Consider the pair (αn, βn) defined by

βn =

{
1 n = 0

0 n > 0

αn =

{
1 n = 0

(−1)nqn(n−1)/2(1 + qn)

Then (αn, βn) is a Bailey pair relative to a = 1.

Proof. We have

n∑
r=0

αr
(q)n−r(aq)n+r

=
1

(q)2n
+

n∑
r=0

(−1)rqr(r−1)/2(1 + qr)

(q)n−r(q)n+r

=
1

(q)2n

n∑
r=−n

(−1)rqr(r−1)/2
[

2n
n− r

]

since [
2n
n− r

]
=

(q)2n
(q)n−r(q)n+r

implies that the right hand side above is

1

(q)2n︸︷︷︸
r=0

+
1

(q)2n

n∑
r=1

(−1)rqr(r−1)/2
[

2n
n− r

]
+

1

(q)2n

n∑
r=0

(−1)rqr(r+1)/2

[
2n
n− r

]
︸ ︷︷ ︸

r 7→−r

=
1

(q)2n

2n∑
r=0

(−1)r−nq(
r−n
2 )
[
2n
r

]

by taking s = r+n and then replacing s with r. We invoke the q-binomial theorem38 to then write

(q−n)2n(−1)nq(
n+1
2 )

(q)2n

by taking z = q−n and replacing n with 2n. This is 1 precisely when n = 0 and 0 otherwise, which
completes the proof.

38Using the specialized version

(z)n =

n∑
r=0

[
n
r

]
(−1)rqr(r−1)/2zr
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We can then construct the next pair in the Bailey chain, which will give us a famous identity.

Corollary. Let (αn, βn) be as in the previous lemma. Then taking

α′n =

{
1 n = 0

(−1)nqn(3n−1)/2(1 + qn) n > 0

β′n =
1

(q)n

yields a Bailey pair (α′n, β
′
n).

Proof. Let ρ1, ρ2 go to infinity in Bailey’s lemma and simplify to obtain

α′n = anqn
2
αn

β′n =

n∑
k=0

akqk
2

(q)n−k
βk

where this is true for any Bailey pair relative to any base. Substituing (αn, βn) from above yields
the desired result.

Theorem (1st Rogers-Ramanujan identity). We have

∞∑
n=0

qn
2

(q)n
=

1

(q; q5)∞(q4; q5)∞

This is the beginning of a very long story that is connected to ideas in algebraic K-theory, modular
forms, conformal field theory, vertex operator algebra, and knots.

Proof. Substitute (α′n, β
′
n) in the weak Bailey’s lemma to obtain

∞∑
n=0

qn
2

(q)n
=

1

(q)∞

[ ∞∑
n=1

(−1)nqn(3n−1)/2(1 + qn) + 1

]

=
1

(q)∞

[ ∞∑
n=1

(−1)nqn(3n−1)/2︸ ︷︷ ︸
n7→−n

+
∞∑
n=1

(−q)nqn(3n+1)/2 + 1

]

=
1

(q)∞

∑
n∈Z

(−1)nqn(3n+1)/2

=
1

(q; q5)∞(q4; q5)∞

where have used the Jacobi triple product39 and taking z = −q1/2 and replacing q with q5/2.

39This states ∑
n∈Z

znqn
2

= (q2; q2)∞(−zq : q2)∞(−q/z; q2)∞
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Our strange identity

Recall that in order to prove the strange identity for T (3, 4), we needed

1. The quintuple product identity∑
k∈Z

qk(3k−1)/2x3k(1− xqk) = (q, x, qx−1; q)∞(qx2, qx−2; q2)∞

2. Slater’s identity

(q)∞

∞∑
n=0

q2n(n+1)

(q)2n+1
= (q3, q5, q8; q8)∞(q2, q14; q16)∞

It turns out that Slater’s identity comes from Bailey pairs.

Remark (Exercise). Use the quintuple product identity and the Bailey pair (αn, βn) with respect
to a = q given by

α3n−1 = q3n
2−2n

α3n = q3n
2+2n

α3n+1 = −q3n2+4n+1 − q3n2+2n

βn =
qn

2+n

(q2)2n

Also recall we have

H(x) =
∞∑
n=0

(x)n+1x
2nT (x, n, q)

where

T (x, n, q) =

b(n−1)/2c∑
k=0

x2k−1q2k(k+1)

[
n

2k + 1

]
+

bn/2c∑
k=0

x2kq2k(k+1)

[
n+ 1
2k + 1

]

1. We showed

H(x) = (qx)∞

∞∑
n=0

q2n(n+1)

(x2q)2n+1
x6n + (1− x)

∞∑
n=0

((qx)n − (qx)∞)x2nT (x, n, q)

via the difference equation.

2. We then took the derivative of both sides with respect to x, letting x go to 1. On the H-side,
this yields part of the summation part of the strange identity

1

2

∞∑
n=0

nχ24(n)q(n
2−25)/48 − 5

2

∞∑
n=0

χ24(n)q(n
2−25)/48

︸ ︷︷ ︸
Taking q 7→ q8 and x = q3 in the underbrace and applying the quintuple product identity
yields (q3, q5, q8; q8)∞(q2, q14; q16)∞.
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3. If we take x = 1 in the left term in the above H-equality, we have Slater’s identity, behind
which is a Bailey pair.

We have the same exact story for the family of torus knots T (2, 2t + 1), which Hikami developed
explicitly. Namely, he defined

H
(0)
t (x) =

∞∑
n=0

χ
(0)
8t+4(n)q(n

2−(2t−1)2)/(8(2t+1))x(n−(2t−1))/2

and proves

H
(0)
t (x) =

∞∑
k1,...,kt=0

(x)kt+1x
kt

t−1∏
i=1

qk
2
i+kix2ki

[
ki+1

ki

]
He uses the q-binomial coefficient to rewrite

H
(0)
t (x) = (qx)∞

∞∑
k1,...,kt−1=0

qk
2
1+...+k

2
t−1+k1+...+kt−1

(xq)kt−1

x
2
∑t−1

i=1 ki+kt−1
∏t−2

i=1

ki+1

ki



+ (1− x)
∞∑

k1,...,kt=0

((qx)kt − (qx)∞)xkt
t−1∏
i=1

qk
2
i+kix2ki

[
ki+1

ki

]

It turns out that the left term arises from a Bailey pair, morally as a generalization of the Rogers-
Ramanujan identity. If we take x = 1, then this is (q, q2t, q2t+1; q2t+1)∞ by using the Bailey chain.40

Then H
(0)
t (1) is the same product (by taking the derivative with a = 0 and µ = t).

Now, we are examining the general family T (3, 2t). We have the function

Ht(x) =
∞∑
n=0

χ3·2t+1(n)x∗q∗∗

for suitable powers * and **. Then using the quintuple product identity yields

Ht(1) = (q2
t−1, q2

t+1, q2
t+1

; q2
t+1

)∞(q2, q2
t+2−2; q2

t+2

∞

The idea will be to work backwards, given the seed Bailey pair, using the Bailey machinery to
desired multisum version.

In the case t = 3, what double sum is equal to (q7, q9, q14; q16)∞(q2, q30; q32)∞.

40See the proof of proposiition 11 in Hikami’s paper for details.
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8/12/2019 - Project Update and Khovanov Homology

For the knot theory side of the project, we presented41 two approaches to the computation of T (3, 4)
and made some remarks about generalization to the entire family T (3, 2t). In summary, we would
like to understand

1. Tanaka’s ‘bridge’ lemma 3.3

2. The incorrect power of q in our current computation of the colored Jones polynomial of the
modified trefoil using ω

3. The inconsistency between our computation and that of Tanaka for the diagram

4. The mistakes present in our current computation of the colored Jones polynomial of T (3, 4)

5. If it is possible to use the pretzel knot diagram for T (3, 4) to eliminate the multiple sums and
maximize symmetry

6. More generally, how the colored Jones polynomial of a knot with an additional strand attached
at two points can be reduced to the bracket of the knot itself

We now currently believe that the framing should be left unresolved until a final surgery presenta-
tion of the knot is obtained. Three applications of ω means that the writh of the knot will be −2.
A corresponding µn should then be included in each modified trefoil computation.

Aaron also presented an update on his progress proving the strange identity.

41See the below write-up by Shaoyang.
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Khovanov Homology

We will have a short mini-course on Khovanov homology.42 The goals will be to

1. Define Khovanov homology

2. Find examples of knots/links with the same Khovanov homology

3. Discuss the Rasmussen invariant and slice genus

Defining Khovanov homology

The following is a review of the material in Dror Bar-Natan’s paper (see there for more details).
The idea is to find a homology theory with Euler characteristic equal to the Jones polynomial.
Given a diagram D with n crossings, we define

Ĵ(D) = (−1)n−qn+−2n−〈D〉

where n+ is the number of positive crossings, n− is the number of negative crossings, n = n+ +n−,
and q = t1/2. The bracket here is defined by the relation

Remark. Despite the unusual normalization, this definition indeed yields the regular the Jones
polynomial.

We can consider the 2n states obtained by all possible smoothings of each crossing. Denote by r(S)
the number of 1-smoothings in the total smoothing S, and denote by k(S) the number of cycles in
the total smoothing S. Then we have

Ĵ(D) =
∑
S

(−1)r(S)+n−qr(S)+n+−2n−(q + q−1)k(S)

42Some references are

1. A categorification of the Jones polynomial by Khovanov [2001]

2. Five lectures on Khovanov homology by Paul Turner

3. On Khovanov’s categorification of the Jones polynomial by Bar-Natan

4. Knots with identical Khovanov homology by Liam Watson

5. Khovanov homology and slice genus by Jacob Rasmussen
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We follow through with an analagous categorification of the process to obtain Khovanov homology.
Take a two-dimensional vector space

V = Q⊕Q = Q (1, 0)︸ ︷︷ ︸
1

⊕Q (0, 1)︸ ︷︷ ︸
x

We can consider the tensor product V ⊗k and will write 11x for the element 1 ⊗ 1 ⊗ x. We then
replace the corners of the above cube with the appropriate vector spaces so that the dimensions of
the chain complex spaces work out.
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We can assign degree 1 to the basis element 1 and degree −1 to the basis element x. For example,
the element 11x has degree 1. Then we can include the degree shifts in the summation by adjusting
the dimensions of the spaces and grading on the chain complexes.

Lemma. For a finite chain complex

C : 0→Wm →Wm+1 → . . .→Wn → 0

we have
χ(C) = χ(H∗(C))

Thus the graded Euler characteristic of C is indeed the Jones polynomial of K by construction.

We will next construct a differential of degree 0, which just means that the differential respects
the grading on the chain groups. Thus we can view this construction as either a chain complex of
graded vector spaces or a graded chain complex.

To define the differential, at each state S we will construct a map from the associated vector
space to the states obtained by adjusting one of the 0-smoothings to a 1-smoothing. In the case

96



where this results in two cycles merged into one, we use the join map

m : V ⊗ V → V

1x 7→ x

x1 7→ x

xx 7→ 0

When a cycle is split into two, we use the split map

∆ : V → V ⊗ V
1 7→ 1x+ x1

x 7→ xx+ 11

With appropriate shift on the chain complex groups, these maps a degree-preserving. We then
add appropriate signs to the sums of these maps so that these indeed yield a differential. See
Bar-Natan’s paper for details.

Khovanov homology as an invariant

Theorem (Kronheier and Mrowka). As an invariant, Khovanov homology detects the unknot.

Despite its strength, Khovanov homology is not a complete invariant. It is possible to come up
with infinitely many examples with the same Khovanov homology. We will describe a reciple to
generate these.

Given a braid β ∈ B3 and two tangles T,U , we can consider the knot

denoted by Kβ(T,U). Applying some number of twists to the above regions before the tangles
yields a distinct knot with the same Khovanov homology.43

43See Watson’s paper for a five page proof.
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Khovanov Homology as a Topological Quantum Field Theory

We can define Lee homology by adjusting the definitions of the maps to

m′ : V ⊗ V → V

1x 7→ x

x1 7→ x

xx 7→ 0 + 1

and

∆ : V → V ⊗ V
1 7→ 1x+ x1

x 7→ xx+ 11

The degree now changes by 4, including the degree shift present between the different heights on
the resolution cube. This yields a new homology Lee(K), which is trivial for knots and for links is
given by rank(Lee(K)) = 2µ, where µ is the number of components of L.

Note that since these maps no longer preserve degree, we are simply taking the direct sum of
everything at a particular height in the resolution cube.

Rasmussen observed that the ith degree gives a filtration

C = F 1C︸︷︷︸
{v:i(v)≥1}

⊃ F 2C ⊃ F 3C ⊃ . . . ⊃ F 9C ⊃ 0

in the case of the trefoil. The differentials preserve this filtration, which induces a filtration on
homology

FmH∗ ⊃ Fm+1H∗ ⊃ . . . ⊃ 0

If we let v ∈ F kH∗ be a homology class, we define the degree of v to be the maximum degree of
possible representatives x for

q([v]) = max{q(x) : [x] = v}

Take
smax = max{q(v) : v 6= 0, v ∈ H∗}

smin = min{q(v) : v 6= 0, v ∈ H∗}

Lemma. smax and smin differ by 2, and hence we define Rasmussen’s s-invariant to be

s(K) =
Smax + Smin

2

With spectral sequences, we can understand the s-invariant as saying something about cobordisms
between knots. Given a cobordism between two links, we know that the surface is generated by
three elementary pieces: the ‘birth’ cap, ‘death’ cap, and ‘pair of pants’. Thus we can break
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any cobordism into these components and sequentially examine how they act on the Khovanov
homology. For example, killing a cycle in the cobordism yields the induced map

C(L t O)→ C(L)

1 7→ 0

x 7→ 1 ∈ Q

We can similarly define the morphisms associated to the birth element and pair of pants, using the
m and ∆ maps. This makes Khovanov homology into a functor from the category of embedded
1-dimensional manifolds in S3 with cobordisms as morphisms. A similar construction applies to
Lee homology.

Definition. The slice genus of K is the minimum genus of all surfaces in D4 that bound K.

We can consider such a surface that bounds K to be a cobordism between K and the unknot.
This induces a morphism from the Lee homology of K to the Lee homology of the unknot. This is
always an isomorphism, but this is nontrivial to show.

If we take nonzero x ∈ Lee(K), then the image of x under the induced morphism on homol-
ogy is s(K). This implies s(K) < 2g, where g is the slice genus of K. A similar argument applied
to the mirror of K yields |s(K)| < 2g. Hence the s-invariant is a lower bound on the slice genus of
K.
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8/15/2019 - Project Update

Cyclotomic expansion via skein-theoretic computations

I’ll first describe how to obtain the cyclotomic expansion of the colored Jones polynomial from a
skein-theoretic derivation such as Masbaum’s. A computation that involves ω yields an expression
for the colored Jones polynomial of the form

JN (K) =
N−1∑
n=0

[
N + n

N − 1− n

]
R(n)

where R(n) is some expression. Examining the binomial coefficient yields[
N + n

N − 1− n

]
=

[N + n][N + n− 1] . . . [1]

[N − 1− n][N − 1− n− 1] . . . [1][2n+ 1][2n] . . . [1]

=
[N + n][N + n− 1] . . . [N − n]

[2n+ 1][2n] . . . [1]

=
{N + n}{N + n− 1} . . . {N − n}

{2n+ 1}{2n} . . . {1}
=
{N + n}{N + n− 1} . . . {N − n}

{2n+ 1}!

Now observe

(q1−N )n(q1+N )n =
[
(1− q1−N )(1− q2−N ) . . . (1− qn−N )

]
·
[
(1− q1+N )(1− q2+N ) . . . (1− qn+N )

]
=

[
q(N−1)/2 − q−(N−1)/2

q(N−1)/2
· q

(N−2)/2 − q−(N−2)/2

q(N−2)/2
· . . . · q

(N−n)/2 − q−(N−n)/2

q(N−n)/2

]
· (−1)n

[
q(N+1)/2 − q−(N+1)/2

q−(N+1)/2
· q

(N+2)/2 − q−(N+2)/2

q(−(N+2)/2
. . .

q(N+n)/2 − q−(N+n)/2

q−(N+n)/2

]
= (−1)n

1

q−1−2−...−n
[
{N − 1}{N − 2} . . . {N − n}

]
·
[
{N + 1}{N + 2} . . . {N + n}

]
= (−1)nqn(n+1)/2 {N + n}{N + n− 1} . . . {N − n}

{N}

Hence [
N + n

N − 1− n

]
= (−1)n

{N}
{2n+ 1}!

q−n(n+1)/2(q1−N )n(q1+N )n

and thus

JN (K) =

∞∑
n=0

[
(−1)n

{N}
{2n+ 1}!

q−n(n+1)/2R(n)

]
(q1−N )n(q1+N )n

Cyclotomic expansion for pretzel knots

Presented below is a computation which, combined with the above work, should provide the cyclo-
tomic expansion of the colored Jones polynomial for all pretzel knots (although the computation is
for T (3, 4), the argument easily generalizes).
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8/21/2019 - Project Update

After implementing the above work in Mathematica several times and adjusting for writhe ap-
propriately following a suggestion from Hans, it was determined that the computation is correct
for knots like the trefoil and the unknot, but is incorrect for T (3, 4). The formula produces a
polynomial with too many terms and the incorrect coefficients.

Explaining the error in the computation

Recall that, after decorating a knot diagram K with ω to remove a full twist, we wish to compute
the bracket of the Hopf link 〈ω, K̃(eN−1)〉, where K̃(eN−1) is the modified, untwisted knot cabled
with the Jones-Wenzl idempotent eN−1. We then consider the linear combinations

ω =
∞∑
k=0

ckRk

eN−1 =
N−1∑
n=0

(−1)N−1−n
[

N + n
N − 1− n

]
Rn

and expand

〈ω, K̃(eN−1)〉 =
∞∑
k=0

N−1∑
n=0

(−1)N−1−n
[

N + n
N − 1− n

]
ck〈Rk, K̃(Rn)〉

The key idea is to argue that 〈Rk, K̃(Rn)〉 = 0 unless k = n. It is these high cancellation properties
that vastly simplify the computation. This is the purpose of introducing the element ω and working
hard to express it in the basis {Rn}.

Let’s review why indeed 〈Rk, K̃(Rn)〉 = 0 unless k = n. Recall that we have the following crucial
properties44 of the {Rn} basis, which we defined

Rn =

n−1∏
i=0

(z − λ2i)

Lemma. 〈Rn, e2i〉 = 0 for all i < n.

Lemma. 〈Rn, z2i〉 = 0 for all i < n.

In short, the second lemma states that circling via Rn in a Hopf link configuration annihilates the
portion of the even subalgebra Beven ⊂ (Z[A,A−1])[z] = B of z-degree less than 2n.

44See page 54 of these notes for proofs of these.
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Consider the above picture, and first suppose n < k. There are two strands of Rn (which are
really cables of the Jones-Wenzl idempotents) that pierce the spanning disc of Rk. Now apply all
necessary Kauffman relations so that the Rn component of the link has no crossings.

First, since two strands of the original Rn link pierce the disc spanning Rk, all of the resulting
states will have an even intersection number with this disc.45 Second, there cannot be more strands
that pass through Rk. Thus the element K̃(Rn) lies in the even subalgebra of B ' (Z[A,A])[z]
with z-degree less than 2n. So by the above lemma we have 〈Rk, K̃(Rn)〉 = 0.

Now suppose k > n. Since K̃(Rn) is the unknot there is an isotopy of this link taking the
diagram to one of the form 〈Rn, J(Rk)〉 for some knot J (note that Rk and Rn have switched roles.
And since in the original diagram Rk pierces a Seifert surface for K̃(Rn) twice, after isotopy we can
arrange it so that J(Rk) pierces the spanning disc for Rn twice. Then the same argument implies
〈Rk, K̃(Rn)〉 = 〈Rn, J(Rk)〉 = 0. Thus we have the desired cancellation properties.

In short, the problem with our computation is that the link

has component K̃(en) which is not actually the unknot. In fact, anytime the number of twists on
one of the twist regions is greater than or equal to 3, the link component is the connected sum of a
nontrivial knot and another knot. Hence such a decomposition means that we no longer have the
high cancellation properties of ω. The resulting formula for a knotted link component is then

N−1∑
n=0

∞∑
k=n

(−1)N−1−n(−1)N−1−n
[

N + n
N − 1− n

]
ck〈Rk, K̃(Rn)〉

Moving forward

We now have a much clearer picture of the element ω. Namely, it can be used to easily simplify the
computation of the colored Jones polynomials for knots with unknotting number 1 (as applying ω
to the appropriate region results in the unknot). For example, Tanaka [2008] uses ω to treat the
case of Whitehead doubles of knots, which all have unknotting number 1.

Alternatively, ω can be used to simplify knots with larger unknotting numbers, provided that
these take the form of consecutive twist regions of two strands. For example, the twist knots are

45The resulting link component consists of a number of circles that link with Rk and a number of disjoint circles
that do not link with Rk. The point is that resolving crossings in the right part of the diagram either results in
decreasing the number of strands passing through Rk by 2 or doesn’t have any effect.

Alternatively, one could argue that the portion of the diagram passing through Rk remains unchanged when
resolving crossings on the right. So all of the resulting uncrossed diagrams have the same number of strands passing
through Rk. Then applying any isotopy preserves the number of strands intersecting the spanning disc transversally,
as the mod 2 intersection is homotopy invariant.
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treated by Masbaum [2003] and double twist knots by Lauridsen [2010].

The knot T (3, 4) has unknotting number 3 and it is not of the above particularly straightfor-
ward form, so it is not amenable to simplification via ω, at least with the approaches we have been
implementing so far. Since we don’t even have cancellation of the infinite sum above, we cannot
take into account the additional terms either.

Some directions the project could take are

1. Compute the colored Jones polynomial of T (3, 4) and pretzel knots via diagrammatic
calculus only. However, this has basically already been done (see Walsh [2013]). It is
also not obvious how to move from such an expression to the cyclotomic expansion of the
colored Jones polynomial.

2. Compute the colored Jones polynomial of a family of knots with unknotting number 1,
or of compelexity type given by twist regions of two strands.

3. Compute the colored Jones polynomial of T (3, 4) and/or the family T (3, 2t) via other
techniques (braid representations, quantum groups, etc.)

4. Compute the cyclotomic expansion of the colored Jones polynomial of the T (2, 2k + 1)
family via skein-theoretic techniques. I believe Robert mentioned this hasn’t been done
yet.
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Project Report - Numerical Computations

Colin reports the following results.

Summary

We wanted to obtain numerical evidence of prime power congruences in the coefficients of Ft(1− q)
for t > 2. Targeting t = 3, we tried to compute terms of F3(1 − q) using Mathematica to test for
prime power congruences. Computation took a long time and we were only able to compute the
first 21 terms.

We used Simpy (a Python package) & Multiprocessing to try to compute more terms. Unfor-
tunately, this was slow and used a very large amount of memory.

In order to further investigate the presence of prime power congruences for the F series, a program
was written in C++ using the NTL library. The NTL library has data structures and algorithms for
arbitrary length signed integers and polynomials with arbitrary length signed integer coefficients.
This was necessary as we were dealing with large integers: the coefficient of q50 in F3(1− q) was

9641566964915433362974272805385507427878055884094

92484118157649412323539101564134812186

NTLs polynomial arithmetic is very fast and its data structures allow for efficient storage of large
polynomials. Coupled with minimizing creation of temporary variables in loops we were able to
produce a program which uses very little memory. The outer sum of F3(1 − q) was split into m
threads and run in parallel on one of Google’s N2 Servers. The program calculated the first 51
terms of F3(1− q) and tested for the presence of prime and prime power congruences.

Expected results:

• 5n+3, 5n+4

• 7n+5, 7n+6

• 11n+8, 11n+9, 11n+10

• 13n+12

• 25n+23, 25n+24

Numerical results:

• 5n+3, 5n+4

• 7n+4, 7n+5, 7n+6

• 11n+8, 11n+9, 11n+10

• 13n+12
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• 25n+23, 25n+24

We were pleased to see very close agreement between expected results and numerical results.
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Project Report - Prime Power Congruences

Introduction

Recently a formula was given for the colored Jones polynomial by Konan [3] for an infinite family of
Torus knots T (3, 2t), t ≥ 2. This formula allows for the definition of a q-series which agrees, up to
some power of q, with it at roots of unity. This so-called F-series generalizes the Kontsevich-Zagier
strange series:

F (q) :=
∑
n≥0

(q)n

Which appears similarly from the colored Jones polynomial of the Trefoil.
(q)n denotes as usual the q-Pochhamer symbol.

In particular, we have from [3] that the colored Jones polynomial corresponding to T (3, 2t) is:

JN (T(3,2t), q) =(−1)h
′′(t)q2

t−1−N
∑
n≥0

(q1−N )nq
−Nnm(t)

×
∑

3
∑m(t)−1

l=1 jll≡1[m(t)]

(−q−N )
∑m(t)−1

l=1 jlq
−a(t)−h′(t)m(t)+

∑m(t)−1
l=1

jll

m(t)
+
∑m(t)−1

l=1 (jl2)

×
m(t)−1∑
k=0

q−kN
m(t)−1∏
l=1

[
n+ χ(l ≤ k)

jl

]
(1)

We define the corresponding F-series to be:

Ft(q) :=(−1)h
′′(t)
∑
n≥0

(q)n
∑

3
∑m(t)−1

l=1 jll≡1[m(t)]

(−1)
∑m(t)−1

l=1 jl

· q
−a(t)−h′(t)m(t)+

∑m(t)−1
l=1

jll

m(t)
+
∑m(t)−1

l=1 (jl2)
m(t)−1∑
k=0

m(t)−1∏
l=1

[
n+ χ(l ≤ k)

jl

] (2)

Clearly, we have the equality Ft(ζN ) = ζ2
t−1
N JN (T(3,2t), ζN ) as desired, where ζN is an N th root of

unity. It is worth pointing out, however, that just as with the Kontsevich-Zagier series, Ft(q) is
not defined as a formal power series in q anywhere other than at roots of unity. When q is a root
of unity the sum in fact terminates and is finite. We also have that Ft(1 − q) is a formal power
series in q.

The goal of the following report is to prove congruence results on the coefficients γ(n) of the power
series expansion Ft(1 − q) =

∑
n≥0

γ(n)qn. This result is in analogy to the case of the Kontsevich-

Zagier series and the trefoil.

The general idea of the proof will be to establish the so-called strange identity, and use a result of
Ahlgren-Kim-Lovejoy [1] along with the ideas of Straub [4] to prove the congruences.
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The Function Ht(x)

The motivation of this section is to lay the groundwork for the derivation of the strange identity
that follows. In particular we want to use a theorem proved by Ahlgren, Kim, and Lovejoy in [1].

let F (q) be a function of the form F (q) =
∑
n≥0

(q)nfn(q), where the fn(q) are polynomials.

And let P
(ν)
a,b,χ(q) =

∑
n≥0

nνχ(n)q
n2−a

b where ν ∈ {0, 1}, a ≥ 0 and b > 0 are integers, and χ : Z→ C

is a function satisfying the following two properties

1. χ(n) 6= 0 only if n2−a
b ∈ Z

2. For every root of unity ζ, the function n 7→ χ(n)ζ
n2−a

b is periodic with mean value 0

Consider the partial sums F (q,N) =
N∑
n=0

(q)nfn(q)

And their s-dissections: F (q,N) =
s−1∑
n=0

qnAF,s(N, i, q
s)

Finally, define the set Sa,b,χ(s) := {n2−a
b (mod s) : χ(n) 6= 0}. Then the theorem is as follows:

Theorem. Suppose that for each root of unity ζ we have the asymptotic expansion

P
(ν)
a,b,χ(ζe−t) F (ζe−t as t→ 0+

Suppose that s and N are positive integers and that i /∈ Sa,b,χ(s). Then we have

(q)λ(N,s)|AF,s(N, i, q)

Where λ(N, s) = bN+1
s c

With this in mind we are able to define our function

Ht(x) = Ht(x, q) :=
∑
n≥0

χ3·2t+1q
n2−(2t+1−3)2

3·2t+2 x
n−(2t+1−3)

2 (3)

Where χ3,2t+1(n) =


1 n ≡ 3− 2t+1, 2t+3 − 3 (mod 3 · 2t+1)

−1 n ≡ 2t+2 − 3, 2t+1 + 3 (mod 3 · 2t+1)

0 Otherwise

The function χ(n)

First, I will verify that χ3·2t(n) satisfies the conditions required by Theorem for t ≥ 3.

We need to verify that the corresponding power of q, n2−(3−2t)2
3·2t+1 , is an integer if χ3·2t(n) 6= 0.
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(i) Consider the case n ≡ 3− 2t (mod 3 · 2t). Write n = 3− 2t + 3m2t.

Then we have: n2−(3−2t)2
3·2t+1 = (3−2t+3m2t)2−(3−2t)2

3·2t+1 = 3 · 2t−1m2 +m(3− 2t) ∈ Z

(ii) If n ≡ 2t+2 − 3, write n = 2t+2 − 3 + 3m2t. Then we have:
n2−(3−2t)2

3·2t+1 = (2t+2−3+3m2t)2−(3−2t+1)2

3·2t+1 = 3 · 2t−1m2 +m(2t+2 − 3) + 5 · 2t−1 − 3 ∈ Z

(iii) If n ≡ 2t+1 − 3, write n = 2t+1 − 3 + 3m2t. Then we have:
n2−(3−2t)2

3·2t+1 = (2t+1−3+3m2t)2−(3−2t)2
3·2t+1 = 3 · 2t−1m2 +m(2t+1 − 3) + 2t−1 − 1 ∈ Z

(iv) If n ≡ 2t + 3, write n = 2t + 3 + 3m2t. Then we have:
n2−(3−2t)2

3·2t+1 = (2t+3+3m2t)2−(3−2t)2
3·2t+1 = 3 · 2t−1m2 +m(2t + 3) + 2 ∈ Z

So we see that the first condition is satisfied.

Now, let ϕ(n) := χ3·2t(n)ζ
n2−(3−2t)2

3·2t+1 , where ζ is a primitive N th root of unity. What remains is to
check that φ is periodic with mean value 0.
Periodicity is obvious. χ3·2t(n) is by definition periodic with period 3 · 2t, and the function

n→ ζ
n2−(3−2t)2

3·2t+1 is periodic with period 3 · 2tN . To see the latter, consider

ζ
(n+3·2t)2−(3−2t)2

3·2t+1 = ζ
n2−(3−2t)2+3·2t+1N+9·22tN2

3·2t+1 = ζ
n2−(3−2t)2

3·2t+1 ζ
3·2t+1N(1+3·2t−1N)

3·2t+1 = ζ
n2−(3−2t)2

3·2t+1 ζN(1+3·2t−1N) =

ζ
n2−(3−2t)2

3·2t+1 .
It then follows that ϕ(n) is periodic with period 3 · 2tN .

It just remains to show that ϕ has mean value 0. That is,
3·2tN∑
n=0

ϕ(n) = 0.

Consider first the case where N is even. Then we have
χ3·2t(n+ 3 · 2t−1N) = χ3·2t(n).
Then, noting that ϕ is supported only on odd integers, we may assume that n is odd. Consider

ζ
(n+3·2t−1N)2−(3−2t)2

3·2t+1 = ζ
n2−(3−2t)2

3·2t+1 ζ
3·2tNn+9·22t−2N

3·2t+1 = ζ
n2−(3−2t)2

3·2t+1 ζ
Nn
2 ζ3·2

t−3N2
= ζ

n2−(3−2t)2

3·2t+1 ζ
Nn
2 . Then

note that since n is odd, ζNn2 = −1. Thus we have:

ζ
(n+3·2t−1N)2−(3−2t)2

3·2t+1 = −ζ
n2−(3−2t)2

3·2t+1 .
Finally, this gives us ϕ(n + 3 · 2t−1N) = −ϕ(n). And this is sufficient for the desired result,
3·2tN∑
n=0

ϕ(n) = 0.

We must now consider the case where N is odd. The sum we are interested in is
3·2tN∑
n=0

ϕ(n). This

can be broken up into 4 sums, each of which sums over a congruence class (mod 3 · 2t). Write

3·2tN∑
n=0

ϕ(n) =
N−1∑
m=0

ζ3·2
t−1m2+(3−2t)m −

N−1∑
m=0

ζ3·2
t−1m2+(2t+1−3)m+2t−1−1

+
N−1∑
m=0

ζ3·2
t−1m2+(2t+2−3)m+5·2t−1−3 −

N−1∑
m=0

ζ3·2
t−1m2+(2t+3)m+2
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Claim: a)
N−1∑
m=0

ζ3·2
t−1m2+(3−2t)m =

N−1∑
m=0

ζ3·2
t−1m2+(2t+1−3)m+2t−1−1

b)
N−1∑
m=0

ζ3·2
t−1m2+(2t+2−3)m+5·2t−1−3 =

N−1∑
m=0

ζ3·2
t−1m2+(2t+3)m+2

Proof: a) The key observation to make is that since we are summing over a full period, it doesn’t
actually matter that we sum from m = 0 to m = N − 1, so long as we hit N consecutive values of
m. The idea is to shift the index of one of the sums so that we get the same power of ζ in the two
sums we wish to be equal. The shift we are looking for is of the form m → m + i for some i, and
we note that we actually only care about the power of ζ mod N, since ζ is an N th root of unity.
Let’s look at the exponent in the second sum under such a shift.

We have : 3 · 2t−1(m+ i)2 + (2t+1 − 3)m+ 2t−1 − 1.
Collecting terms by degree in m gives:
3 · 2t−1m2 + (3 · 2ti+ 2t+1 − 3)m+ 3 · 2t−1i2 + (2t+1 − 3)i+ 2t−1 − 1
We want this to be congruent to the exponent in the first sum (mod N). The coefficients on m2 are
equal, and so obviously congruent for every i. Equating the coefficients of m gives the congruence
equation:
3 · 2ti+ 2t+1 − 3 ≡ 3− 2t (mod N). Rearranging yields
6(2t−1i+ 2t−1 − 1) ≡ 0 (mod N).
This clearly has a solution when 2t−1i ≡ 1− 2t−1 (mod N). And since we know that N is odd, we
have (N, 2t−1) = 1, so this equation has a solution, call it iN . It remains to verify that iN also
satisfies the desired congruence for the constant term. We want 3 ·2t−1i2+(2t+1−3)i+2t−1−1 ≡ 0
(mod N).
Substituting iN gives:

3iN · 2t−1in + 4 · 2t−1iN − 3iN + 2t−1 − 1

≡ 3iN (1− 2t−1) + 4(1− 2t−1)− 3iN + 2t−1 − 1

= −3 · 2t−1iN + 3− 3 · 2t−1

≡ −3(1− 2t−1) + 3− 3 · 2t−1 = 0

Where all of the equivalences are taken mod N. So we have the desired result, and shifting the
second sum by iN makes it explicitly equal to the first.

b) The second part of the claim follows very similarly to the first. We again are looking for a shift of
the form m→ m+ i. So let’s look at the exponent in the second sum under such a shift. Following
similar steps to above we arrive at the congruence equation 6(2t−1i+ 1− 2t−1) ≡ 0 (mod N). And
this clearly holds for iN solution to 2t−1i ≡ 2t−1 − 1 (mod N). The existence of such a solution is
guaranteed by the fact that (N, 2t−1) = 1.
Again, it remains to verify that iN satisfies the desired congruence in the constant term. We want
3 · 2t−1i2 + (2t + 3)i+ 2 ≡ 5 · 2t−1 − 3. Substituting in iN into the LHS gives:

3iN · 2t−1iN + 2 · 2t−1iN + 3iN + 2

≡ 3iN (2t−1 − 1) + 2(2t−1 − 1) + 3iN + 2

≡ 3(2t−1 − 1) + 2 · 2t−1

= 5 · 2t−1 − 3
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And we see that the shift by iN explicitly makes the two sums equal. �

From this claim we see directly that ϕ(n) has mean value 0 for N odd. So we’ve shown that ϕ(n)
has mean value 0 for any choice of N ∈ N.
Thus, χ3·2t(n) has all of the desired properties.

A proposition

We need to establish a connection between our function Ht(x) and the series Ft(q) that we wish to
derive the strange identity for. This is done by the following proposition.

Proposition.

Ht(x) =(−1)−h
′′(t)q−h

′(t)x−h(t)
∑
n≥0

(x)n+1x
nm(t)

×
∑

3
∑m(t)−1

l=1 jll≡1[m(t)]

(−x)
∑m(t)−1

l=1 jlq
−a(t)+

∑m(t)−1
l=1

jll

m(t)
+
∑m(t)−1

l=1 (jl2)

×
m(t)−1∑
k=0

xk
m(t)−1∏
l=1

[
n+ χ(l ≤ k

jl

]

Note that the χ appearing in the product on the RHS is not to be confused with χ3,2t+1 , instead it
is a logical indicator function, taking the value 1 if its input is true, and 0 otherwise.
Also, note that the RHS of the proposition is the RHS of (3.3.26) in [3].

Proof of Proposition: Konan showed that the RHS satisfies the difference equation

f(x) = 1− q2x3 − q2t−1x2t + q3+2tx3+2t + q5·2
t−3x3·2

t
f(q2x)

It is thus sufficient to show that our function in Equation (3) satisfies the same equation.

First I want to find the canonical representatives of the congruence classes on which χ3,2t+1(n) de-
pends. The representatives given for χ3,2t+1(n) = −1 are already canonical, that is the given repre-
sentatives lie between 0 and 3 ·2t+1. We can however rewrite the conditions for when χ3,2t+1(n) = 1.

If n ≡ 3− 2t+1, we note that it is in the congruence class with canonical representative 3 + 2t+2.
And we also note that the canonical representative of the class containing 2t+3 − 3 is 2t+1 − 3.

Now, we have H3,2t(x) =
∑
n≥0

χ3,2t+1(n)q
n2−(2t+1−3)2

3·2t+2 x
n−(2t+1−3)

2 . Let’s pull out the non-zero terms

occurring in the interval 0 ≤ n < 3 · 2t+1. These are precisely the 4 terms obtained by taking n
equal to the canonical representatives of the above congruence classes.

(i) For n = 2t+1 − 3, we get the term: 1 · q0 · x0 = 1
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(ii) For n = 2t+1 + 3, we get the term: −q
(2t+1+3)2−(tt+1−3)2

3·2t+2 x
2t+1+3−2t+1+3

2 = −q
3·2t+3

3·2t+2 x3 = −q2x3

(iii) For n = 2t+2 − 3, we get the term: −q
(2t+2−3)2−(2t+1−3)2

3·2t+2 x
2t+2−3−2t+1+3

2 = −q
3·22t+2−3·2t+2

3·2t+2 x2
t

=
−q2t−1x2t

(iv) For n = 2t+2 + 3, we get the term: q
(2t+2+3)2−(2t+1−3)2

3·2t+2 x
2t+2+3−2t+1+3

2 = q
3·22t+2+9·2t+2

3·2t+2 x3+2t =
q3+2tx3+2t .

We can thus write:

H3,2t(x) = 1− q2x3 − q2t−1x2t + q3+2tx3+2t +
∑

n≥3·2t+1

χ3,2t+1(n)q
n2−(tt+1−3)2

3·2t+2 x
n−(2t+1−3)

2 .

Looking now at the sum on the RHS, shift the index n→ n+ 3 · 2t+2, and noting that χ3,2t+1(n+
3 · 2t+1) = χ3,2t+1(n), we write the sum:∑
n≥0

χ3,2t+1(n)q
(n+3·2t+1)2−(2t+1−3)2

3·2t+2 x
n+3·2t+1−(2t+1−3)

2 .

By expanding and splitting the powers we see this is equal to:

x3·2
t ∑
n≥0

χ3,2t+1(n)q
n2−(2t+1−3)2

3·2t+2 q
3·2t+2n+9·22t+2

3·2t+2 x
n−(2t+1−3)

2 .

Examining the 2nd power on q in this sum we see:
3·2t+2n+9·22t+2

3·2t+2 = n+ 3 · 2t = n+ 2t+1 + 2t = n− 2t+1 + 3 + 2t+2 + 2t− 3 = n− (2t+1− 3) + 5 · 2t− 3.
We can thus write our sum as:

q5·2
t−3x3·2

t ∑
n≥0

χ3,2t+1(n)q
n2−(2t+1−3)2

3·2t+2 qn−(2
t+1−3)x

n−(2t+1−3)
2 = q5·2

t−3x3·2
t
H3,2t(q

2x).

We have thus the desired difference equation

H3,2t(x) = 1− q2x3 − q2t−1x2t + q3+2tx3+2t + q5·2
t−3x3·2

t
H3,2t(q

2x)

And this proves the proposition �

The Strange Identity

The goal here is to get an identity like the one used by Hikami and Kirillov in the derivation of the
strange identity for the knot T (3, 4).

First, we rewrite the RHS of Proposition () as:

(−1)−h
′′(t)(1− x)

∑
n≥0

[(qx)n − (qx)∞]xnm(t)
∑

3
∑m(t)−1

l=1 jll≡1[m(t)]

(−1)
∑m(t)−1

l=1 jl

· x−h(t)+
∑m(t)−1

l=1 jl · q
−a(t)−h′(t)m(t)+

∑m(t)−1
l=1

jll

m(t)
+
∑m(t)−1

l=1 (jl2)

·
m(t)−1∑
k=0

xk
m(t)−1∏
l=1

[
n+ χ(l ≤ k)

jl

]
+ (x)∞(−1)h

′′(t)x−h(t)Mt(x, q)

(4)
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Where

Mt(x, q) =
∑
n≥0

xnm(t)
∑

3
∑m(t)−1

l=1 jll≡1[m(t)]

(−1)
∑m(t)−1

l=1 jlx
∑m(t)−1

l=1 jl ·

·q
−a(t)−h′(t)m(t)+

∑m(t)−1
l=1

jll

m(t)
+
∑m(t)−1

l=1 (jl2)
m(t)−1∑
k=0

xk
m(t)−1∏
l=1

[
n+ χ(l ≤ k)

jl

]

Our approach is to find Gt(x, q) ∈ Z[[x, q]] satisfying Mt(x, q) = 1
1−xGt(x, q). This factor of 1

1−x
will cancel with the (1 − x) in (x)∞ and allow us to proceed as in Hikami-Kirillov, bypassing the
q-binomial theorem. To give a flavor for the general case, I will first consider the case of T (3, 4).

The case T(3,4)

Setting t = 2, we have

M2(x, q) =
∑
n≥0

x2n
∑
k≥0

x2k−1q2k(k+1)

[
n

2k + 1

]
+
∑
n≥0

x2n
∑
k≥0

x2kq2k(k+1)

[
n+ 1
2k + 1

]
. Note that the first

sum includes all odd powers of x, and the second includes all even powers of x. We can write

M2(x, q) =
∑
n≥0

∑
k≥0

x2(n+k)−1q2k(k+1)

[
n

2k + 1

]
+
∑
n≥0

∑
k≥0

x2(n+k)q2k(k+1)

[
n+ 1
2k + 1

]
. And we can collect

the coefficients on xi by looking at all pairs n, k s.t. n+ k = i. We thus have:

M2(x, q) =
∑
n≥0

x2n−1
∑
k≥0

q2k(k+1)

[
n− k
2k + 1

]
+
∑
n≥0

x2n
∑
k≥0

q2k(k+1)

[
n+ 1− k

2k + 1

]
. And note that the

sum over k is in fact finite, due to the presence of the q-binomial coefficient. And finally, we can
rewrite this as:

M2(x, q) =
∑
n odd

xn
∑
k≥0

q2k(k+1)

[
n+1
2 − k

2k + 1

]
+
∑

n even

xn
∑
k≥0

q2k(k+1)

[
n
2 + 1− k
2k + 1

]
(5)

Now, we divide M2(x, q) by 1
1−x . The result is:

G2(x, q) =
∑
n odd

xn

∑
k≥0

q2k(k+1)

[
n+1
2 − k

2k + 1

]
−
∑
k≥0

q2k(k+1)

[
n−1
2 + 1− k
2k + 1

]
+
∑

n even

xn

∑
k≥0

q2k(k+1)

[
n
2 + 1− k
2k + 1

]
−
∑
k≥0

q2k(k+1)

[
n
2 − k

2k + 1

]
And we thus have

G2(x, q) =
∑

n even

xn

∑
k≥0

q2k(k+1)

[
n
2 + 1− k
2k + 1

]
−
∑
k≥0

q2k(k+1)

[
n
2 − k

2k + 1

]
Importantly for the derivation of the strange identity is that in the limit x→ 1, G(x, q) approaches
a power series in q. Also important to note is that the piece with odd powers of n vanishes upon
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multiplying by (1 − x). I think that this is the key to obtaining the limiting behavior as x → 1.
And this is something that we will see a generalization of in the general case.

We have now the identity

H2(x) =(qx)∞
∑
n≥0

x2n

∑
k≥0

q2k(k+1)

[
n+ 1− k

2k + 1

]
−
∑
k≥0

q2k(k+1)

[
n− k
2k + 1

]
+ (1− x)

∑
n≥0

[(qx)n − (qx)∞]x2n
∑
k≥0

x2k−1q2k(k+1)

([
n

2k + 1

]
+

[
n+ 1
2k + 1

]) (6)

Now, we want to differentiate both sides of (6) with respect to x, and then take x→ 1.

First, let’s look at the LHS.
I will need Watson’s quintuple product. Recall:∑

k∈Z
q

k(3k−1)
2 x3k(1− xqk) = (q, x, qx−1; q)∞(qx2, qx−2; q2)∞ (7)

Now, look at the LHS of (6) and differentiate in x, then set x = 1:

1

2

∑
n≥0

nχ24(n)q
n2−25

48 − 5

2

∑
n≥0

χ24(n)q
n2−25

48 (8)

The goal is to write the second sum in (8) in such a way as to apply Watson’s quintuple product.
As we have done before, we can break this sum into 4 pieces:∑

n≥0
χ24(n)q

n2−25
48 =

∑
k≥0

(q12k
2+5k − q12k2+13k+3

+
∑
k≥0

(q12k
2+19k+7 − q12k2+11k+2)

Now, reindex k → k + 1 in the second sum, which we can write as∑
k≥1

(q12k
2−5k − q12k2−13k+3. This allows us to write

∑
n≥0

χ24(n)q
n2−25

48 =
∑
k∈Z

q12k
2+5k − q12k2+13k+3 (9)

And if we want to write this in the form of the LHS of Watson’s identity, we want the form∑
k∈Z

y
k(3k−1)

2 x3k(1 − xyk). Where y and x are powers of q. Following this through, we find that

y = q8 and x = q3. We can now write (??) in the form

1

2

∑
n≥0

nχ24(n)q
n2−25

48 − 5

2
(q8, q3, q5; q8)∞(q14, q2; q16)∞ (10)
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Now, consider the RHS of (6). Differentiate in x, and then send x→ 1. We obtain

−(q)∞

( ∞∑
i=1

qi

1− qi

)∑
n≥0

∑
k≥0

q2k(k+1)

[
n+ 1− k

2k + 1

]
−
[
n− k
2k + 1

]
+(q)∞

∑
n≥0

2n

∑
k≥0

q2k(k+1)

[
n+ 1− k

2k + 1

]
−
[
n− k
2k + 1

]
−
∑
n≥0

[(q)n − (q)∞]
∑
k≥0

q2k(k+1)

([
n

2k + 1

]
+

[
n+ 1
2k + 1

])
(11)

And we thus have the q-series identity:

1

2

∑
n≥0

nχ24(n)q
n2−25

48 − 5

2
(q8, q3, q5; q8)∞(q14, q2; q16)∞

= −(q)∞

( ∞∑
i=1

qi

1− qi

)∑
n≥0

∑
k≥0

q2k(k+1)

[
n+ 1− k

2k + 1

]
−
[
n− k
2k + 1

]
+ (q)∞

∑
n≥0

2n

∑
k≥0

q2k(k+1)

[
n+ 1− k

2k + 1

]
−
[
n− k
2k + 1

]
−
∑
n≥0

[(q)n − (q)∞]
∑
k≥0

q2k(k+1)

([
n

2k + 1

]
+

[
n+ 1
2k + 1

])
(12)

I’ve verified this numerically in Mathematica :)))))) !!! It works!!

And the strange identity follows by setting q = ζe−t and taking the limit t → 0+, noting that all
terms with a factor of (q)∞ vanish in the limit.

The general case

Let’s move on to the general case. For brevity I introduce the shorthand ν =
−a(t)−h′(t)m(t)+

∑m(t)−1
l=1 jll

m(t) +∑m(t)−1
l=1

(
jl
2

)
, and [jl] =

∑m(t)−1
l=1 jl. Also I adopt the convention that all congruences are made mod

m(t). We write:

Mt(x, q) =

m(t)−1∑
k=0

∑
n≥0

∑
3
∑m(t)−1

l=1 jll≡1

(−1)[jl]xnm(t)+k+[jl]·

· qν
m(t)−1∏
l=1

[
n+ χ(l ≤ k)

jl

]
Similarly to the case of t = 2, the immediate goal is to write this explicitly as a power series in x. I

am going to do this by breaking the 3rd sum into 4 cases based on the residue of
∑m(t)−1

l=1 jl (mod
m(t)).
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For 0 ≤ i < m(t), consider the case [jl] ≡ i mod( m(t)). Then we have

Mt(x, q) =

m(t)−1∑
i=0

m(t)−1∑
k=0

∑
n≥0

∑
[jl]≡i

x
m(t)(n+

[jl]−i

m(t)
)+i+k

(−1)[jl]qν
m(t)−1∏
l=1

[
n+ χ(l ≤ k)

jl

]

=

m(t)−1∑
k=0

∑
n≥0

∑
[jl]≡i

xnm(t)+i+k(−1)[jl]qν
m(t)−1∏
l=1

[
n− [jl]−i

m(t) + χ(l ≤ k)

jl

]

=

m(t)−1∑
k=0

∑
n≡i+k

∑
[jl]≡i

xn(−1)[jl]qν
m(t)−1∏
l=1

[
n−k−[jl]
m(t) + χ(l ≤ k)

jl

]

We are now in a position to write Mt(x, q) =
∑
n≥0

a
(t)
n (q)xn, where each of the a

(t)
n (q) is a polynomial

in q with integral coefficients. The definition of a
(t)
n (q) depends on the residue of n mod m(t).

For n ≡ m (mod m(t)), 0 ≤ m < m(t), we have

a(t)n (q) =

m(t)−1∑
k=0

∑
[jl]≡k

(−1)[jl]qν
m(t)−1∏
l=1

[
n−(m−k)−[jl]

m(t) + χ(l ≤ m− k)

jl

]

Where m− k denotes the residue of m− k mod m(t).

Now, what remains is to divide by 1
1−x to obtain Gt(x, q). If we write Gt(x, q) =

∑
n≥0

b
(t)
n (q)xn,

where b
(t)
n (q) = a

(t)
n (q) − a(t)n−1(q). This is where we see cancellation similar to the t = 2 case. In

the difference an(q) − an−1(q), where n ≡ m (mod m(t)) the k = mth sums in an(q) and an−1(q)
are equal and cancel each other out. My hope is that this is enough to see that Gt(1, q) converges
as a power series in q, although that isn’t entirely clear to me at this point.

I think it is, and the reason is that it allows only a relatively small number of terms to survive. The
majority of the positive piece bn(q) is ’caught’ by the negative piece of bn+1(q) and they annihilate
each other. What I believe is going on is that this cancellation allows the mth or (m− 1)th sum in
bn(q) to survive, which lets the behavior in the limit through.

Supposing that Gt(1, q) =
∑
n≥0

b
(t)
n (q) is well defined, which I have verified numerically for t =

3 (beyond that the computation becomes too involved for my computer) we have the following
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identity:

Ht(x) =(−1)−h
′′(t)(1− x)

∑
n≥0

[(qx)n − (qx)∞]xnm(t)
∑

3
∑m(t)−1

l=1 jll≡1[m(t)]

(−1)
∑m(t)−1

l=1 jl

· x−h(t)+
∑m(t)−1

l=1 jl · q
−a(t)−h′(t)m(t)+

∑m(t)−1
l=1

jll

m(t)
+
∑m(t)−1

l=1 (jl2)

·
m(t)−1∑
k=0

xk
m(t)−1∏
l=1

[
n+ χ(l ≤ k)

jl

]
+ (qx)∞(−1)h

′′(t)x−h(t)
∑
n≥0

b(t)n (q)xn

(13)

This is our analog of Lemma (i) used by Hikami and Kirillov in deriving the strange identity. From
here, we want to differentiate both sides in x and then send x→ 1.

We proceed exactly in analogy with the case of T (3, 4). First, look at the LHS of (13) and differ-
entiate in x, then set x = 1:

1

2

∑
n≥0

nχ3·2t+1(n)q
n2−(2t+1−3)2

3·2t+1 − 2t+1 − 3

2

∑
n≥0

χ3·2t+1(n)q
n2−(2t+1−3)2

3·2t+2 (14)

The goal is to write the second sum in (14) in such a way as to apply Watson’s quintuple product.
As we have done before, we can break this sum into 4 pieces:∑

n≥0
χ3·2t+1(n)q

n2−(2t+1−3)2

3·2t+2 =
∑
k≥0

(q3·2
tk2+(2t+1−3)k − q3·2tk2+(2t+2−3)k+2t−1

+
∑
k≥0

(q3·2
tk2+(2t+2+3)k+2t+3 − q3·2tk2+(2t+1+3)k+2)

Now, reindex k → k + 1 in the second sum, which we can write as∑
k≥1

(q3·2
tk2+(2t+1−3)k − q3·2tk2+(3−2t+2)k+2t−1. This allows us to write

∑
n≥0

χ3·2t+1(n)q
n2−(2t+1−3)2

3·2t+2 =
∑
k∈Z

q3·2
tk2+(2t+1−3)k − q3·2tk2+(2t+2−3)k+2t−1 (15)

And if we want to write this in the form of the LHS of Watson’s identity, we want the form∑
k∈Z

y
k(3k−1)

2 x3k(1 − xyk). Where y and x are powers of q. Following this through, we find that

y = q2
t+1

and x = q2
t−1. We can now write (??) in the form

1

2

∑
n≥0

nχ3·2t+1(n)q
n2−(2t+1−3)2

3·2t+1 − 2t+1 − 3

2
(q2

t+1
, q2

t−1, q2
t+1; q2

t+1
)∞(q2

t+2−2, q2; q2
t+2

)∞ (16)

Now, let’s shift our focus to the RHS of (13). As before we differentiate in x and send x→ 1:

−(q)∞

( ∞∑
i=1

qi

1− qi

)
(−1)h

′′(t)
∑
n≥0

b(t)n (q) + (q)∞(−1)h
′′(t)
∑
n≥0

(n− h(t))b(t)n (q)

− (−1)h
′′(t)
∑
n≥0

[(q)n − (q)∞]
∑

3
∑m(t)−1

l=1 jll≡1[m(t)]

(−1)
∑m(t)−1

l=1 jl

· q
−a(t)−h′(t)m(t)+

∑m(t)−1
l=1

jll

m(t)
+
∑m(t)−1

l=1 (jl2)
m(t)−1∑
k=0

m(t)−1∏
l=1

[
n+ χ(l ≤ k)

jl

]
(17)
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We thus have the q-series identity:

1

2

∑
n≥0

nχ3·2t+1(n)q
n2−(2t+1−3)2

3·2t+1 − 2t+1 − 3

2
(q2

t+1
, q2

t−1, q2
t+1; q2

t+1
)∞(q2

t+2−2, q2; q2
t+2

)∞

= −(q)∞

( ∞∑
i=1

qi

1− qi

)
(−1)h

′′(t)
∑
n≥0

b(t)n (q) + (q)∞(−1)h
′′(t)
∑
n≥0

(n− h(t))b(t)n (q)

− (−1)h
′′(t)
∑
n≥0

[(q)n − (q)∞]
∑

3
∑m(t)−1

l=1 jll≡1[m(t)]

(−1)
∑m(t)−1

l=1 jl

· q
−a(t)−h′(t)m(t)+

∑m(t)−1
l=1

jll

m(t)
+
∑m(t)−1

l=1 (jl2)
m(t)−1∑
k=0

m(t)−1∏
l=1

[
n+ χ(l ≤ k)

jl

]
I’ve managed to verify this numerically for t = 3. Higher values of t prove too computationally
heavy for my computer.

From here, the strange identity follows from setting q = ζe−t and taking the limit as t→ 0+. Thus,
we have:

− 1

2

∑
n≥0

nχ3·2t+1(n)q
n2−(2t+1−3)2

3·2t+1 ’=’ Ft(q) (18)

Update

In the previous section I believe to have shown the strange identity up to the assumption on the

series
∑
n≥0

b
(t)
n (q). I hope here to argue that this series does indeed converge as a formal power series

in q.

We have

b(t)n (q) =

m(t)−1∑
k=0

∑
[jl]≡k

(−1)[jl]qν

(
m(t)−1∏
l=1

[
n−(n−k)−[jl]

m(t) + χ(l ≤ n− k)

jl

]

−
m(t)−1∏
l=1

[
n−(n−k)−[jl]

m(t) + χ(l ≤ n− 1− k)

jl

])
And we can write the series∑

n≥0
b(t)n (q) =

∑
n≥0

m(t)−1∑
k=0

∑
[jl]≡k

(−1)[jl]qν

(
m(t)−1∏
l=1

[
n− b [jl]

m(t)c+ χ(l ≤ n− k)

jl

]

−
m(t)−1∏
l=1

[
n− b [jl]

m(t)c+ χ(l ≤ n− 1− k)

jl

])
Where we have written n = n

′
m(t) + n̄ and summed over n

′
(relabeling it n). Then, using the

definition of the q-binomial coefficients:[
n
m

]
=

(1− qn)(1− qn−1...(1− qn−m+1)

(1− q)(1− q2)...(1− qm)
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We can write our sum as∑
n≥0

m(t)−1∑
k=0

∑
[jl]≡k

(−1)[jl]qν

m(t)−1∏
l=1

1∏jl
i=1(1− qi)

(m(t)−1∏
l=1

jl−1∏
i=0

(1− qn−b
[jl]

m(t)
c+χ(l≤n−k)−i

)

−
m(t)−1∏
l=1

jl−1∏
i=0

(1− qn−b
[jl]

m(t)
c+χ(l≤n−1−k)−i

)

)

Notice that the two double products are identical for all choices of l 6= n− k. We can thus write
the difference of the double sums to ben−k∏

l=1

jl−1∏
i=0

(1− qn−b
[jl]

m(t)
c−i

)

 m(t)−1∏
l=(n−k)+1

jl−1∏
i=0

(1− qn−b
[jl]

m(t)
c+1−i

)


×

j
(n−k)

−1∏
i=0

(1− qn−b
[jl]

m(t)
c+1−i

)−
j
(n−k)

−1∏
i=0

(1− qn−b
[jl]

m(t)
c−i

)


Then we notice that the two products in the last factor above are identical except for 1 multiplicand
each. This factor can be written asj

(n−k)
−2∏

i=0

(1− qn−b
[jl]

m(t)
c−i

)

((1− qn−b
[jl]

m(t)
c+1

)− (1− qn−b
[jl]

m(t)
c−jn−k+1

)

)

Finally, we see that the difference of binomial coefficients in each term of our series isO(q
n−b [jl]

m(t)
c−jn−k+1

).

And recall that this is multiplied by q
−a(t)−h′(t)m(t)+

∑m(t)−1
l=1

jll

m(t)
+
∑m(t)−1

l=1 (jl2). So overall every term in

the series is O(q
n−j

(n−k)
+1−h′(t)+

∑m(t)−1
l=1 (jl2)).

And thus
∑
n≥0

b
(t)
n (q) indeed converges as a power series in q. And we are able to remove the last

assumption on the proof of the strange identity; the strange identity has been shown to hold for
all t ≥ 2.

Congruences

I want to generalize the methods of Straub [4] to prove prime power congruences for Ft(1− q). We
have the ’strange’ identity:

Ft(q)′ =′ −
1

2

∑
n≥0

nχ3·2t+1q
n2−(2t+1−3)2

3·2t+2

If we then consider the s-dissection of Ft(q) =
s−1∑
i=0

qiAs(N, i, q
s), we can apply Theorem () to get

that
for i ∈ St(s) = {n

2−(2t+1−3)2
3·2t+2 (mod s) : χ3·2t+1(n) 6= 0}:

(q)λ(N,s)|As(N, i, q) (19)

Where λ(N, s) = bN+1
s c. We use this to prove the following.
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Theorem. For Ft(1− q) =
∑
n≥0

γ(t)(n)qn, we have

γ(t)(npr − j) ≡ 0 (mod pr) (20)

For every n, r ≥ 0 integers and j ∈ {1, 2, ..., n− 1−max St(p)}

Proof: Consider the truncation Ft(q,N) and separate it into sums over St(p) and its complement.

Ft(1− q,N) =
∑

i∈St(p)

(1− q)iAp(N, i, (1− q)p) +
∑

i/∈St(p)

(1− q)iAp(N, i, (1− q)p)

Then, using Equation (19), and the fact that (1− qk)n|(q)M for M ≥ kn, we can write:

Ft(1− q,N) =
∑

i∈St(p)

(1− q)iAp(N, i, (1− q)p) + (1− (1− q)p)n
∑

i/∈St(p)

(1− q)ifi(q)

For n such that N ≥ np2 − 1, and some polynomials fi(q) ∈ Z[q].

Claim: (1− (1− q)p)n ≡ O(qnp−(r−1)(p−1)) (mod pr)
Proof : Consider (1− q)p. Write (1− q)p = 1 + qf(q)− qp.
Then (1− (1− q)p)n = (qf(q)− qp)n =

n∑
i=0

(
n
i

)
(qf(q))i(−qp)n−i. Taking this (mod pr), we get

(1− (1− q)p)n ≡
r−1∑
i=0

(
n

i

)
(qf(q))i(−qp)n−i

And the claim follows. �

We are thus able to write:

Ft(1− q,N) ≡
∑

i∈St(p)

(1− q)iAp(N, i, (1− q)p) +O(qnp−(r−1)(p−1)) (mod pr)

The first sum is an integral linear combination of terms of the form (1 − q)i+kp for i ∈ St(p). We
want to show that (

i+ kp

mpr − j

)
≡ 0 mod( pr) (21)

For every i ∈ St(p) and j = 1, 2, ..., p− 1−max{St(p)} where k,m ∈ N.

Consider the p-adic expansions of
x := i+ kp =

∑
α≥0

xαp
α, and y := mpr − j =

∑
α≥0

yαp
α.

By construction, we have that x0 = i, y0 = p− j, and yα = p− 1 for 1 ≤ α ≤ pr−1. Since y0 > x0,
we are guaranteed a carry in the addition of the least order p-adic digits of x− y and y by Lucas’
theorem. Then it follows that we have at least r carries in the addition of x− y and y since yα is
maximal for 1 ≤ α ≤ pr−1. Thus, by Kummer’s theorem we have the congruence (20) �
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