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Problem Statement

The goal of this presentation is to transmit an intuition about this problem and its solution. 



From Random Variables to DAGs
Graph theory lends us an interesting mathematical setting to consider linear relationships between random variables. 
Directed Acyclic Graphs (DAGs) encode random variables as nodes, and statistical relationships as arrows, as below.

For the above graph for example, D is generated linearly from Z and U, along with an error term assumed to following a standardized normal 
distribution, N(0,1).

This graph also represents the concept of instrumental variables, the focus of this project. Suppose we were trying to determine the causal 
effect of D on Y . Due to the presence of an unmeasured confounding variable, U, it is not sufficient to have data on just D and Y. We say that 
the relationship between D and Y is confounded by U. To overcome this, we use an instrumental variable, in this case Z, which allows us to 
determine the linear effect of D on Y. 

The goal of this project is to formulate graphical conditions which give that the so-called moment condition on IVs has a unique solution, which 
is crucial for identifiability. 



General Setting for Problem Statement
In the general case, which we explore in this project, we allow Z and X to be sets with multiple elements. We also 
introduce a conditioning set, W. Y is still considered as a singleton. All other variables are denoted L, giving DAGs like 
the following:

Formally, we ask whether there exists at least one SEM compatible with a given DAG, such that the corresponding 
covariance matrix between X and Z is full row-rank. This can be thought of as the multi-element analogue of the 
condition for IVs that Z be strongly correlated with X, essentially that Z is a faithful proxy variable for X.

Intuitively, we ask whether the structure of the DAG “preserves” enough information about X to be able to deduce the 
linear relationships using instrumental variables. In the following slide we explore a few examples.



Examples

In this DAG, there is no relationship 
between Z and X. Z and X are hence 
independent. It follows that the 
covariance matrix of interest will not 
be of full rank.

On the other hand, this DAG will 
give full row-rank to our covariance 
matrix. Each Z “faithfully” generates 
the corresponding X. 

It seems that the answer to our question lies in the existence of paths?

Although this DAG has two treks from Z to 
X, each trek system has a sided interaction. 
This gives that this is not full row-rank. 
Intuitively, the information being 
transmitted by the treks “interfere” and the 
rank drops.



Main result

In these slides, we present in some detail the main result of our paper. 

We consider the meaning of treks on the following slide, which form the basis for the above 
result.



Treks, not Paths!

Surprisingly perhaps, the main mechanism of interest in the solution is not path systems but trek systems. The 
difference between the two concepts is illustrated below.

Treks essentially encode confounding relationships, so this reflects that instrument and treatment must be 
correlated but not necessarily have a direct causal relationship.

The existence of a system of treks from Z to X with the extra condition of no sided interaction will guarantee 
that our covariance matrix is full row-rank.

Path Trek



Thank you! 
Any Questions?
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