

Black Holes in VR

26/07/2024 Ciaran Kavanagh, Christiana Pantelidou

Introduction to General Relativity

Fundamentally different to Newton's law of Gravitation

- Gravity is a manifestation of **curved spacetime**
	- Spacetime described by a **Riemann Manifold** with a metric g_{uv}

Metric is needed to calculate distance, angles and volume in curved space \bullet **Flat space → Minkowski Metric ημν** \rightarrow Special Relativity

How do objects move in Curved Spacetime?

- Flat space \rightarrow Straight Lines
- Curved space shortest distance represented by **Geodesics**

Parallel transport of tangent vector gives us the geodesic equation

$$
\frac{d^2x^{\alpha}}{d\tau^2} + \Gamma^{\alpha}_{\beta\gamma}\frac{dx^{\beta}}{d\tau}\frac{dx^{\gamma}}{d\tau} = 0
$$

- Christoffel coefficient

Newton's gravitational field

$$
\nabla^2 \phi = 4\pi G \rho,
$$

Einstein's Field Equations

$$
G^{\alpha\beta}=8\pi T^{\alpha\beta}.
$$

Stress Energy Tensor *T* causes the curvature of spacetime

• There exist exact solutions to the Einstein Field Equation (eg: Schwarzschild solution)

What is a Black Hole?

- Region of spacetime so deformed even light cannot escape
- Boundary of no escape **Event Horizon**
- **Singularity** is where curvature become infinite

$$
ds^{2} = -\left(1 - \frac{2Mr}{\rho^{2}}\right)dt^{2} - \frac{4Mar\sin^{2}\theta}{\rho^{2}}dt d\phi
$$

$$
+\frac{\Sigma}{\rho^2}\sin^2\theta d\phi^2+\frac{\rho^2}{\Delta}dr^2+\rho^2 d\theta^2.
$$

- **Kerr** black hole → **rotating**, uncharged and axially symmetric
- Introduces novel effects such as frame dragging

Gravitational Lensing

- Light travels along **Null-Geodesics** $\dot{x}^{\mu}\dot{x}_{\mu} = \begin{cases} 0 & \text{if } \mu = 0 \\ 0 & \text{otherwise} \end{cases}$
-
- for timelike geodesics
for null geodesics
for spacelike geodesics
	-

- Find Lagrangian, $\mathcal{L} = \mathcal{H}$ and apply the Hamiltonian equations of motion
- This combined with $\mathcal{L} = 0$ gives us first order differential equations which we can solve

$$
\mathscr{L} = \frac{1}{2} g_{\mu\nu} \dot{x}^{\mu} \dot{x}^{\nu}.
$$

$$
\dot{x}^{\mu} = \frac{\partial \mathscr{L}}{\partial p_{\mu}}, \dot{p}_{\mu} = -\frac{\partial \mathscr{L}}{\partial x^{\mu}}.
$$

ROYAL **SOCIETY** $\overline{}$

7

Shader Approximation

Shader in VR Project

Correct lensing

Reference background

· **Ficallish Bilstorktaddes a madow** is arand substitution of space of sphere under the sphere of the sphere of the sphere of the sphere of the sphere an intensity map

Distortion Code

Increase distortion towards black hole

rhits

Equations of motion found by considering Lagrangian and Euler-Lagrange equations

$$
\left(\frac{dr}{d\lambda}\right)^2 = [E(r^2 + a^2) - aL]^2 - \Delta[r^2 + (L - aE)^2 + Q],
$$

$$
\left(\frac{d\theta}{d\lambda}\right)^2 = Q - \cot^2\theta L^2 - a^2 \cos^2\theta (1 - E^2),
$$

$$
\left(\frac{d\phi}{d\lambda}\right)^2 = \csc^2\theta L + aE\left(\frac{r^2 + a^2}{\Delta} - 1\right) - \frac{a^2 L}{\Delta},
$$

$$
\left(\frac{dt}{d\lambda}\right)^2 = E\left[\frac{(r^2 + a^2)^2}{\Delta} - a^2 \sin^2\theta\right] + aL\left(1 - \frac{r^2 + a^2}{\Delta}\right),
$$

$$
-1\;
$$
 for timelike geodesics

$$
\dot{x}^{\mu}\dot{x}_{\mu} = \begin{cases} 0 & \text{for null geodesics} \end{cases}
$$

for spacelike geodesics

- The constants of motion **E** (specific energy), **L** (angular momentum - z component) and **Q** (Carter constant) Equations of motion reparameterized
	- in Mino time $\lambda = \int d\tau / (r^2 + a^2 \cos \theta)$

ROYAL SOCIETY **JCL**

Bound and Unbound Orbits

- **• p** (semi-latus rectum), **e** (eccentricity), **θ**□i□ (minimum polar angle)
- $Newtonian \rightarrow Conic cross sections$
- $GR \rightarrow Precession$ ellipses, Zoom-Whirl,...

\n- Effective Potential
$$
V_{eff}(r) = -\frac{GMm}{r} + \frac{L^2}{2mr^2} - \frac{GML^2}{mc^2r^3}
$$
\n- Innermost Stable Circular Orbit (ISCO)
\n- Innermost Bound Circular Orbit (IBSO)
\n

- Zoom Whirl Effect
- Particle undergoes a **Zoom Whirl** effect caused by a high rate of precession.

● Parameters *p*, *e* and *a* are near the **separatrix** - line in parameter space that separates plunging and stable orbits.

Gravitational Waves

What are Gravitational Waves?

- **Ripples** in spacetime caused by the acceleration of **massive bodies**
- R ipples \rightarrow **Waves** that propagate outwards at speed of light

- Waves distort spacetime and distances between objects oscillates
- **Binary Black holes and Neutron** stars are good sources

How do we describe Gravitational Waves?

- Detect Gravitational Waves in $g_{ab} = \eta_{ab} + h_{ab}$, $||h_{ab}|| \ll 1$. **Nearly Flat** Spacetime
- **Weak Field** Einstein equations (linearised gravity)

$$
\Box \bar{h}_{ab}=-16\pi T_{ab}
$$

● GR Waves → **Homogeneous** solution: $T = 0$

 $\bar{h}^{\alpha\beta} = A^{\alpha\beta} \exp{(ik_{\alpha}x^{\alpha})},$

$$
\left(-\frac{\partial^2}{\partial t^2}+\nabla^2\right)\bar{h}^{\alpha\beta}=0.
$$

● **Wave equation** travelling at speed of **light**

- By imposing gauge freedoms we can transform $A_{a\beta}$ to the **Transverse-Traceless** gauge
- **Polarised have two different polarization components**

 $(A_{\alpha\beta}^{TT}) = \begin{pmatrix} 0 & 0 & 0 & 0 \\ 0 & A_{xx} & A_{xy} & 0 \\ 0 & A_{xy} & -A_{xx} & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix}$

 $h_{xx}^{\text{TT}} = -h_{yy}^{\text{TT}} \equiv h_{+}(t-z);$ $h_{xy}^{\text{TT}} = h_{yx}^{\text{TT}} \equiv h_{\times}(t-z) \ .$

Volumetric Render

- Uses data from **SXS** (simulating eXtreme Spacetime) catalogue
- Import **mod(h)** and **Arg(h)** and interpolate between them

- **Ray-Marching technique** used
- At each step value of **h** calculated in game object
- Mod(h) determines contribution to **opacity**, Arg(h) determining **red/blue color**

JCL

åâÄ

Special Thanks

- VR project was done through Unity game development software
- Many previous simulations developed by past UCD undergraduate students,
- Thanks to my supervisor Dr. Christiana Pantelidou

Dr. Phillip Lynch Dr. Josh Mathews Kevin Cunningham Dr. Christiana Pantelidou

Thank you for your attention!

