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Central Simple Algebras with Involution

▶ Examples of Central Simple Algebras
▶ Mn(F ), H = (−1,−1)R, (a, b)F

F -Basis: {1, i , j , k}
i2 = a, j2 = b, ij = −ji = k

▶ Involutions
▶ t, ,
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Prepositive Cones

Definition (Astier-Unger, 2020)
A prepositive cone P on (A, σ) is a subset P of Sym(A, σ)
such that

(P1) P ̸= ∅;

(P2) P + P ⊆ P;

(P3) σ(a) · P · a ⊆ P for every a ∈ A;

(P4) PF := {u ∈ F | uP ⊆ P} is an ordering on F;

(P5) P ∩ −P = {0}.
P is over P ∈ XF if PF = P. A positive cone is a
prepositive cone that is maximal with respect to inclusion.

CP(S) :=
{ k∑

i=1

uiσ(xi)sixi

∣∣∣ k ∈ N, ui ∈ P , xi ∈ A, si ∈ S
}
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Signatures & Valuations
▶ Signatures (Astier-Unger, 2014)

H±1(A, σ) −→ H±1(Mm(DP), adφP
)

scaling−−−→ H±1(Mm(DP), ϑ
t
P)

collapsing−−−−−→ H±1(DP , ϑP)

hermitian form h = ⟨a⟩σ, h(x , y) = σ(x)ay

signηP(h) := signP̃(h ⊗ FP) ∈ Z

▶ Valuations

A valuation on a division algebra A is a map
v : A → Γ ∪ {∞}, where Γ is totally ordered abelian
group such that ∀a, b ∈ A:

▶ v(a) = ∞ ⇐⇒ a = 0
▶ v(ab) = v(a) + v(b)
▶ v(a+ b) ≥ min(v(a), v(b)), whenever a ̸= −b

▶ If x ∈ (a, b)F : v(x) = 1
2
v0(xx)
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Counterexample? Computational Approach

Theorem (Astier-Unger, 2020)
For a division algebra A,

P = {x ∈ A∗ | signηP⟨x⟩σ = n} ∪ {0}

is a positive cone, where n =
√

dimF (A)

First Attempt: A = (x , y)F , F = R((x))((y)), σ(i) = −i

▶ The Approach:
▶ Find a ∈ A with signηP⟨a⟩σ = 2 and v(a) ∈ Z× (12Z \Z)
▶ Find b ∈ A with signηP⟨b⟩σ = 2 and v(b) /∈ Z× (12Z \Z)

▶ We then have that ∀u ∈ CP(a) : v(u) ∈ Z× (12Z \ Z)
▶ Thus, b ∈ P but b /∈ CP(a), giving CP(a) ⊊ P
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Counterexample? Computational Approach

Second Attempt: A = (−1, x)F , F = R((x)), σ(i) = −i

Element Signature Valuation
1 2 0
x 2 1

1
x
+ xi + j + k 2 -1
1− i − 1

x
j 0 −1

2
1
x
i − j 0 -1
...

...
...

6 / 10



Counterexample? Computational Approach

Second Attempt: A = (−1, x)F , F = R((x)), σ(i) = −i

Element Signature Valuation
1 2 0
x 2 1

1
x
+ xi + j + k 2 -1
1− i − 1

x
j 0 −1

2
1
x
i − j 0 -1
...

...
...

6 / 10



Example
Third Attempt: A = (−1, 3)Q, σ(i) = −i

▶ CP(1) is a prepositive cone.
▶ For d ∈ A, does signηP⟨d⟩σ = 2 =⇒ d ∈ CP(1)?

c = x + yi + zj + wk

σ(c)c = (x2+ y 2+3z2+3w 2)+ (2xz +2yw)j +(2xw − 2yz)k

▶ Can we have that σ(c)c = d?

▶ Example: d = 3 + j + k

x2 + y 2 + 3z2 + 3w 2 = 3

2xz + 2yw = 1

2xw − 2yz = 1

▶ Has solutions in Ralg
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A Theorem on Maximality

Theorem (A.L.)
Let F be a formally real field with ordering P ∈ XF . Assume
F is dense in its real closure FP . Consider a quaternion
algebra (A, σ) with involution of the first kind and Q a
prepositive cone on (A, σ) over P. Then Q is maximal.

Sketch of Proof:

▶ Let A = (a, b)F .

▶ We will examine the least trivial case: A is a division
algebra, a > 0 and b > 0, orthogonal involution.

▶ WLOG, choose σ such that CP(1) is a prepositive cone.

▶ We will show that CP(1) = P

▶ d = d0 + d1i + d2j ∈ P ⇐⇒ d0 >
√

ad2
1 + bd2

2 .
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d = d0 + d1i + d2j ∈ P

σ(c)c = (x2+ay 2+bz2+abw 2)+(2xy−2bzw)i+(2xz+2ayw)j

▶ Impose the constraints that the pure components of
σ(c)c and d are equal.

▶ Let f (x , y , z ,w) = x2 + ay 2 + bz2 + abw 2.

▶ Allowing values for x , y , z ,w in FP , f attains a minimum
of

√
ad2

1 + bd2
2

▶ By continuity of f & density of F in FP , ∃x ′, y ′, z ′,w ′ ∈ F
s.t. f (x ′, y ′, z ′,w ′) ∈ (

√
ad2

1 + bd2
2 , d0)

▶ Then d = σ(c ′)c ′ + (d0 − f (x ′, y ′, z ′,w ′))σ(1)1 ∈ CP(1)

▶ Finally, it is not hard to show that for any prepositive
cone Q,

P ⊆ CP(1) ⊆ Q ⊆ P
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Thank you!
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