Positive Cones on Central Simple Algebras with Involution Supervised by Thomas Unger

Andrew Leader

26 July 2024

Central Simple Algebras with Involution

► Examples of Central Simple Algebras
 ► M_n(F), 𝔅 𝔅 = (−1, −1)_ℝ, (a, b)_F

Central Simple Algebras with Involution

► Examples of Central Simple Algebras ► $M_n(F)$, $\mathbb{H} = (-1, -1)_{\mathbb{R}}$, $(a, b)_F$ F-Basis: $\{1, i, j, k\}$ $i^2 = a, j^2 = b, ij = -ji = k$

Central Simple Algebras with Involution

Examples of Central Simple Algebras
 M_n(*F*), 𝔅 𝔅 = (−1, −1)_ℝ, (*a*, *b*)_{*F*}
 F-Basis: {1, *i*, *j*, *k*}
 *i*² = *a*, *j*² = *b*, *ij* = −*ji* = *k*

t,

Prepositive Cones

Definition (Astier-Unger, 2020) A prepositive cone \mathscr{P} on (A, σ) is a subset \mathscr{P} of Sym (A, σ) such that (P1) $\mathscr{P} \neq \varnothing$; (P2) $\mathscr{P} + \mathscr{P} \subset \mathscr{P};$ (P3) $\sigma(a) \cdot \mathscr{P} \cdot a \subset \mathscr{P}$ for every $a \in A$; (P4) $\mathscr{P}_F := \{ u \in F \mid u \mathscr{P} \subseteq \mathscr{P} \}$ is an ordering on F; (P5) $\mathscr{P} \cap -\mathscr{P} = \{0\}.$ \mathcal{P} is over $P \in X_F$ if $\mathcal{P}_F = P$. A positive cone is a prepositive cone that is maximal with respect to inclusion.

Prepositive Cones

Definition (Astier-Unger, 2020) A prepositive cone \mathscr{P} on (A, σ) is a subset \mathscr{P} of Sym (A, σ) such that (P1) $\mathscr{P} \neq \varnothing$; (P2) $\mathscr{P} + \mathscr{P} \subset \mathscr{P};$ (P3) $\sigma(a) \cdot \mathscr{P} \cdot a \subset \mathscr{P}$ for every $a \in A$; (P4) $\mathscr{P}_F := \{ u \in F \mid u \mathscr{P} \subseteq \mathscr{P} \}$ is an ordering on F; (P5) $\mathscr{P} \cap -\mathscr{P} = \{0\}.$ \mathcal{P} is over $P \in X_F$ if $\mathcal{P}_F = P$. A positive cone is a prepositive cone that is maximal with respect to inclusion.

$$\mathscr{C}_{P}(S) := \left\{ \sum_{i=1}^{k} u_{i}\sigma(x_{i})s_{i}x_{i} \mid k \in \mathbb{N}, u_{i} \in P, x_{i} \in A, s_{i} \in S \right\}$$

Signatures & Valuations

► Signatures (Astier-Unger, 2014) $\mathscr{H}_{\pm 1}(A, \sigma) \longrightarrow \mathscr{H}_{\pm 1}(M_m(D_P), \mathrm{ad}_{\varphi_P}) \xrightarrow{\text{scaling}} \mathscr{H}_{\pm 1}(M_m(D_P), \vartheta_P^t) \xrightarrow{\text{collapsing}} \mathscr{H}_{\pm 1}(D_P, \vartheta_P)$

$$\begin{array}{l} \text{hermitian form } h = \langle \mathsf{a} \rangle_{\sigma}, \ h(x,y) = \sigma(x) \mathsf{a} y \\ \text{sign}_{P}^{\eta}(h) := \text{sign}_{\tilde{P}}(h \otimes F_{P}) \in \mathbb{Z} \end{array}$$

Signatures & Valuations

► Signatures (Astier-Unger, 2014) $\mathscr{H}_{\pm 1}(A, \sigma) \longrightarrow \mathscr{H}_{\pm 1}(M_m(D_P), \mathrm{ad}_{\varphi_P}) \xrightarrow{\mathrm{scaling}} \mathscr{H}_{\pm 1}(M_m(D_P), \vartheta_P^t) \xrightarrow{\mathrm{collapsing}} \mathscr{H}_{\pm 1}(D_P, \vartheta_P)$

hermitian form
$$h = \langle a \rangle_{\sigma}, h(x, y) = \sigma(x)ay$$

sign ^{η} _P(h) := sign _{\tilde{P}} ($h \otimes F_P$) $\in \mathbb{Z}$

Valuations

A valuation on a division algebra A is a map $v : A \to \Gamma \cup \{\infty\}$, where Γ is totally ordered abelian group such that $\forall a, b \in A$:

$$v(a) = \infty \iff a = 0$$

v(ab) = v(a) + v(b)
 v(a + b) > min(v(a), v(b)), whenever a ≠ -b

Signatures & Valuations

► Signatures (Astier-Unger, 2014) $\mathscr{H}_{\pm 1}(A, \sigma) \longrightarrow \mathscr{H}_{\pm 1}(M_m(D_P), \mathrm{ad}_{\varphi_P}) \xrightarrow{\mathrm{scaling}} \mathscr{H}_{\pm 1}(M_m(D_P), \vartheta_P^t) \xrightarrow{\mathrm{collapsing}} \mathscr{H}_{\pm 1}(D_P, \vartheta_P)$

hermitian form
$$h = \langle a \rangle_{\sigma}$$
, $h(x, y) = \sigma(x)ay$
 $\operatorname{sign}_{P}^{\eta}(h) := \operatorname{sign}_{\tilde{P}}(h \otimes F_{P}) \in \mathbb{Z}$

Valuations

A valuation on a division algebra A is a map $v : A \to \Gamma \cup \{\infty\}$, where Γ is totally ordered abelian group such that $\forall a, b \in A$:

▶
$$v(a) = \infty \iff a = 0$$

▶ $v(ab) = v(a) + v(b)$
▶ $v(a+b) \ge \min(v(a), v(b))$, whenever $a \ne -b$

• If
$$x \in (a, b)_F$$
: $v(x) = \frac{1}{2}v_0(x\overline{x})$

Theorem (Astier-Unger, 2020) For a division algebra A, $\mathscr{P} = \{x \in A^* \mid \operatorname{sign}_P^{\eta} \langle x \rangle_{\sigma} = n\} \cup \{0\}$

is a positive cone, where $n = \sqrt{\dim_F(A)}$

Theorem (Astier-Unger, 2020) For a division algebra *A*, $\mathscr{P} = \{x \in A^* \mid \operatorname{sign}_P^{\eta} \langle x \rangle_{\sigma} = n\} \cup \{0\}$ is a positive cone, where $n = \sqrt{\dim_F(A)}$

First Attempt: $A = (x, y)_F$, $F = \mathbb{R}((x))((y))$, $\sigma(i) = -i$

Theorem (Astier-Unger, 2020) For a division algebra *A*,

$$\mathscr{P} = \{x \in A^* \mid \mathsf{sign}_P^\eta \langle x \rangle_\sigma = n\} \cup \{0\}$$

is a positive cone, where $n = \sqrt{\dim_F(A)}$

 $\underline{\text{First Attempt:}} \ A = (x, y)_F, \quad F = \mathbb{R}((x))((y)), \quad \sigma(i) = -i$

The Approach:

e

▶ Find $a \in A$ with sign^{η}_P $\langle a \rangle_{\sigma} = 2$ and $v(a) \in \mathbb{Z} \times (\frac{1}{2}\mathbb{Z} \setminus \mathbb{Z})$

▶ Find $b \in A$ with sign^{η}_P $\langle b \rangle_{\sigma} = 2$ and $v(b) \notin \mathbb{Z} \times (\frac{1}{2}\mathbb{Z} \setminus \mathbb{Z})$

Theorem (Astier-Unger, 2020) For a division algebra *A*,

$$\mathscr{P} = \{x \in A^* \mid \mathsf{sign}_P^\eta \langle x \rangle_\sigma = n\} \cup \{0\}$$

is a positive cone, where $n = \sqrt{\dim_F(A)}$

 $\underline{\text{First Attempt:}} \ A = (x, y)_F, \quad F = \mathbb{R}((x))((y)), \quad \sigma(i) = -i$

The Approach:

▶ Find $a \in A$ with sign^{η}_P $\langle a \rangle_{\sigma} = 2$ and $v(a) \in \mathbb{Z} \times (\frac{1}{2}\mathbb{Z} \setminus \mathbb{Z})$

▶ Find $b \in A$ with sign^{η}_P $\langle b \rangle_{\sigma} = 2$ and $v(b) \notin \mathbb{Z} \times (\frac{1}{2}\mathbb{Z} \setminus \mathbb{Z})$

▶ We then have that $\forall u \in \mathscr{C}_{P}(a)$: $v(u) \in \mathbb{Z} \times (\frac{1}{2}\mathbb{Z} \setminus \mathbb{Z})$

▶ Thus, $b \in \mathscr{P}$ but $b \notin \mathscr{C}_P(a)$, giving $\mathscr{C}_P(a) \subsetneq \mathscr{P}$

Second Attempt: $A = (-1, x)_F$, $F = \mathbb{R}((x))$, $\sigma(i) = -i$

Second Attempt:
$$A = (-1, x)_F$$
, $F = \mathbb{R}((x))$, $\sigma(i) = -i$

Element	Signature	Valuation
1	2	0
х	2	1
$\frac{1}{x} + xi + j + k$	2	-1
$1 - i - \frac{1}{x}j$	0	$\frac{-1}{2}$
$\frac{1}{x}i-j^{}$	0	-1
÷		

Example

Third Attempt:
$$A = (-1,3)_{\mathbb{Q}}, \quad \sigma(i) = -i$$

• $\mathscr{C}_{P}(1)$ is a prepositive cone.

► For $d \in A$, does sign^{η}_P $\langle d \rangle_{\sigma} = 2 \implies d \in \mathscr{C}_{P}(1)$?

Example

Third Attempt:
$$A = (-1,3)_{\mathbb{Q}}, \quad \sigma(i) = -i$$

• $\mathscr{C}_{P}(1)$ is a prepositive cone. • For $d \in A$, does $\operatorname{sign}_{P}^{\eta} \langle d \rangle_{\sigma} = 2 \implies d \in \mathscr{C}_{P}(1)$? c = x + yi + zj + wk $\sigma(c)c = (x^{2} + y^{2} + 3z^{2} + 3w^{2}) + (2xz + 2yw)j + (2xw - 2yz)k$

Example

Third Attempt:
$$A = (-1,3)_{\mathbb{Q}}, \quad \sigma(i) = -i$$

►
$$\mathscr{C}_P(1)$$
 is a prepositive cone.
► For $d \in A$, does $\operatorname{sign}_P^{\eta} \langle d \rangle_{\sigma} = 2 \implies d \in \mathscr{C}_P(1)$?
 $c = x + yi + zj + wk$
 $\sigma(c)c = (x^2 + y^2 + 3z^2 + 3w^2) + (2xz + 2yw)j + (2xw - 2yz)k$

▶ Has solutions in \mathbb{R}_{alg}

A Theorem on Maximality

Theorem (A.L.)

Let F be a formally real field with ordering $P \in X_F$. Assume F is dense in its real closure F_P . Consider a quaternion algebra (A, σ) with involution of the first kind and \mathscr{Q} a prepositive cone on (A, σ) over P. Then \mathscr{Q} is maximal.

A Theorem on Maximality

Theorem (A.L.)

Let F be a formally real field with ordering $P \in X_F$. Assume F is dense in its real closure F_P . Consider a quaternion algebra (A, σ) with involution of the first kind and \mathcal{Q} a prepositive cone on (A, σ) over P. Then \mathcal{Q} is maximal.

Sketch of Proof:

• Let
$$A = (a, b)_F$$
.

- We will examine the least trivial case: A is a division algebra, a > 0 and b > 0, orthogonal involution.
- WLOG, choose σ such that $\mathscr{C}_P(1)$ is a prepositive cone.

▶ We will show that
$$\mathscr{C}_{P}(1) = \mathscr{P}$$

 $\blacktriangleright \ d = d_0 + d_1 i + d_2 j \in \mathscr{P} \iff d_0 > \sqrt{ad_1^2 + bd_2^2}.$

$$d = d_0 + d_1i + d_2j \in \mathscr{P}$$

$$\sigma(c)c = (x^2 + ay^2 + bz^2 + abw^2) + (2xy - 2bzw)i + (2xz + 2ayw)j$$

$$d = d_0 + d_1i + d_2j \in \mathscr{P}$$

$$\sigma(c)c = (x^2 + ay^2 + bz^2 + abw^2) + (2xy - 2bzw)i + (2xz + 2ayw)j$$

- Impose the constraints that the pure components of σ(c)c and d are equal.
- Let $f(x, y, z, w) = x^2 + ay^2 + bz^2 + abw^2$.
- Allowing values for x, y, z, w in F_P , f attains a minimum of $\sqrt{ad_1^2 + bd_2^2}$
- By continuity of *f* & density of *F* in *F_P*, ∃*x'*, *y'*, *z'*, *w'* ∈ *F* s.t. *f*(*x'*, *y'*, *z'*, *w'*) ∈ (√*ad*₁² + *bd*₂², *d*₀)
- ► Then $d = \sigma(c')c' + (d_0 f(x', y', z', w'))\sigma(1)1 \in \mathscr{C}_P(1)$

$$d = d_0 + d_1i + d_2j \in \mathscr{P}$$

$$\sigma(c)c = (x^2 + ay^2 + bz^2 + abw^2) + (2xy - 2bzw)i + (2xz + 2ayw)j$$

- Impose the constraints that the pure components of σ(c)c and d are equal.
- Let $f(x, y, z, w) = x^2 + ay^2 + bz^2 + abw^2$.
- Allowing values for x, y, z, w in F_P , f attains a minimum of $\sqrt{ad_1^2 + bd_2^2}$
- By continuity of *f* & density of *F* in *F_P*, ∃*x'*, *y'*, *z'*, *w'* ∈ *F* s.t. *f*(*x'*, *y'*, *z'*, *w'*) ∈ (√*ad*₁² + *bd*₂², *d*₀)
- ► Then $d = \sigma(c')c' + (d_0 f(x', y', z', w'))\sigma(1)1 \in \mathscr{C}_P(1)$
- Finally, it is not hard to show that for any prepositive cone *Q*,

$$\mathscr{P} \subseteq \mathscr{C}_{P}(1) \subseteq \mathscr{Q} \subseteq \mathscr{P}$$

Thank you!