Positive Cones on Central Simple Algebras with Involution Supervised by Thomas Unger

Andrew Leader

26 July 2024

Central Simple Algebras with Involution

▶ Examples of Central Simple Algebras ▶ $M_n(F)$, $\mathbb{H} = (-1, -1)_{\mathbb{R}}$, $(a, b)_F$

Central Simple Algebras with Involution

▶ Examples of Central Simple Algebras ▶ $M_n(F)$, $\mathbb{H} = (-1,-1)_{\mathbb{R}}$, $(a, b)_F$ F -Basis: {1, *i*, *j*, k } $i^2 = a, j^2 = b, ij = -ji = k$

Central Simple Algebras with Involution

▶ Examples of Central Simple Algebras ▶ $M_n(F)$, $\mathbb{H} = (-1,-1)_{\mathbb{R}}$, $(a, b)_F$ F -Basis: {1, *i*, *j*, k } $i^2 = a, j^2 = b, ij = -ji = k$

▶ t, ,

Prepositive Cones

Definition (Astier-Unger, 2020) A prepositive cone $\mathscr P$ on (A,σ) is a subset $\mathscr P$ of Sym (A,σ) such that $(P1)$ $\mathscr{P} \neq \varnothing$; $(P2)$ $\mathscr{P} + \mathscr{P} \subset \mathscr{P}$; (P3) $\sigma(a) \cdot \mathscr{P} \cdot a \subseteq \mathscr{P}$ for every $a \in A$; (P4) $\mathscr{P}_F := \{u \in F \mid u\mathscr{P} \subset \mathscr{P}\}\$ is an ordering on F; $(P5)$ $\mathscr{P} \cap -\mathscr{P} = \{0\}.$ $\mathscr P$ is over $P \in X_F$ if $\mathscr P_F = P$. A positive cone is a prepositive cone that is maximal with respect to inclusion.

Prepositive Cones

Definition (Astier-Unger, 2020) A prepositive cone $\mathscr P$ on (A,σ) is a subset $\mathscr P$ of Sym (A,σ) such that $(P1)$ $\mathscr{P} \neq \varnothing$; $(P2)$ $\mathscr{P} + \mathscr{P} \subset \mathscr{P}$; (P3) $\sigma(a) \cdot \mathscr{P} \cdot a \subseteq \mathscr{P}$ for every $a \in A$; (P4) $\mathscr{P}_F := \{u \in F \mid u\mathscr{P} \subset \mathscr{P}\}\$ is an ordering on F; $(P5)$ $\mathscr{P} \cap -\mathscr{P} = \{0\}.$ $\mathscr P$ is over $P \in X_F$ if $\mathscr P_F = P$. A positive cone is a prepositive cone that is maximal with respect to inclusion.

$$
\mathscr{C}_P(S):=\Big\{\sum_{i=1}^k u_i\sigma(x_i)s_ix_i\ \Big|\ k\in\mathbb{N},\ u_i\in P,\ x_i\in A,\ s_i\in S\Big\}
$$

Signatures & Valuations

▶ Signatures (Astier-Unger, 2014)

 $\mathscr{H}_{\pm1}(A,\sigma)\longrightarrow \mathscr{H}_{\pm1}(M_m(D_P),\mathsf{ad}_{\varphi_P}) \xrightarrow{\text{scaling}} \mathscr{H}_{\pm1}(M_m(D_P),\vartheta_P^t) \xrightarrow{\text{collapsing}} \mathscr{H}_{\pm1}(D_P,\vartheta_P)$

Hermitian form
$$
h = \langle a \rangle_{\sigma}
$$
, $h(x, y) = \sigma(x) \text{ as } a$

\n $\text{sign}_P^n(h) := \text{sign}_P^n(h \otimes F_P) \in \mathbb{Z}$

Signatures & Valuations

▶ Signatures (Astier-Unger, 2014)

 $\mathscr{H}_{\pm1}(A,\sigma)\longrightarrow \mathscr{H}_{\pm1}(M_m(D_P),\mathsf{ad}_{\varphi_P}) \xrightarrow{\text{scaling}} \mathscr{H}_{\pm1}(M_m(D_P),\vartheta_P^t) \xrightarrow{\text{collapsing}} \mathscr{H}_{\pm1}(D_P,\vartheta_P)$

Hermitian form
$$
h = \langle a \rangle_{\sigma}
$$
, $h(x, y) = \sigma(x) \text{ as } a$

\n $\text{sign}_P^n(h) := \text{sign}_P^n(h \otimes F_P) \in \mathbb{Z}$

$$
\blacktriangleright
$$
 Valuations

A valuation on a division algebra A is a map $v : A \to \Gamma \cup \{\infty\}$, where Γ is totally ordered abelian group such that $\forall a, b \in A$:

$$
\blacktriangleright \; v(a) = \infty \iff a = 0
$$

$$
\blacktriangleright \ \dot{v(ab)} = v(a) + v(b)
$$

▶ $v(a + b)$ > min($v(a)$, $v(b)$), whenever $a \neq -b$

Signatures & Valuations

▶ Signatures (Astier-Unger, 2014)

 $\mathscr{H}_{\pm1}(A,\sigma)\longrightarrow \mathscr{H}_{\pm1}(M_m(D_P),\mathsf{ad}_{\varphi_P}) \xrightarrow{\text{scaling}} \mathscr{H}_{\pm1}(M_m(D_P),\vartheta_P^t) \xrightarrow{\text{collapsing}} \mathscr{H}_{\pm1}(D_P,\vartheta_P)$

Hermitian form
$$
h = \langle a \rangle_{\sigma}
$$
, $h(x, y) = \sigma(x) \text{ as } a$

\n $\text{sign}_P^n(h) := \text{sign}_P^n(h \otimes F_P) \in \mathbb{Z}$

▶ Valuations

A valuation on a division algebra A is a map $v: A \to \Gamma \cup \{\infty\}$, where Γ is totally ordered abelian group such that $\forall a, b \in A$:

►
$$
v(a) = \infty \iff a = 0
$$

\n► $v(ab) = v(a) + v(b)$
\n► $v(a + b) \ge \min(v(a), v(b))$, whenever $a \ne -b$

$$
\blacktriangleright \ \text{If } x \in (a, b)_{\mathsf{F}}: \quad v(x) = \frac{1}{2}v_0(x\overline{x})
$$

Theorem (Astier-Unger, 2020) For a division algebra A, $\mathscr{P} = \{x \in A^* \mid \mathrm{sign}_P^n \langle x \rangle_\sigma = n\} \cup \{0\}$ is a positive cone, where $n=\sqrt{\text{\text{dim}}_{\text{\text{F}}}(A)}$

Theorem (Astier-Unger, 2020) For a division algebra A, $\mathscr{P} = \{x \in A^* \mid \mathrm{sign}_P^n \langle x \rangle_\sigma = n\} \cup \{0\}$ is a positive cone, where $n=\sqrt{\text{\text{dim}}_{\text{\text{F}}}(A)}$

First Attempt: $A = (x, y)_F$, $F = \mathbb{R}(\!(x)\!)(\!(y)\!)$, $\sigma(i) = -i$

Theorem (Astier-Unger, 2020) For a division algebra A, $\mathscr{P} = \{x \in A^* \mid \mathrm{sign}_P^n \langle x \rangle_\sigma = n\} \cup \{0\}$ is a positive cone, where $n=\sqrt{\text{\text{dim}}_{\text{\text{F}}}(A)}$

First Attempt: $A = (x, y)_F$, $F = \mathbb{R}(\!(x)\!)(\!(y)\!)$, $\sigma(i) = -i$

$$
\blacktriangleright
$$
 The Approach:

▶ Find $a \in A$ with $\text{sign}_P^{\eta}\langle a \rangle_{\sigma} = 2$ and $v(a) \in \mathbb{Z} \times (\frac{1}{2})$ $\frac{1}{2}\mathbb{Z}\setminus\mathbb{Z}$

▶ Find $b \in A$ with $\text{sign}_P^\eta \langle b \rangle_\sigma = 2$ and $v(b) \notin \mathbb{Z} \times (\frac{1}{2})$ $\frac{1}{2}\mathbb{Z}\setminus\mathbb{Z}$)

Theorem (Astier-Unger, 2020) For a division algebra A, $\mathscr{P} = \{x \in A^* \mid \mathrm{sign}_P^n \langle x \rangle_\sigma = n\} \cup \{0\}$ is a positive cone, where $n=\sqrt{\text{\text{dim}}_{\text{\text{F}}}(A)}$

First Attempt: $A = (x, y)_F$, $F = \mathbb{R}((x))((y))$, $\sigma(i) = -i$

▶ The Approach:

▶ Find $a \in A$ with $\text{sign}_P^{\eta}\langle a \rangle_{\sigma} = 2$ and $v(a) \in \mathbb{Z} \times (\frac{1}{2})$ $\frac{1}{2}\mathbb{Z}\setminus\mathbb{Z}$

▶ Find $b \in A$ with $\text{sign}_P^\eta \langle b \rangle_\sigma = 2$ and $v(b) \notin \mathbb{Z} \times (\frac{1}{2})$ $\frac{1}{2}\mathbb{Z}\setminus\mathbb{Z}$)

▶ We then have that $\forall u \in \mathscr{C}_P(a): v(u) \in \mathbb{Z} \times (\frac{1}{2})$ $\frac{1}{2}\mathbb{Z}\setminus\mathbb{Z}$

▶ Thus, $b \in \mathscr{P}$ but $b \notin \mathscr{C}_P(a)$, giving $\mathscr{C}_P(a) \subsetneq \mathscr{P}$

Second Attempt: $A = (-1, x)_F$, $F = \mathbb{R}(\{x\})$, $\sigma(i) = -i$

Second Attempt: $A = (-1, x)_F$, $F = \mathbb{R}(\{x\})$, $\sigma(i) = -i$

Example

$$
Third\text{Attempt: } A = (-1,3)_{\mathbb{Q}}, \quad \sigma(i) = -i
$$

 $\blacktriangleright \mathscr{C}_P(1)$ is a prepositive cone.

▶ For $d \in A$, does $\text{sign}_P^{\eta} \langle d \rangle_{\sigma} = 2 \implies d \in \mathcal{C}_P(1)$?

Example

$$
Third\text{Attempt: } A = (-1,3)_{\mathbb{Q}}, \quad \sigma(i) = -i
$$

 $\triangleright \mathcal{C}_P(1)$ is a prepositive cone. ▶ For $d \in A$, does $\text{sign}_P^{\eta} \langle d \rangle_{\sigma} = 2 \implies d \in \mathcal{C}_P(1)$? $c = x + yi + zi + wk$ $\sigma(c) c = (x^2+y^2+3z^2+3w^2)+(2xz+2yw)j+(2xw-2yz)k$

Example

$$
Third\text{ Attempt: } A = (-1,3)_{\mathbb{Q}}, \quad \sigma(i) = -i
$$

\n- $$
\mathcal{C}_P(1)
$$
 is a prepositive cone.
\n- For $d \in A$, does $\text{sign}_P^n \langle d \rangle_{\sigma} = 2 \implies d \in \mathcal{C}_P(1)$?
\n- $c = x + yi + zj + wk$
\n- $\sigma(c)c = (x^2 + y^2 + 3z^2 + 3w^2) + (2xz + 2yw)j + (2xw - 2yz)k$
\n

► Can we have that
$$
\sigma(c)c = d
$$
?
\n
\n**Example:** $d = 3 + j + k$
\n $x^2 + y^2 + 3z^2 + 3w^2 = 3$
\n $2xz + 2yw = 1$
\n $2xw - 2yz = 1$

 \blacktriangleright Has solutions in \mathbb{R}_{alg}

A Theorem on Maximality

Theorem (A.L.)

Let F be a formally real field with ordering $P \in X_F$. Assume F is dense in its real closure F_P . Consider a quaternion algebra (A, σ) with involution of the first kind and $\mathscr Q$ a prepositive cone on (A, σ) over P. Then $\mathscr Q$ is maximal.

A Theorem on Maximality

Theorem (A.L.)

Let F be a formally real field with ordering $P \in X_F$. Assume F is dense in its real closure F_P . Consider a quaternion algebra (A, σ) with involution of the first kind and $\mathcal Q$ a prepositive cone on (A, σ) over P. Then $\mathscr Q$ is maximal.

Sketch of Proof:

Let
$$
A = (a, b)_F
$$
.

- \triangleright We will examine the least trivial case: A is a division algebra, $a > 0$ and $b > 0$, orthogonal involution.
- \triangleright WLOG, choose σ such that $\mathcal{C}_P(1)$ is a prepositive cone.

$$
\blacktriangleright \text{ We will show that } \mathscr{C}_P(1) = \mathscr{P}
$$

▶ $d = d_0 + d_1 i + d_2 j \in \mathcal{P}$ $\iff d_0 > \sqrt{ad_1^2 + bd_2^2}$.

$$
d = d_0 + d_1i + d_2j \in \mathscr{P}
$$

$$
\sigma(c)c = (x^2 + ay^2 + bz^2 + abw^2) + (2xy - 2bzw)i + (2xz + 2ayw)j
$$

$$
d = d_0 + d_1 i + d_2 j \in \mathscr{P}
$$

$$
\sigma(c)c = (x^2 + ay^2 + bz^2 + abw^2) + (2xy - 2bzw)i + (2xz + 2ayw)j
$$

- \blacktriangleright Impose the constraints that the pure components of $\sigma(c)$ c and d are equal.
- ▶ Let $f(x, y, z, w) = x^2 + ay^2 + bz^2 + abw^2$.
- \blacktriangleright Allowing values for x, y, z, w in F_P , f attains a minimum of $\sqrt{a d_1^2 + b d_2^2}$
- ▶ By continuity of f & density of F in F_P , $\exists x', y', z', w' \in F$ s.t. $f(x', y', z', w') \in (\sqrt{ad_1^2 + bd_2^2}, d_0)$
- ▶ Then $d = σ(c')c' + (d_0 f(x', y', z', w'))σ(1)1 ∈ C_P(1)$

$$
d = d_0 + d_1 i + d_2 j \in \mathscr{P}
$$

$$
\sigma(c)c = (x^2 + ay^2 + bz^2 + abw^2) + (2xy - 2bzw)i + (2xz + 2ayw)j
$$

- \blacktriangleright Impose the constraints that the pure components of $\sigma(c)$ c and d are equal.
- ▶ Let $f(x, y, z, w) = x^2 + ay^2 + bz^2 + abw^2$.
- \blacktriangleright Allowing values for x, y, z, w in F_P , f attains a minimum of $\sqrt{a d_1^2 + b d_2^2}$
- ▶ By continuity of f & density of F in F_P , $\exists x', y', z', w' \in F$ s.t. $f(x', y', z', w') \in (\sqrt{ad_1^2 + bd_2^2}, d_0)$
- ▶ Then $d = σ(c')c' + (d_0 f(x', y', z', w'))σ(1)1 ∈ C_P(1)$
- Finally, it is not hard to show that for any prepositive cone \mathscr{Q} .

$$
\mathscr{P}\subseteq \mathscr{C}_P(1)\subseteq \mathscr{Q}\subseteq \mathscr{P}
$$

Thank you!